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PREFACE

The first edition of this handbook, then titled simply the Shock and Vibration Hand-
book, was published in 1961, with Cyril M. Harris, Charles Batchelor Professor of
Engineering at Columbia University, New York, New York, and Charles E. Crede,
Professor of Mechanical Engineering, California Institute of Technology, Pasadena,
California, as the editors. The handbook brought together a comprehensive sum-
mary of basic shock and vibration theory and the applications of that theory to con-
temporary engineering practice. In so doing, it quickly found a wide international
audience that continued to expand with each new edition. Unfortunately, Charles
Crede, one of the world’s most respected shock and vibration engineers of his day,
passed away shortly after the publication of the first edition, but his name was still
carried as the coeditor of the second edition, published in 1976.The third and fourth
editions of the handbook were published in 1988 and 1996, respectively, with Cyril
Harris as the sole editor. For the fifth edition of the handbook published in 2002,
Cyril Harris brought in Allan G. Piersol, Consultant, Piersol Engineering Company,
Los Angeles, California, to be his coeditor. It was also at that time that the handbook
was renamed Harris’ Shock and Vibration Handbook. Cyril Harris has now fully
retired, so for this sixth edition of the handbook,Allan Piersol brought in Thomas L.
Paez, Consultant and Former Distinguished Member of the Technical Staff, Sandia
National Laboratories, Albuquerque, New Mexico, to be his coeditor.

This sixth edition of the handbook represents a major revision of the material in
prior editions in four important ways. First, several chapters in the fifth edition that
covered material that is either obsolete or of secondary interest (e.g., “Mechanical
Properties of Rubber”) have been deleted to make room for the coverage of new
technologies that have become important since the publication of the fifth edition,
as well as to reduce the number of pages in the handbook. Second, with only one
exception, every chapter retained from the fifth edition with a deceased author has
been edited or completely rewritten by a new author who is a contemporary author-
ity on the subject matter of the chapter. If the modifications to the chapter are
minor, an acknowledgment is given to the original author. The exception is Chap. 2,
“Basic Vibration Theory,” which was beautifully written by the late Ralph Blake and
presents fundamental material that does not become dated or require references.
Third, the numerical values in most of the text, tables, and figures in the handbook
are now presented in customary (usually English) units followed in parentheses by
SI units, as detailed in Chap. 1. Finally, again as detailed in Chap. 1, the chapters have
been reordered to group together those chapters covering related subjects; for
example, Chaps. 29 through 32 cover the response of structures induced by (a)
ground motion, (b) fluid flow, (c) wind, and (d) sound.

As for previous editions, this sixth edition of the handbook is written primarily to
provide practical guidance to working engineers and scientists actively involved in
solving shock and vibration problems. However, the discussions of all engineering
applications are preceded by a presentation of basic theoretical background mate-
rial. Hence, as for previous editions of the handbook, it is likely that this sixth edition
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will often find its way into higher education classrooms to support the teaching of
various aspects of shock and vibration engineering, particularly at graduate school
level. The extensive and fully updated references in all chapters further enhance the
handbook’s usefulness as a supporting text for teaching purposes. (Note: Text cita-
tions of the fifth edition of this handbook refer to Cyril M. Harris and Allan J. Pier-
sol, Harris’ Shock and Vibration Handbook, Fifth Edition, McGraw-Hill, New York
2001.)

Finally, we wish to thank all the contributors, in particular, the thirteen new
authors, for their skill and dedication in preparing this sixth edition of the handbook.
We are also very grateful to Cyril Harris for his support and, as always, all the
involved personnel at McGraw-Hill for their excellent work in preparing this new
edition.

Allan G. Piersol
Thomas L. Paez
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CHAPTER 1
INTRODUCTION

TO THE HANDBOOK

Cyril M. Harris

Allan G. Piersol

CONCEPTS IN SHOCK AND VIBRATION

The terms shock and vibration are generally used to refer to the dynamic mechani-
cal excitation that may cause a dynamic response of a physical system, usually a
mechanical structure that is exposed to that excitation. To be more specific, a shock
is a dynamic excitation with a relatively short duration, and a vibration is a dynamic
excitation with a relatively long duration as compared to the time required for a
physical system exposed to that excitation to fully respond. Both shock and vibra-
tion excitations can appear either as an input motion or force at the mounting points
or as a pressure field over the exterior surface of the physical system of interest. In
either case, the basic description of a shock or vibration is given by the instantaneous
magnitude of the excitation as a function of time, which is called a time history.

Shock and vibration excitations can be broadly classified as being either deter-
ministic or random (also called stochastic). A deterministic excitation is one where,
using analytical calculations based upon fundamental physics or repeated observa-
tions of the excitation produced under identical circumstances, the exact time his-
tory of the excitation in the future can be predicted with only minor errors. For
example, a step input with a fixed magnitude at the mounting points of an equipment
item would constitute a deterministic shock, while the excitation produced by an
unbalanced shaft rotating at constant speed would produce a deterministic vibration.
On the other hand, a random excitation is one where neither analytical calculations
nor previous observations of the excitation produced under identical circumstances
will allow the prediction of the exact time history of the excitation in the future. For
example, a chemical explosion produces a pressure time history with detailed char-
acteristics that are unique to that particular explosion, while the vibration of a pipe
produced by the turbulence in the boundary layer between the pipe and the high-
velocity flow of a fluid through the pipe will also be random in character.

The simplest model for a physical system that will respond to a shock or vibration
excitation is given by a rigid mass supported by a linear spring, commonly referred
to as a single-degree-of-freedom-system. The vibration of such a model, or system,
may be “free” or “forced.” In free vibration, there is no energy added to the system
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but rather the vibration is the continuing result of an initial disturbance. An ideal
system may be considered undamped for mathematical purposes; in such a system
the free vibration is assumed to continue indefinitely. In any real system, damping
(i.e., energy dissipation) causes the amplitude of free vibration to decay continu-
ously to a negligible value. Such free vibration sometimes is referred to as transient
vibration. Forced vibration, in contrast to free vibration, continues under “steady-
state” conditions because energy is supplied to the system continuously to compen-
sate for that dissipated by damping in the system. In general, the frequency at which
energy is supplied (i.e., the forcing frequency) appears in the vibration of the system.
Forced vibration may be either deterministic or random. In either instance, the
vibration of the system depends upon the relation of the excitation or forcing func-
tion to the properties of the system. This relationship is a prominent feature of the
analytical aspects of vibration.

The technology of shock and vibration embodies both theoretical and experi-
mental facets prominently. Thus, methods of analysis and instruments for the mea-
surement of shock and vibration are of primary significance. The results of analysis
and measurement are used to evaluate shock and vibration environments, to devise
testing procedures and testing machines, and to design and operate equipment and
machinery. Shock and/or vibration may be either wanted or unwanted, depending
upon circumstances. For example, vibration is involved in the primary mode of oper-
ation of such equipment as conveying and screening machines; the setting of rivets
depends upon the application of impact or shock. More frequently, however, shock
and vibration are unwanted.Then the objective is to eliminate or reduce their sever-
ity or, alternatively, to design equipment to withstand their influences. These proce-
dures are embodied in the control of shock and vibration. Methods of control are
emphasized throughout this handbook.

CONTROL OF SHOCK AND VIBRATION

Methods of shock and vibration control may be grouped into three broad categories:

1. Reduction at the source
a. Balancing of moving masses. Where the vibration originates in rotating or

reciprocating members, the magnitude of a vibratory force frequently can be
reduced or possibly eliminated by balancing or counterbalancing. For example,
during the manufacture of fans and blowers, it is common practice to rotate
each rotor and to add or subtract material as necessary to achieve balance.

b. Balancing of magnetic forces. Vibratory forces arising in magnetic effects of
electrical machinery sometimes can be reduced by modification of the mag-
netic path. For example, the vibration originating in an electric motor can be
reduced by skewing the slots in the armature laminations.

c. Control of clearances. Vibration and shock frequently result from impacts
involved in operation of machinery. In some instances, the impacts result from
inferior design or manufacture, such as excessive clearances in bearings, and
can be reduced by closer attention to dimensions. In other instances, such as
the movable armature of a relay, the shock can be decreased by employing a
rubber bumper to cushion motion of the plunger at the limit of travel.

2. Isolation
a. Isolation of source. Where a machine creates significant shock or vibration

during its normal operation, it may be supported upon isolators to protect
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other machinery and personnel from shock and vibration. For example, a forg-
ing hammer tends to create shock of a magnitude great enough to interfere
with the operation of delicate apparatus in the vicinity of the hammer. This
condition may be alleviated by mounting the forging hammer upon isolators.

b. Isolation of sensitive equipment. Equipment often is required to operate in
an environment characterized by severe shock or vibration. The equipment
may be protected from these environmental influences by mounting it upon
isolators. For example, equipment mounted in ships of the navy is subjected to
shock of great severity during naval warfare and may be protected from dam-
age by mounting it upon isolators.

3. Reduction of the response
a. Alteration of natural frequency. If the natural frequency of the structure of

an equipment coincides with the frequency of the applied vibration, the vibra-
tion condition may be made much worse as a result of resonance. Under such
circumstances, if the frequency of the excitation is substantially constant, it
often is possible to alleviate the vibration by changing the natural frequency
of such structure. For example, the vibration of a fan blade was reduced sub-
stantially by modifying a stiffener on the blade, thereby changing its natural
frequency and avoiding resonance with the frequency of rotation of the blade.
Similar results are attainable by modifying the mass rather than the stiffness.

b. Energy dissipation. If the vibration frequency is not constant or if the vibra-
tion involves a large number of frequencies, the desired reduction of vibration
may not be attainable by altering the natural frequency of the responding sys-
tem. It may be possible to achieve equivalent results by the dissipation of
energy to eliminate the severe effects of resonance. For example, the housing
of a washing machine may be made less susceptible to vibration by applying a
coating of damping material on the inner face of the housing.

c. Auxiliary mass. Another method of reducing the vibration of the responding
system is to attach an auxiliary mass to the system by a spring; with proper
tuning the mass vibrates and reduces the vibration of the system to which it is
attached. For example, the vibration of a textile-mill building subjected to the
influence of several hundred looms was reduced by attaching large masses to
a wall of the building by means of springs; then the masses vibrated with a 
relatively large motion, and the vibration of the wall was reduced. The incor-
poration of damping in this auxiliary mass system may further increase its
effectiveness.

CONTENT OF HANDBOOK

Each chapter of this handbook deals with a discrete phase of the subject of shock
and vibration. Frequent references are made from one chapter to another, to refer to
basic theory in other chapters, to call attention to supplementary information, and to
give illustrations and examples.Therefore, each chapter, when read with other refer-
enced chapters, presents one complete facet of the subject of shock and vibration.

Chapters dealing with similar subject matter are grouped together.The first eight
chapters following this introductory chapter deal with fundamental concepts of
shock and vibration. Chapter 2 discusses the free and forced vibration of linear sys-
tems that can be defined by lumped parameters with similar types of coordinates.
The properties of rigid bodies are discussed in Chap. 3, together with the vibration
of resiliently supported rigid bodies wherein several modes of vibration are coupled.
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Nonlinear vibration is discussed in Chap. 4, and self-excited vibration in Chap. 5.
Chapter 6 discusses two degree-of-freedom systems in detail—including both the
basic theory and the application of such theory to dynamic absorbers and auxiliary
mass dampers.The vibration of systems defined by distributed parameters—notably,
beams and plates—is discussed in Chap. 7. Chapter 8 discusses the response of
lumped parameter systems to step- and pulse-type excitations, while Chap. 9 dis-
cusses applications of the use of mechanical impedance and mechanical admittance
methods.

The second group of chapters is concerned with instrumentation for the measure-
ment of shock and vibration. Chapter 10 discusses not only piezoelectric and piezo
resistive transducers, but also other types such as force transducers, although strain
gages are described separately in Chap. 12. The calibration of shock and vibration
transducers is detailed in Chap. 11, and the electrical instruments to which such trans-
ducers are connected (including various types of amplifiers, signal conditioners,
analog-to-digital conversion, and data storage) are considered in detail in Chap. 13.
Chapter 14 is devoted to the important topics of spectrum analysis instrumentation
and techniques. The use of all such equipment in making vibration measurements in
the field is described in Chap. 15. The specific application of vibration measurement
equipment for monitoring the mechanical condition of machinery, as an aid in pre-
ventive maintenance, is the subject of Chap. 16.

The third group of chapters covers the selection of shock and vibration test crite-
ria and data analysis procedures. Specifically, Chap. 17 summarizes national and
international standards and test codes related to shock and vibration, while Chap. 18
details the procedures for deriving shock and vibration test specifications from
measured or predicted data. Chapters 19 and 20 then summarize the procedures for
computing the important properties of measured vibration and shock data, respec-
tively. This is followed by four chapters that detail procedures for the experimental
and analytical methods for determining the dynamic characteristics of structures.
Chapter 21 details experimental modal analysis procedures, while Chaps. 22 through
24 cover the most widely used analytical procedures—namely, matrix methods, finite
element methods, and statistical energy methods of analysis.

The next four chapters are concerned with shock and vibration testing machines
and procedures. Chapter 25 covers vibration testing machines, while Chap. 26 fully
elaborates on the digital control systems used for electrodynamic and electro-
hydraulic testing machines. Chapters 27 and 28 then cover conventional shock and
pyroshock testing machines, respectively. This material is followed by four chapters
that discuss the response of structures to four important and common sources of
shock and vibration—namely, ground motion in Chap. 29, fluid flow in Chap. 30,
wind loads in Chap. 31, and acoustic environments in Chap. 32. The next group of
chapters covers the mechanical properties and potential shock- and vibration-
induced failure mechanisms of metals in Chap. 33 and composites in Chap. 34. Mate-
rial and slip damping is then covered in Chap. 35, followed by applied damping
treatments in Chap. 36.

The last five chapters address specialized issues of importance. Specifically, tor-
sional vibration is discussed in Chap. 37, with particular applications to internal com-
bustion engines and rotating machines. The theory of shock and vibration isolation
is discussed in detail in Chap. 38, and various types of isolators for shock and vibra-
tion are described in Chap. 39, along with the selection and practical application of
such isolators. Chapter 40 describes procedures for the design of equipment to with-
stand shock and vibration environments, including simple techniques to facilitate
preliminary design. Finally, a comprehensive discussion of the human aspects of
shock and vibration is considered in Chap. 41, which describes the effects of shock
and vibration on people.
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SYMBOLS AND ACRONYMS

This section includes a list of symbols and acronyms generally used in the handbook.
Symbols of special or limited application are defined in the respective chapters as
they are used.

Symbol Meaning

a radius
a acceleration
A/D analog-to-digital
ANSI American National Standards Institute
ASTM American Society for Testing and Materials
B bandwidth
B magnetic flux density
c damping coefficient
c velocity of sound
cc critical damping coefficient
C capacitance
CSIRO Commonwealth Scientific and Industrial Research Organisation
D diameter
D/A digital-to-analog
DFT discrete Fourier transform
DSP discrete signal processor
e electrical voltage
e eccentricity
E energy
E modulus of elasticity in tension and compression (Young’s modulus)
f frequency
fn undamped natural frequency
fi undamped natural frequencies in a multiple-degree-of-freedom system,

where i = 1, 2, . . .
fd damped natural frequency
fr resonance frequency
F force
ff coulomb friction force
FEM finite element method, finite element model
FFT fast Fourier transform
g acceleration of gravity
G modulus of elasticity in shear
h height, depth
H magnetic field strength
Hz hertz
i electric current
Ii area or mass moment of inertia (subscript indicates axis)
Ip polar moment of inertia
Iij area or mass product of inertia (subscripts indicate axes)
IC integrated circuit
ISO International Standards Organization
I imaginary part of
j �−�1�
J inertia constant (weight moment of inertia)
J impulse
k spring constant, stiffness, stiffness constant
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kt rotational (torsional) stiffness
l length
L inductance
m mass
mu unbalanced mass
M torque
M mutual inductance
� mobility
MIMO multiple input/multiple output
n number of coils, supports, etc.
NEMA National Electrical Manufacturers Association
NIST National Institute of Standards and Technology
p alternating pressure
p probability density
P probability distribution
P static pressure
q electric charge
Q resonance factor (also ratio of reactance to resistance)
r electrical resistance
R radius
� real part of
s arc length
S area of diaphragm, tube, etc.
SEA statistical energy analysis
SIMO single input, multiple output
SCC Standards Council of Canada
t thickness
t time
T transmissibility
T kinetic energy
v linear velocity
V potential energy
w width
W weight
W power
We spectral density of the excitation
Wr spectral density of the response
x linear displacement in direction of X axis
ẋ first time derivative of x
ẍ second time derivative of x
y linear displacement in direction of Y axis
z linear displacement in direction of Z axis
Z impedance
α rotational displacement about X axis
β rotational displacement about Y axis
γ rotational displacement about Z axis
γ shear strain
γ weight density
δ deflection
δst static deflection
Δ logarithmic decrement
� tension or compression strain
ζ fraction of critical damping
η stiffness ratio, loss factor
θ phase angle
λ wavelength
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μ coefficient of friction
μ mass density
μ mean value
� Poisson’s ratio
ρ mass density
ρi radius of gyration (subscript indicates axis)
σ Poisson’s ratio
σ normal stress
σ standard deviation
τ period
τ shear stress
φ magnetic flux
Φ phase angle
� phase angle
� root-mean-square (rms) value
ω forcing frequency—angular
ωn undamped natural frequency—angular
ωi undamped natural frequencies—angular—in a multiple-degree-of-freedom 

system, where i = 1, 2, . . .
ωd damped natural frequency—angular
ωr resonance frequency—angular
Ω rotational speed
� approximately equal to

CHARACTERISTICS OF HARMONIC MOTION

Harmonic functions are employed frequently in the analysis of shock and vibration.
A body that experiences simple harmonic motion follows a displacement pattern
defined by

x = x0 sin (2πft) = x0 sin �t (1.1)

where f is the frequency of the simple harmonic motion, ω = 2πf is the corresponding
angular frequency, and x0 is the amplitude of the displacement.

The velocity ẋ and acceleration ẍ of the body are found by differentiating the dis-
placement once and twice, respectively:

ẋ = x0(2πf ) cos 2πft = x0ω cos ωt (1.2)

ẍ = −x0(2πf )2 sin 2πft = −x0ω2 sin ωt (1.3)

The maximum absolute values of the displacement, velocity, and acceleration of a
body undergoing harmonic motion occur when the trigonometric functions in Eqs.
(1.1) to (1.3) are numerically equal to unity.These values are known, respectively, as
displacement, velocity, and acceleration amplitudes; they are defined mathemati-
cally as follows:

x0 = x0 ẋ0 = (2πf )x0 ẍ0 = (2πf )2x0 (1.4)

For certain purposes in analysis, it is convenient to express the amplitude in terms
of the average value of the harmonic function, the root-mean-square (rms) value, or
2 times the amplitude (i.e., peak-to-peak value).These terms are defined mathemat-
ically in Chap. 19; numerical conversion factors are set forth in Table 1.1 for ready
reference.
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TABLE 1.1 Conversion Factors for Simple Harmonic Motion

Multiply numerical
value in terms of → Amplitude Average Root-mean- Peak-to-peak

By value square (rms) value
To obtain value value

in terms of ↓

Amplitude 1 1.571 1.414 0.500

Average value 0.637 1 0.900 0.318

Root-mean-
square (rms) 0.707 1.111 1 0.354
value

Peak-to-peak 2.000 3.142 2.828 1
value

→

MEASUREMENT UNITS

With only a few exceptions, the measurement units throughout this handbook are
presented in customary (usually English) units followed in parentheses by Standard
International (SI) units. The few exceptions occur in complicated figures—in partic-
ular, three-dimensional figures—where it would be confusing to present the dupli-
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TABLE 1.2 Conversion Factors for English to SI Units

Conversion factor 
Measurement  (multiply English 

(symbol) English units (symbol) SI units (symbol) units by)

Linear Inches (in.) Meters (m) 0.0254
displacement
(x, y, z) Feet (ft) Meters (m) 0.3048

Linear Inches per second Meters per second (m/s) 0.0254
velocity (v) (in./sec)

Feet per second (ft/sec) Meters per second (m/s) 0.3048

Linear Inches per second Meters per second 0.0254
acceleration squared (in./sec2) squared (m/s2)
(a)

Feet per second squared Meters per second 0.3048
(ft/sec2) squared (m/s2)

Force (F) Pounds (lb) Newtons (N) 4.448

Mass (m) Pounds (lb) Kilograms (kg) 0.4536

Slugs—weight/g where Kilograms (kg) 14.59
g is in ft/sec2 (lb-sec2/ft)

Pressure (p) Pounds per square inch Pascals (Pa) 6895
(lb/in2)



cate axes necessary to display the results in both English and SI units. In a few other
cases, the customary units are SI units; for example, the reference pressure for sound
pressure levels expressed in decibels (dB) is universally 20 μPa in air. A brief list of
the conversion factors relating English to SI units for the primary measurements of
interest in shock and vibration are summarized in Table 1.2. More detailed unit con-
version factors are available from Marks’ Standard Handbook for Mechanical Engi-
neers, 11th edition, McGraw-Hill, New York, 2007.

APPENDIX 1.1 NATURAL FREQUENCIES 

OF COMMONLY USED SYSTEMS

The most important aspect of vibration analysis often is the calculation or measure-
ment of the natural frequencies of mechanical systems. Natural frequencies are dis-
cussed prominently in many chapters of the handbook. Appendix 1.1 includes in
tabular form, convenient for ready reference, a compilation of frequently used
expressions for the natural frequencies of common mechanical systems:

1. Mass-spring systems in translation
2. Rotor-shaft systems
3. Massless beams with concentrated mass loads
4. Beams of uniform section and uniformly distributed load
5. Thin, flat plates of uniform thickness
6. Miscellaneous systems

The data for beams and plates are abstracted from Chap. 7.

APPENDIX 1.2 TERMINOLOGY

For convenience, definitions of terms which are used frequently in the field of shock
and vibration are assembled here. Many of these are identical with those developed
by technical committees of the International Standards Organization (ISO) and the
International Electrotechnical Commission (IEC) in cooperation with the Ameri-
can National Standards Institute (ANSI). Copies of standards publications may be
obtained from the Standards Secretariat,Acoustical Society of America, 35 Pinelawn
Road, Suite 114E, Melville, NY 11747; the e-mail address is asastds@aip.org. In addi-
tion to the following definitions, many more terms used in shock and vibration are
defined throughout the handbook—far too many to include in this appendix. The
reader is referred to the index.
acceleration Acceleration is a vector quantity that specifies the time rate of change of velocity.

acceleration of gravity (See g.)

accelerometer An accelerometer is a transducer whose output is proportional to the accel-
eration input.

ambient vibration Ambient vibration is the all-encompassing vibration associated with a
given environment, being usually a composite of vibration from many sources, near and far.

amplitude Amplitude is the maximum value of a sinusoidal quantity.
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analog If a first quantity or structural element is analogous to a second quantity or structural
element belonging in another field of knowledge, the second quantity is called the analog of the
first, and vice versa.

analogy An analogy is a recognized relationship of consistent mutual similarity between the
equations and structures appearing within two or more fields of knowledge, and an identifica-
tion and association of the quantities and structural elements that play mutually similar roles
in these equations and structures, for the purpose of facilitating transfer of knowledge of math-
ematical procedures of analysis and behavior of the structures between these fields.

angular frequency (circular frequency) The angular frequency of a periodic quantity, in radi-
ans per unit time, is the frequency multiplied by 2π.

angular mechanical impedance (rotational mechanical impedance) Angular mechanical
impedance is the impedance involving the ratio of torque to angular velocity. (See impedance.)

antinode (loop) An antinode is a point, line, or surface in a standing wave where some char-
acteristic of the wave field has maximum amplitude.

antiresonance For a system in forced oscillation, antiresonance exists at a point when any
change, however small, in the frequency of excitation causes an increase in the response at this
point.

aperiodic motion A vibration that is not periodic.

apparent mass (See effective mass.)

audio frequency An audio frequency is any frequency corresponding to a normally audible
sound wave.

autocorrelation coefficient The autocorrelation coefficient of a signal is the ratio of the auto-
correlation function to the mean-square value of the signal:

R(τ) = x�(�t�)�x�(�t��+��τ�)�/[�x�(�t�)�]�2�

autocorrelation function The autocorrelation function of a signal is the average of the prod-
uct of the value of the signal at time t with the value at time t + τ:

R(τ) = x�(�t�)�x�(�t��+��τ�)�

For a stationary random signal of infinite duration, the power spectral density (except for a
constant factor) is the cosine Fourier transform of the autocorrelation function.

autospectral density The limiting mean-square value (e.g., of acceleration, velocity, displace-
ment, stress, or other random variable) per unit bandwidth, i.e., the limit of the mean-square
value in a given rectangular bandwidth divided by the bandwidth, as the bandwidth approaches
zero. Also called power spectral density.

auxiliary mass damper (damped vibration absorber) An auxiliary mass damper is a system
consisting of a mass, spring, and damper which tends to reduce vibration by the dissipation of
energy in the damper as a result of relative motion between the mass and the structure to
which the damper is attached.

background noise Background noise is the total of all sources of interference in a system
used for the production, detection, measurement, or recording of a signal, independent of the
presence of the signal.

balancing Balancing is a procedure for adjusting the mass distribution of a rotor so that
vibration of the journals, or the forces on the bearings at once-per-revolution, are reduced or
controlled. (See Chap. 39 for a complete list of definitions related to balancing.)

bandpass filter A bandpass filter is a wave filter that has a single transmission band extend-
ing from a lower cutoff frequency greater than zero to a finite upper cutoff frequency.

bandwidth, effective (See effective bandwidth.)
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beat frequency The absolute value of the difference in frequency of two oscillators of slightly
different frequency.

beats Beats are periodic variations that result from the superposition of two simple har-
monic quantities of different frequencies f1 and f2. They involve the periodic increase and
decrease of amplitude at the beat frequency (f1 − f2).

broadband random vibration Broadband random vibration is random vibration having its
frequency components distributed over a broad frequency band. (See random vibration.)

calibration factor The average sensitivity of a transducer over a specified frequency range.

center of gravity Center of gravity is the point through which passes the resultant of the
weights of its component particles for all orientations of the body with respect to a gravita-
tional field; if the gravitational field is uniform, the center of gravity corresponds with the 
center of mass.

circular frequency (See angular frequency.)

complex angular frequency As applied to a function α = Aeσt sin (ωt − φ), where σ, ω, and φ
are constant, the quantity ωc = σ + jω is the complex angular frequency where j is an operator
with rules of addition, multiplication, and division as suggested by the symbol �−�1�. If the sig-
nal decreases with time, σ must be negative.

complex function A complex function is a function having real and imaginary parts.

complex vibration Complex vibration is vibration whose components are sinusoids not har-
monically related to one another. (See harmonic.)

compliance Compliance is the reciprocal of stiffness.

compressional wave A compressional wave is one of compressive or tensile stresses propa-
gated in an elastic medium.

continuous system (distributed system) A continuous system is one that is considered to have
an infinite number of possible independent displacements. Its configuration is specified by a func-
tion of a continuous spatial variable or variables in contrast to a discrete or lumped parameter
system which requires only a finite number of coordinates to specify its configuration.

correlation coefficient The correlation coefficient of two variables is the ratio of the correla-
tion function to the product of the averages of the variables:

x�1�(�t�)��⋅��x�2�(�t�)�/x�1�(�t�)� ⋅ x�2�(�t�)�

correlation function The correlation function of two variables is the average value of their
product:

x�1�(�t�)��⋅��x�2�(�t�)�

coulomb damping (dry friction damping) Coulomb damping is the dissipation of energy that
occurs when a particle in a vibrating system is resisted by a force whose magnitude is a constant
independent of displacement and velocity and whose direction is opposite to the direction of
the velocity of the particle.

coupled modes Coupled modes are modes of vibration that are not independent but which
influence one another because of energy transfer from one mode to the other. (See mode of
vibration.)

coupling factor, electromechanical The electromechanical coupling factor is a factor used to
characterize the extent to which the electrical characteristics of a transducer are modified by a
coupled mechanical system, and vice versa.

crest factor The crest factor is the ratio of the peak value to the root-mean-square value.

critical damping Critical damping is the minimum viscous damping that will allow a dis-
placed system to return to its initial position without oscillation.
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critical speed Critical speed is the speed of a rotating system that corresponds to a resonance
frequency of the system.

cross-talk The signal observed in one channel due to a signal in another channel.

cycle A cycle is the complete sequence of values of a periodic quantity that occur during a
period.

damped natural frequency The damped natural frequency is the frequency of free vibration
of a damped linear system. The free vibration of a damped system may be considered periodic
in the limited sense that the time interval between zero crossings in the same direction is con-
stant, even though successive amplitudes decrease progressively. The frequency of the vibra-
tion is the reciprocal of this time interval.

damper A damper is a device used to reduce the magnitude of a shock or vibration by one or
more energy dissipation methods.

damping Damping is the dissipation of energy with time or distance.

damping ratio (See fraction of critical damping.)

decibel (dB) The decibel is a unit which denotes the magnitude of a quantity with respect to
an arbitrarily established reference value of the quantity, in terms of the logarithm (to the base
10) of the ratio of the quantities. For example, in electrical transmission circuits a value of
power may be expressed in terms of a power level in decibels; the power level is given by 10
times the logarithm (to the base 10) of the ratio of the actual power to a reference power
(which corresponds to 0 dB).

degrees of freedom The number of degrees of freedom of a mechanical system is equal to
the minimum number of independent coordinates required to define completely the positions
of all parts of the system at any instant of time. In general, it is equal to the number of inde-
pendent displacements that are possible.

deterministic function A deterministic function is one whose value at any time can be pre-
dicted from its value at any other time.

displacement Displacement is a vector quantity that specifies the change of position of a
body or particle and is usually measured from the mean position or position of rest. In general,
it can be represented as a rotation vector or a translation vector, or both.

displacement pickup Displacement pickup is a transducer that converts an input displace-
ment to an output that is proportional to the input displacement.

distortion Distortion is an undesired change in waveform. Noise and certain desired changes
in waveform, such as those resulting from modulation or detection, are not usually classed as
distortion.

distributed system (See continuous system.)

driving point impedance Driving point impedance is the impedance involving the ratio of
force to velocity when both the force and velocity are measured at the same point and in the
same direction. (See impedance.)

dry friction damping (See coulomb damping.)

duration of shock pulse The duration of a shock pulse is the time required for the accelera-
tion of the pulse to rise from some stated fraction of the maximum amplitude and to decay to
this value. (See shock pulse.)

dynamic stiffness Dynamic stiffness is the ratio of the change of force to the change of dis-
placement under dynamic conditions.

dynamic vibration absorber (tuned damper) A dynamic vibration absorber is an auxiliary
mass-spring system which tends to neutralize vibration of a structure to which it is attached.
The basic principle of operation is vibration out of phase with the vibration of such structure,
thereby applying a counteracting force.
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effective bandwidth The effective bandwidth of a specified transmission system is the band-
width of an ideal system which (1) has uniform transmission in its passband equal to the maxi-
mum transmission of the specified system and (2) transmits the same power as the specified
system when the two systems are receiving equal input signals having a uniform distribution of
energy at all frequencies.

effective mass (apparent mass) The complex ratio of force to acceleration during simple
harmonic motion.

electromechanical coupling factor (See coupling factor, electromechanical.)

electrostriction Electrostriction is the phenomenon wherein some dielectric materials expe-
rience an elastic strain when subjected to an electric field, this strain being independent of the
polarity of the field.

ensemble A collection of signals. (See also process.)

environment (See natural environments and induced environments.)

equivalent system An equivalent system is one that may be substituted for another system
for the purpose of analysis. Many types of equivalence are common in vibration and shock
technology: (1) equivalent stiffness, (2) equivalent damping, (3) torsional system equivalent
to a translational system, (4) electrical or acoustical system equivalent to a mechanical sys-
tem, etc.

equivalent viscous damping Equivalent viscous damping is a value of viscous damping
assumed for the purpose of analysis of a vibratory motion, such that the dissipation of energy
per cycle at resonance is the same for either the assumed or actual damping force.

ergodic process An ergodic process is a random process that is stationary and of such a
nature that all possible time averages performed on one signal are independent of the signal
chosen and hence are representative of the time averages of each of the other signals of the
entire random process.

excitation (stimulus) Excitation is an external force (or other input) applied to a system that
causes the system to respond in some way.

filter A filter is a device for separating waves on the basis of their frequency. It introduces rel-
atively small insertion loss to waves in one or more frequency bands and relatively large inser-
tion loss to waves of other frequencies. (See insertion loss.)

force factor The force factor of an electromechanical transducer is (1) the complex quotient
of the force required to block the mechanical system divided by the corresponding current in
the electric system and (2) the complex quotient of the resulting open-circuit voltage in the
electric system divided by the velocity in the mechanical system. Force factors (1) and (2) have
the same magnitude when consistent units are used and the transducer satisfies the principle of
reciprocity. It is sometimes convenient in an electrostatic or piezoelectric transducer to use the
ratios between force and charge or electric displacement, or between voltage and mechanical
displacement.

forced vibration (forced oscillation) The oscillation of a system is forced if the response is
imposed by the excitation. If the excitation is periodic and continuing, the oscillation is
steady-state.

foundation (support) A foundation is a structure that supports the gravity load of a mechan-
ical system. It may be fixed in space, or it may undergo a motion that provides excitation for the
supported system.

fraction of critical damping The fraction of critical damping (damping ratio) for a system
with viscous damping is the ratio of actual damping coefficient c to the critical damping coeffi-
cient cc.

free vibration Free vibration is that which occurs after the removal of an excitation or
restraint.
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frequency The frequency of a function periodic in time is the reciprocal of the period.The unit
is the cycle per unit time and must be specified; the unit cycle per second is called hertz (Hz).

frequency, angular (See angular frequency.)

fundamental frequency (1) The fundamental frequency of a periodic quantity is the fre-
quency of a sinusoidal quantity which has the same period as the periodic quantity. (2) The fun-
damental frequency of an oscillating system is the lowest natural frequency. The normal mode
of vibration associated with this frequency is known as the fundamental mode.

fundamental mode of vibration The fundamental mode of vibration of a system is the mode
having the lowest natural frequency.

g The quantity g is the acceleration produced by the force of gravity, which varies with the
latitude and elevation of the point of observation. By international agreement, the value
980.665 cm/sec2 = 386.087 in./sec2 = 32.1739 ft/sec2 has been chosen as the standard acceleration
due to gravity.

harmonic A harmonic is a sinusoidal quantity having a frequency that is an integral multiple
of the frequency of a periodic quantity to which it is related.

harmonic motion (See simple harmonic motion.)

harmonic response Harmonic response is the periodic response of a vibrating system
exhibiting the characteristics of resonance at a frequency that is a multiple of the excitation fre-
quency.

high-pass filter A high-pass filter is a wave filter having a single transmission band extending
from some critical or cutoff frequency, not zero, up to infinite frequency.

image impedances The image impedances of a structure or device are the impedances that
will simultaneously terminate all of its inputs and outputs in such a way that at each of its inputs
and outputs the impedances in both directions are equal.

impact An impact is a single collision of one mass in motion with a second mass which may
be either in motion or at rest.

impedance Mechanical impedance is the ratio of a force-like quantity to a velocity-like quan-
tity when the arguments of the real (or imaginary) parts of the quantities increase linearly with
time. Examples of force-like quantities are force, sound pressure, voltage, temperature. Exam-
ples of velocity-like quantities are velocity, volume velocity, current, heat flow. Impedance is the
reciprocal of mobility. (See also angular mechanical impedance, linear mechanical impedance,
driving point impedance, and transfer impedance.)

impulse Impulse is the product of a force and the time during which the force is applied;

more specifically, the impulse is �t2

t1
Fdt where the force F is time dependent and equal to zero

before time t1 and after time t2.

induced environments Induced environments are those conditions generated as a result of
the operation of a structure or equipment.

insertion loss The insertion loss, in decibels, resulting from insertion of an element in a trans-
mission system is 10 times the logarithm to the base 10 of the ratio of the power delivered to
that part of the system that will follow the element, before the insertion of the element, to the
power delivered to that same part of the system after insertion of the element.

isolation Isolation is a reduction in the capacity of a system to respond to an excitation,
attained by the use of a resilient support. In steady-state forced vibration, isolation is expressed
quantitatively as the complement of transmissibility.

isolator (See vibration isolator.)

jerk Jerk is a vector that specifies the time rate of change of acceleration; jerk is the third
derivative of displacement with respect to time.

level Level is the logarithm of the ratio of a given quantity to a reference quantity of the same
kind; the base of the logarithm, the reference quantity, and the kind of level must be indicated.
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(The type of level is indicated by the use of a compound term such as vibration velocity level.
The level of the reference quantity remains unchanged whether the chosen quantity is peak,
rms, or otherwise.) Unit: decibel. Unit symbol: dB.

line spectrum A line spectrum is a spectrum whose components occur at a number of dis-
crete frequencies.

linear mechanical impedance Linear mechanical impedance is the impedance involving the
ratio of force to linear velocity. (See impedance.)

linear system A system is linear if for every element in the system the response is propor-
tional to the excitation. This definition implies that the dynamic properties of each element in
the system can be represented by a set of linear differential equations with constant coeffi-
cients, and that for the system as a whole superposition holds.

logarithmic decrement The logarithmic decrement is the natural logarithm of the ratio of
any two successive amplitudes of like sign, in the decay of a single-frequency oscillation.

longitudinal wave A longitudinal wave in a medium is a wave in which the direction of dis-
placement at each point of the medium is normal to the wave front.

low-pass filter A low-pass filter is a wave filter having a single transmission band extending
from zero frequency up to some critical or cutoff frequency which is not infinite.

magnetostriction Magnetostriction is the phenomenon wherein ferromagnetic materials
experience an elastic strain when subjected to an external magnetic field. Also, magnetostric-
tion is the converse phenomenon in which mechanical stresses cause a change in the magnetic
induction of a ferromagnetic material.

maximum value The maximum value is the value of a function when any small change in the
independent variable causes a decrease in the value of the function.

mechanical admittance (See mobility.)

mechanical impedance (See impedance.)

mechanical shock Mechanical shock is a nonperiodic excitation (e.g., a motion of the foun-
dation or an applied force) of a mechanical system that is characterized by suddenness and
severity and usually causes significant relative displacements in the system.

mechanical system A mechanical system is an aggregate of matter comprising a defined
configuration of mass, stiffness, and damping.

mobility (mechanical admittance) Mobility is the ratio of a velocity-like quantity to a force-
like quantity when the arguments of the real (or imaginary) parts of the quantities increase lin-
early with time. Mobility is the reciprocal of impedance. The terms angular mobility, linear
mobility, driving point mobility, and transfer mobility are used in the same sense as correspond-
ing impedances.

modal numbers When the normal modes of a system are related by a set of ordered integers,
these integers are called modal numbers.

mode of vibration In a system undergoing vibration, a mode of vibration is a characteristic
pattern assumed by the system in which the motion of every particle is simple harmonic with
the same frequency. Two or more modes may exist concurrently in a multiple-degree-of-
freedom system.

modulation Modulation is the variation in the value of some parameter which characterizes
a periodic oscillation. Thus, amplitude modulation of a sinusoidal oscillation is a variation in
the amplitude of the sinusoidal oscillation.

multiple-degree-of-freedom system A multiple-degree-of-freedom system is one for which
two or more coordinates are required to define completely the position of the system at any
instant.

narrowband random vibration Narrowband random vibration is random vibration having
frequency components only within a narrow band. It has the appearance of a sine wave whose
amplitude varies in an unpredictable manner. (See random vibration.)
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natural environments Natural environments are those conditions generated by the forces of
nature and whose effects are experienced when the equipment or structure is at rest as well as
when it is in operation.

natural frequency Natural frequency is the frequency of free vibration of a system. For a
multiple-degree-of-freedom system, the natural frequencies are the frequencies of the normal
modes of vibration.

natural mode of vibration The natural mode of vibration is a mode of vibration assumed by
a system when vibrating freely.

neutral surface That surface of a beam, in simple flexure, over which there is no longitudinal
stress.

node A node is a point, line, or surface in a standing wave where some characteristic of the
wave field has essentially zero amplitude.

noise Noise is any undesired signal. By extension, noise is any unwanted disturbance within
a useful frequency band, such as undesired electric waves in a transmission channel or device.

nominal bandwidth The nominal bandwidth of a filter is the difference between the nominal
upper and lower cutoff frequencies. The difference may be expressed (1) in cycles per second,
(2) as a percentage of the passband center frequency, or (3) in octaves.

nominal passband center frequency The nominal passband center frequency is the geomet-
ric mean of the nominal cutoff frequencies.

nominal upper and lower cutoff frequencies The nominal upper and lower cutoff frequencies
of a filter passband are those frequencies above and below the frequency of maximum response
of a filter at which the response to a sinusoidal signal is 3 dB below the maximum response.

nonlinear damping Nonlinear damping is damping due to a damping force that is not pro-
portional to velocity.

normal mode of vibration A normal mode of vibration is a mode of vibration that is uncou-
pled from (i.e., can exist independently of) other modes of vibration of a system. When vibra-
tion of the system is defined as an eigenvalue problem, the normal modes are the eigenvectors
and the normal mode frequencies are the eigenvalues.The term classical normal mode is some-
times applied to the normal modes of a vibrating system characterized by vibration of each ele-
ment of the system at the same frequency and phase. In general, classical normal modes exist
only in systems having no damping or having particular types of damping.

octave The interval between two frequencies that have a frequency ratio of two.

oscillation Oscillation is the variation, usually with time, of the magnitude of a quantity with
respect to a specified reference when the magnitude is alternately greater and smaller than the
reference.

partial node A partial node is the point, line, or surface in a standing-wave system where
some characteristic of the wave field has a minimum amplitude differing from zero.The appro-
priate modifier should be used with the words partial node to signify the type that is intended;
e.g., displacement partial node, velocity partial node, pressure partial node.

peak-to-peak value The peak-to-peak value of a vibrating quantity is the algebraic differ-
ence between the extremes of the quantity.

peak value Peak value is the maximum value of a vibration during a given interval, usually
considered to be the maximum deviation of that vibration from the mean value.

period The period of a periodic quantity is the smallest increment of the independent vari-
able for which the function repeats itself.

periodic quantity A periodic quantity is an oscillating quantity whose values recur for certain
increments of the independent variable.

phase of a periodic quantity The phase of a periodic quantity, for a particular value of the
independent variable, is the fractional part of a period through which the independent variable
has advanced, measured from an arbitrary reference.
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pickup (See transducer.)

piezoelectric (crystal) (ceramic) transducer A piezoelectric transducer is a transducer that
depends for its operation on the interaction between the electric charge and the deformation
of certain asymmetric crystals having piezoelectric properties.

piezoelectricity Piezoelectricity is the property exhibited by some asymmetrical crystalline
materials which when subjected to strain in suitable directions develop electric polarization
proportional to the strain. Inverse piezoelectricity is the effect in which mechanical strain is
produced in certain asymmetrical crystalline materials when subjected to an external electric
field; the strain is proportional to the electric field.

power spectral density Power spectral density is the limiting mean-square value (e.g., of
acceleration, velocity, displacement, stress, or other random variable) per unit bandwidth, i.e.,
the limit of the mean-square value in a given rectangular bandwidth divided by the bandwidth,
as the bandwidth approaches zero. Also called autospectral density.

power spectral density level The spectrum level of a specified signal at a particular frequency
is the level in decibels of that part of the signal contained within a band 1 cycle per second wide,
centered at the particular frequency. Ordinarily this has significance only for a signal having a
continuous distribution of components within the frequency range under consideration.

power spectrum A spectrum of mean-squared spectral density values.

process A process is a collection of signals. The word process rather than the word ensemble
ordinarily is used when it is desired to emphasize the properties the signals have or do not have
as a group. Thus, one speaks of a stationary process rather than a stationary ensemble.

pulse rise time The pulse rise time is the interval of time required for the leading edge of a
pulse to rise from some specified small fraction to some specified larger fraction of the maxi-
mum value.

Q (quality factor) The quantity Q is a measure of the sharpness of resonance or frequency
selectivity of a resonant vibratory system having a single degree of freedom, either mechanical
or electrical. In a mechanical system, this quantity is equal to one-half the reciprocal of the
damping ratio. It is commonly used only with reference to a lightly damped system and is then
approximately equal to the following: (1) Transmissibility at resonance, (2) π/logarithmic
decrement, (3) 2πW/ΔW where W is the stored energy and ΔW the energy dissipation per cycle,
and (4) fr /Δf where fr is the resonance frequency and Δf is the bandwidth between the half-
power points.

quasi-ergodic process A quasi-ergodic process is a random process which is not necessarily
stationary but of such a nature that some time averages performed on a signal are independent
of the signal chosen.

quasi-periodic signal A quasi-periodic signal is one consisting only of quasi-sinusoids.

quasi-sinusoid A quasi-sinusoid is a function of the form α = A sin (2πft − φ) where either A
or f, or both, is not a constant but may be expressed readily as a function of time. Ordinarily φ
is considered constant.

random vibration Random vibration is vibration whose instantaneous magnitude is not
specified for any given instant of time.The instantaneous magnitudes of a random vibration are
specified only by probability distribution functions giving the probable fraction of the total
time that the magnitude (or some sequence of magnitudes) lies within a specified range. Ran-
dom vibration contains no periodic or quasi-periodic constituents. If random vibration has
instantaneous magnitudes that occur according to the gaussian distribution, it is called gauss-
ian random vibration.

ratio of critical damping (See fraction of critical damping.)

Rayleigh wave A Rayleigh wave is a surface wave associated with the free boundary of a
solid, such that a surface particle describes an ellipse whose major axis is normal to the surface,
and whose center is at the undisturbed surface. At maximum particle displacement away from
the solid surface the motion of the particle is opposite to that of the wave.
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recording channel The term recording channel refers to one of a number of independent
recorders in a recording system or to independent recording tracks on a recording medium.

recording system A recording system is a combination of transducing devices and associated
equipment suitable for storing signals in a form capable of subsequent reproduction.

rectangular shock pulse An ideal shock pulse for which motion rises instantaneously to a
given value, remains constant for the duration of the pulse, then drops to zero instanta-
neously.

relaxation time Relaxation time is the time taken by an exponentially decaying quantity to
decrease in amplitude by a factor of 1/e = 0.3679.

resonance Resonance of a system in forced vibration exists when any change, however small,
in the frequency of excitation causes a decrease in the response of the system.

resonance frequency Resonance frequency is a frequency at which resonance exists.

response The response of a device or system is the motion (or other output) resulting from
an excitation (stimulus) under specified conditions.

response spectrum (See shock response spectrum.)

rotational mechanical impedance (See angular mechanical impedance.)

seismic pickup; seismic transducer A seismic pickup or transducer is a device consisting of
a seismic system in which the differential movement between the mass and the base of the sys-
tem produces a measurable indication of such movement.

seismic system A seismic system is one consisting of a mass attached to a reference base by
one or more flexible elements. Damping is usually included.

self-induced (self-excited) vibration The vibration of a mechanical system is self-induced if it
results from conversion, within the system, of nonoscillatory excitation to oscillatory excitation.

sensing element That part of a transducer which is activated by the input excitation and sup-
plies the output signal.

sensitivity The sensitivity of a transducer is the ratio of a specified output quantity to a spec-
ified input quantity.

shear wave (rotational wave) A shear wave is a wave in an elastic medium which causes an
element of the medium to change its shape without a change of volume.

shock (See mechanical shock.)

shock absorber A shock absorber is a device which dissipates energy to modify the response
of a mechanical system to applied shock.

shock excitation An excitation, applied to a mechanical system, that produces a mechanical
shock.

shock isolator (shock mount) A shock isolator is a resilient support that tends to isolate a
system from a shock motion.

shock machine A shock machine is a device for subjecting a system to controlled and repro-
ducible mechanical shock.

shock motion Shock motion is an excitation involving motion of a foundation. (See founda-
tion and mechanical shock.)

shock mount (See shock isolator.)

shock pulse A shock pulse is a substantial disturbance characterized by a rise of acceleration
from a constant value and decay of acceleration to the constant value in a short period of time.
Shock pulses are normally displayed graphically as curves of acceleration as functions of time.

shock-pulse duration (See duration of shock pulse.)

shock response spectrum (SRS) A shock spectrum is a plot of the maximum response expe-
rienced by a single-degree-of-freedom system, as a function of its own natural frequency, in
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response to an applied shock. The response may be expressed in terms of acceleration, veloc-
ity, or displacement.

shock testing machine; shock machine A shock testing machine is a device for subjecting a
mechanical system to controlled and reproducible mechanical shock.

signal A signal is (1) a disturbance used to convey information; (2) the information to be con-
veyed over a communication system.

simple harmonic motion A simple harmonic motion is a motion such that the displacement is
a sinusoidal function of time; sometimes it is designated merely by the term harmonic motion.

single-degree-of-freedom system A single-degree-of-freedom system is one for which only
one coordinate is required to define completely the configuration of the system at any instant.

sinusoidal motion (See simple harmonic motion.)

snubber A snubber is a device used to increase the stiffness of an elastic system (usually by a
large factor) whenever the displacement becomes larger than a specified value.

spectrum A spectrum is a definition of the magnitude of the frequency components that con-
stitute a quantity.

spectrum density (See power spectral density.)

standard deviation Standard deviation is the square root of the variance; i.e., the square root
of the mean of the squares of the deviations from the mean value of a vibrating quantity.

standing wave A standing wave is a periodic wave having a fixed distribution in space
which is the result of interference of progressive waves of the same frequency and kind. Such
waves are characterized by the existence of nodes or partial nodes and antinodes that are
fixed in space.

stationary process A stationary process is an ensemble of signals such that an average of val-
ues over the ensemble at any given time is independent of time.

stationary signal A stationary signal is a random signal of such nature that averages over
samples of finite time intervals are independent of the time at which the sample occurs.

steady-state vibration Steady-state vibration exists in a system if the velocity of each parti-
cle is a continuing periodic quantity.

stiffness Stiffness is the ratio of change of force (or torque) to the corresponding change on
translational (or rotational) deflection of an elastic element.

subharmonic A subharmonic is a sinusoidal quantity having a frequency that is an integral
submultiple of the fundamental frequency of a periodic quantity to which it is related.

subharmonic response Subharmonic response is the periodic response of a mechanical sys-
tem exhibiting the characteristic of resonance at a frequency that is a submultiple of the fre-
quency of the periodic excitation.

superharmonic response Superharmonic response is a term sometimes used to denote a par-
ticular type of harmonic response which dominates the total response of the system; it fre-
quently occurs when the excitation frequency is a submultiple of the frequency of the
fundamental resonance.

time history The magnitude of a quantity expressed as a function of time.

transducer (pickup) A transducer is a device which converts shock or vibratory motion into
an optical, a mechanical, or most commonly to an electrical signal that is proportional to a
parameter of the experienced motion.

transfer impedance Transfer impedance between two points is the impedance involving the
ratio of force to velocity when force is measured at one point and velocity at the other point.
The term transfer impedance also is used to denote the ratio of force to velocity measured at
the same point but in different directions. (See impedance.)

transient vibration Transient vibration is temporarily sustained vibration of a mechanical
system. It may consist of forced or free vibration or both.
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transmissibility Transmissibility is the nondimensional ratio of the response amplitude of a
system in steady-state forced vibration to the excitation amplitude. The ratio may be one of
forces, displacements, velocities, or accelerations.

transmission loss Transmission loss is the reduction in the magnitude of some characteristic
of a signal, between two stated points in a transmission system.

transverse wave A transverse wave is a wave in which the direction of displacement at each
point of the medium is parallel to the wavefront.

tuned damper (See dynamic vibration absorber.)

uncorrelated Two signals or variables α1(t) and α2(t) are said to be uncorrelated if the aver-
age value of their product is zero: α�1�(�t�)��⋅��α�2�(�t�)� = 0. If the correlation coefficient is equal to unity,
the variables are said to be completely correlated. If the coefficient is less than unity but larger
than zero, they are said to be partially correlated. (See correlation coefficient.)

uncoupled mode An uncoupled mode of vibration is a mode that can exist in a system con-
currently with and independently of other modes.

undamped natural frequency The undamped natural frequency of a mechanical system is
the frequency of free vibration resulting from only elastic and inertial forces of the system.

variance Variance is the mean of the squares of the deviations from the mean value of a
vibrating quantity.

velocity Velocity is a vector quantity that specifies the time rate of change of displacement
with respect to a reference frame. If the reference frame is not inertial, the velocity is often des-
ignated “relative velocity.”

velocity pickup A velocity pickup is a transducer that converts an input velocity to an output
(usually electrical) that is proportional to the input velocity.

velocity shock Velocity shock is a particular type of shock motion characterized by a sudden
velocity change of the foundation. (See foundation and mechanical shock.)

vibration Vibration is an oscillation wherein the quantity is a parameter that defines the
motion of a mechanical system. (See oscillation.)

vibration acceleration Vibration acceleration is the rate of change of speed and direction of
a vibration, in a specified direction. The frequency bandwidth must be identified. Unit meter
per second squared. Unit symbol: m/s2.

vibration acceleration level The vibration acceleration level is 10 times the logarithm (to the
base 10) of the ratio of the square of a given vibration acceleration to the square of a reference
acceleration, commonly 1g or 1 m/s2. Unit: decibel. Unit symbol: dB.

vibration isolator A vibration isolator is a resilient support that tends to isolate a system
from steady-state excitation.

vibration machine A vibration machine is a device for subjecting a mechanical system to
controlled and reproducible mechanical vibration.

vibration meter A vibration meter is an apparatus for the measurement of displacement,
velocity, or acceleration of a vibrating body.

vibration mount (See vibration isolator.)

vibration pickup (See transducer.)

vibrometer An instrument capable of indicating some measure of the magnitude (such as
rms acceleration) on a scale.

viscous damping Viscous damping is the dissipation of energy that occurs when a particle in
a vibrating system is resisted by a force that has a magnitude proportional to the magnitude of
the velocity of the particle and direction opposite to the direction of the particle.

viscous damping, equivalent (See equivalent viscous damping.)
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wave A wave is a disturbance which is propagated in a medium in such a manner that at any
point in the medium the quantity serving as measure of disturbance is a function of the time,
while at any instant the displacement at a point is a function of the position of the point. Any
physical quantity that has the same relationship to some independent variable (usually time)
that a propagated disturbance has, at a particular instant, with respect to space, may be called
a wave.

wave interference Wave interference is the phenomenon which results when waves of the
same or nearly the same frequency are superposed; it is characterized by a spatial or temporal
distribution of amplitude of some specified characteristic differing from that of the individual
superposed waves.

wavelength The wavelength of a periodic wave in an isotropic medium is the perpendicular
distance between two wave fronts in which the displacements have a difference in phase of one
complete period.

white noise White noise is a noise whose power spectral density is substantially independent
of frequency over a specified range.
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CHAPTER 2
BASIC VIBRATION THEORY

Ralph E. Blake

INTRODUCTION

This chapter presents the theory of free and forced steady-state vibration of single-
degree-of-freedom systems. Undamped systems and systems having viscous damp-
ing and structural damping are included. Multiple-degree-of-freedom systems are
discussed, including the normal-mode theory of linear elastic structures and
Lagrange’s equations.

ELEMENTARY PARTS OF VIBRATORY SYSTEMS

Vibratory systems comprise means for storing potential energy (spring), means for
storing kinetic energy (mass or inertia), and means by which the energy is gradually
lost (damper). The vibration of a system involves the alternating transfer of energy
between its potential and kinetic forms. In a damped system, some energy is dissi-
pated at each cycle of vibration and must be replaced from an external source if a
steady vibration is to be maintained. Although a single physical structure may store
both kinetic and potential energy, and may dissipate energy, this chapter considers
only lumped parameter systems composed of ideal springs, masses, and dampers
wherein each element has only a single function. In translational motion, displace-
ments are defined as linear distances; in rotational motion, displacements are
defined as angular motions.

TRANSLATIONAL MOTION

Spring. In the linear spring shown in Fig. 2.1, the
change in the length of the spring is proportional
to the force acting along its length:

F = k(x − u) (2.1)

The ideal spring is considered to have no mass;
thus, the force acting on one end is equal and

2.1

FIGURE 2.1 Linear spring.



opposite to the force acting on the other end.The constant of proportionality k is the
spring constant or stiffness.

Mass. A mass is a rigid body (Fig. 2.2) whose
acceleration ẍ according to Newton’s second law is
proportional to the resultant F of all forces acting on
the mass:*

F = mẍ (2.2)

Damper. In the viscous damper shown in Fig. 2.3,
the applied force is proportional to the relative
velocity of its connection points:

F = c(ẋ −u̇) (2.3)

The constant c is the damping coefficient, the charac-
teristic parameter of the damper. The ideal damper
is considered to have no mass; thus, the force at one
end is equal and opposite to the force at the other
end. Structural damping is considered below.

ROTATIONAL MOTION

The elements of a mechanical system which moves with pure rotation of the parts
are wholly analogous to the elements of a system that moves with pure translation.
The property of a rotational system which stores kinetic energy is inertia; stiffness
and damping coefficients are defined with reference to angular displacement and
angular velocity, respectively. The analogous quantities and equations are listed in
Table 2.1.

Inasmuch as the mathematical equations for a rotational system can be written by
analogy from the equations for a translational system, only the latter are discussed in

2.2 CHAPTER TWO

TABLE 2.1 Analogous Quantities in Translational 
and Rotational Vibrating Systems

Translational quantity Rotational quantity

Linear displacement x Angular displacement α
Force F Torque M
Spring constant k Spring constant kr

Damping constant c Damping constant cr

Mass m Moment of inertia I
Spring law F = k(x1 − x2) Spring law M = kr(α1 − α2)
Damping law F = c(ẋ1 − ẋ2) Damping law M = cr(α̈1 − α̇2)
Inertia law F = mẍ Inertia law M = Iα̈

* It is common to use the word mass in a general sense to designate a rigid body. Mathematically, the mass
of the rigid body is defined by m in Eq. (2.2).

FIGURE 2.2 Rigid mass.

FIGURE 2.3 Viscous damper.



detail.Whenever translational systems are discussed, it is understood that correspond-
ing equations apply to the analogous rotational system, as indicated in Table 2.1.

SINGLE-DEGREE-OF-FREEDOM SYSTEM

The simplest possible vibratory system is shown in Fig. 2.4; it consists of a mass m
attached by means of a spring k to an immovable support.The mass is constrained to
translational motion in the direction of the X axis so that its change of position from

an initial reference is described fully by
the value of a single quantity x. For this
reason it is called a single-degree-of-
freedom system. If the mass m is dis-
placed from its equilibrium position and
then allowed to vibrate free from further
external forces, it is said to have free
vibration. The vibration also may be
forced; i.e., a continuing force acts upon
the mass or the foundation experiences a
continuing motion. Free and forced
vibration are discussed below.

FREE VIBRATION WITHOUT DAMPING

Considering first the free vibration of the undamped system of Fig. 2.4, Newton’s
equation is written for the mass m. The force mẍ exerted by the mass on the spring
is equal and opposite to the force kx applied by the spring on the mass:

mẍ + kx = 0 (2.4)

where x = 0 defines the equilibrium position of the mass.
The solution of Eq. (2.4) is

x = A sin �� t + B cos �� t (2.5)

where the term �k�/�m� is the angular natural frequency defined by

ωn = �� rad/sec (2.6)

The sinusoidal oscillation of the mass repeats continuously, and the time interval to
complete one cycle is the period:

τ = (2.7)

The reciprocal of the period is the natural frequency:

fn = = =  �� =   �� (2.8)
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freedom system.



where W = mg is the weight of the rigid body forming the mass of the system shown
in Fig. 2.4. The relations of Eq. (2.8) are shown by the solid lines in Fig. 2.5.
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FIGURE 2.5 Natural frequency relations for a single-degree-of-freedom system. Relation of
natural frequency to weight of supported body and stiffness of spring [Eq. (2.8)] is shown by solid
lines. Relation of natural frequency to static deflection [Eq. (2.10)] is shown by diagonal-dashed
line. Example: To find natural frequency of system with W = 100 lb and k = 1000 lb/in., enter at 
W = 100 on left ordinate scale; follow the dashed line horizontally to solid line k = 1000, then ver-
tically down to diagonal-dashed line, and finally horizontally to read fn = 10 Hz from right ordi-
nate scale.

Initial Conditions. In Eq. (2.5), B is the value of x at time t = 0, and the value of A
is equal to ẋ/ωn at time t = 0.Thus, the conditions of displacement and velocity which
exist at zero time determine the subsequent oscillation completely.

Phase Angle. Equation (2.5) for the displacement in oscillatory motion can be
written, introducing the frequency relation of Eq. (2.6),

x = A sin ωnt + B cos ωnt = C sin (ωnt + θ) (2.9)

where C = (A2 + B2)1/2 and θ = tan−1 (B/A). The angle θ is called the phase angle.

Static Deflection. The static deflection of a simple mass-spring system is the
deflection of spring k as a result of the gravity force of the mass δst = mg/k. (For
example, the system of Fig. 2.4 would be oriented with the mass m vertically above
the spring k.) Substituting this relation in Eq. (2.8),

fn = �� (2.10)
g
�
δst

1
�
2π



The relation of Eq. (2.10) is shown by the diagonal-dashed line in Fig. 2.5. This rela-
tion applies only when the system under consideration is both linear and elastic. For
example, rubber springs tend to be nonlinear or exhibit a dynamic stiffness which
differs from the static stiffness; hence, Eq. (2.10) is not applicable.

FREE VIBRATION WITH VISCOUS DAMPING

Figure 2.6 shows a single-degree-of-freedom system with a viscous damper. The dif-
ferential equation of motion of mass m, corresponding to Eq. (2.4) for the
undamped system, is

mẍ + cẋ + kx = 0 (2.11)

The form of the solution of this equa-
tion depends upon whether the damp-
ing coefficient is equal to, greater than,
or less than the critical damping coeffi-
cient cc:

cc = 2�k�m� = 2mωn (2.12)

The ratio ζ = c/cc is defined as the frac-
tion of critical damping.

Less-Than-Critical Damping. If the damping of the system is less than critical,
ζ < 1; then the solution of Eq. (2.11) is

x = e−ct/2m(A sin ωdt + B cos ωdt)

= Ce−ct/2m sin (ωdt + θ)
(2.13)

where C and θ are defined with reference to Eq. (2.9).The damped natural frequency
is related to the undamped natural frequency of Eq. (2.6) by the equation

ωd = ωn(1 − ζ2)1/2 rad/sec (2.14)

Equation (2.14), relating the damped
and undamped natural frequencies, is
plotted in Fig. 2.7.

Critical Damping. When c = cc, there
is no oscillation and the solution of Eq.
(2.11) is

x = (A + Bt)e−ct/2m (2.15)

Greater-Than-Critical Damping.
When ζ > 1, the solution of Eq. (2.11) is

x = e−ct/2m(Aeωn�ζ2�− 1� t + Be−ωn�ζ2�− 1� t)
(2.16)

This is a nonoscillatory motion; if the
system is displaced from its equilibrium
position, it tends to return gradually.
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FIGURE 2.6 Single-degree-of-freedom system
with viscous damper.

FIGURE 2.7 Damped natural frequency as a
function of undamped natural frequency and
fraction of critical damping.



Logarithmic Decrement. The degree of damping in a system having ζ < 1 may be
defined in terms of successive peak values in a record of a free oscillation. Substitut-
ing the expression for critical damping from Eq. (2.12), the expression for free vibra-
tion of a damped system, Eq. (2.13), becomes

x = Ce−ζωnt sin (ωdt + θ) (2.17)

Consider any two maxima (i.e., value of x when dx/dt = 0) separated by n cycles of
oscillation, as shown in Fig. 2.8. Then the ratio of these maxima is

= e−2πnζ/(1 − ζ2)1/2 (2.18)

Values of xn/x0 are plotted in Fig. 2.9 for
several values of n over the range of ζ
from 0.001 to 0.10.

The logarithmic decrement Δ is the
natural logarithm of the ratio of the
amplitudes of two successive cycles of
the damped free vibration:

Δ = ln or    = e−Δ (2.19)
x2�
x1

x1�
x2

xn�
x0
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FIGURE 2.8 Trace of damped free vibration
showing amplitudes of displacement maxima.

FIGURE 2.9 Effect of damping upon the ratio of
displacement maxima of a damped free vibration.



[See  also Eq. (37.10).] A comparison of this relation with Eq. (2.18) when n = 1 gives
the following expression for Δ:

Δ = (2.20)

The logarithmic decrement can be expressed in terms of the difference of successive
amplitudes by writing Eq. (2.19) as follows:

= 1 − = 1 − e−Δ

Writing e−Δ in terms of its infinite series, the following expression is obtained, which
gives a good approximation for Δ < 0.2:

= Δ (2.21)

For small values of ζ (less than about 0.10), an approximate relation between the
fraction of critical damping and the logarithmic decrement, from Eq. (2.20), is

Δ � 2πζ (2.22)

FORCED VIBRATION

Forced vibration in this chapter refers to the motion of the system which occurs in
response to a continuing excitation whose magnitude varies sinusoidally with time.
(See Chap. 20 for a treatment of the response of a simple system to step, pulse, and
transient vibration excitations.) The excitation may be, alternatively, force applied
to the system (generally, the force is applied to the mass of a single-degree-of-
freedom system) or motion of the foundation that supports the system.The resulting
response of the system can be expressed in different ways, depending upon the
nature of the excitation and the use to be made of the result:

1. If the excitation is a force applied to the mass of the system shown in Fig. 2.4, the
result may be expressed in terms of (a) the amplitude of the resulting motion of
the mass or (b) the fraction of the applied force amplitude that is transmitted
through the system to the support.The former is termed the motion response and
the latter is termed the force transmissibility.

2. If the excitation is a motion of the foundation, the resulting response usually is
expressed in terms of the amplitude of the motion of the mass relative to the
amplitude of the motion of the foundation. This is termed the motion transmissi-
bility for the system.

In general, the response and transmissibility relations are functions of the forcing
frequency and vary with different types and degrees of damping. Results are pre-
sented in this chapter for undamped systems and for systems with either viscous or
structural damping.

x1 − x2�
x1

x2�
x1

x1 − x2�
x1

2πζ
��
(1 − ζ2)1/2
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FORCED VIBRATION WITHOUT DAMPING

Force Applied to Mass. When the
sinusoidal force F = F0 sin ωt is applied to
the mass of the undamped single-degree-
of-freedom system shown in Fig. 2.10,
the differential equation of motion is

mẍ + kx = F0 sin ωt (2.23)

The solution of this equation is

x = A sin ωnt + B cos ωnt +  sin ωt (2.24)

where ωn = �k�/m�. The first two terms represent an oscillation at the undamped nat-
ural frequency ωn.The coefficient B is the value of x at time t = 0, and the coefficient
A may be found from the velocity at time t = 0. Differentiating Eq. (2.24) and setting
t = 0,

ẋ(0) = Aωn + (2.25)

The value of A is found from Eq. (2.25).
The oscillation at the natural frequency ωn gradually decays to zero in physical

systems because of damping. The steady-state oscillation at forcing frequency ω is

x = sin ωt (2.26)

This oscillation exists after a condition of equilibrium has been established by decay
of the oscillation at the natural frequency ωn and persists as long as the force F is
applied.

The force transmitted to the foundation is directly proportional to the spring
deflection: Ft = kx. Substituting x from Eq. (2.26) and defining transmissibility T = Ft /F,

T = (2.27)

If the mass is initially at rest in the equilibrium position of the system (i.e., x = 0
and ẋ = 0) at time t = 0, the ensuing motion at time t > 0 is

x = (sin ωt − sin ωnt) (2.28)

For large values of time, the second term disappears because of the damping inher-
ent in any physical system, and Eq. (2.28) becomes identical to Eq. (2.26).

When the forcing frequency coincides with the natural frequency, ω = ωn and a
condition of resonance exists. Then Eq. (2.28) is indeterminate and the expression
for x may be written as

x = − t cos ωt + sin ωt (2.29)
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FIGURE 2.10 Undamped single-degree-of-
freedom system excited in forced vibration by
force acting on mass.



According to Eq. (2.29), the amplitude x
increases continuously with time, reach-
ing an infinitely great value only after
an infinitely great time.

Motion of Foundation. The differen-
tial equation of motion for the system of
Fig. 2.11 excited by a continuing motion
u = u0 sin ωt of the foundation is

mẍ = −k(x − u0 sin ωt)

The solution of this equation is

x = A1 sin ωnt + B2 cos ωnt + sin ωt

where ωn = k/m and the coefficients A1, B1 are determined by the velocity and dis-
placement of the mass, respectively, at time t = 0. The terms representing oscillation
at the natural frequency are damped out ultimately, and the ratio of amplitudes is
defined in terms of transmissibility T:

= T = (2.30)

where x = x0 sin ωt. Thus, in the forced vibration of an undamped single-degree-of-
freedom system, the motion response, the force transmissibility, and the motion
transmissibility are numerically equal.

FORCED VIBRATION WITH VISCOUS DAMPING

Force Applied to Mass. The differ-
ential equation of motion for the single-
degree-of-freedom system with viscous
damping shown in Fig. 2.12, when the
excitation is a force F = F0 sin ωt applied
to the mass, is

mẍ + cẋ + kx = F0 sin ωt (2.31)

Equation (2.31) corresponds to Eq.
(2.23) for forced vibration of an un-
damped system; its solution would cor-

respond to Eq. (2.24) in that it includes terms representing oscillation at the natural
frequency. In a damped system, however, these terms are damped out rapidly and
only the steady-state solution usually is considered. The resulting motion occurs at
the forcing frequency ω; when the damping coefficient c is greater than zero, the
phase between the force and resulting motion is different than zero. Thus, the
response may be written

x = R sin (ωt − θ) = A1 sin ωt + B1 cos ωt (2.32)

1
��
1 − ω2/ωn

2

x0�
u0

u0��
1 − ω2/ωn

2
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FIGURE 2.11 Undamped single-degree-of-
freedom system excited in forced vibration by
motion of foundation.

FIGURE 2.12 Single-degree-of-freedom sys-
tem with viscous damping, excited in forced
vibration by force acting on mass.



Substituting this relation in Eq. (2.31), the following result is obtained:

= = Rd sin (ωt − θ) (2.33)

where θ = tan−1 � 	
and Rd is a dimensionless response factor giving the ratio of the amplitude of the
vibratory displacement to the spring displacement that would occur if the force F
were applied statically. At very low frequencies Rd is approximately equal to 1; it
rises to a peak near ωn and approaches zero as ω becomes very large. The displace-
ment response is defined at these frequency conditions as follows:

x � � 	 sin ωt [ω << ωn]

x = sin �ωnt + 	 = −  [ω = ωn] (2.34)

x � sin (ωt + π) = sin ωt [ω >> ωn]

For the above three frequency conditions, the vibrating system is sometimes
described as spring-controlled, damper-controlled, and mass-controlled, respectively,
depending on which element is primarily responsible for the system behavior.

Curves showing the dimensionless response factor Rd as a function of the fre-
quency ratio ω/ωn are plotted in Fig. 2.13 on the coordinate lines having a positive
45° slope. Curves of the phase angle θ are plotted in Fig. 2.14.A phase angle between
180° and 360° cannot exist in this case since this would mean that the damper is fur-
nishing energy to the system rather than dissipating it.

An alternative form of Eqs. (2.33) and (2.34) is

=

= (Rd)x sin ωt + (Rd)R cos ωt

(2.35)

This shows the components of the response which are in phase [(Rd)x sin ωt] and 90°
out of phase [(Rd)R cos ωt] with the force. Curves of (Rd)x and (Rd)R are plotted as a
function of the frequency ratio ω/ωn in Figs. 2.15 and 2.16.

Velocity and Acceleration Response. The shape of the response curves changes
distinctly if velocity ẋ or acceleration ẍ is plotted instead of displacement x. Differ-
entiating Eq. (2.33),

= Rd cos (ωt − θ) = Rv cos (ωt − θ) (2.36)

The acceleration response is obtained by differentiating Eq. (2.36):

= − Rd sin (ωt − θ) = − Ra sin (ωt − θ) (2.37)
ω2

�
ωn

2

ẍ
�
F0/m

ω
�
ωn

ẋ
�
F0/�k�m�

(1 − ω2/ωn2) sin ωt − 2ζ(ω/ωn) cos ωt
����

(1 − ω2/ωn
2)2 + (2ζω/ωn)2

x
�
F0/k

F0�
mω2

ωn
2F0�

ω2k

F0 cos ωnt��
cωn

π
�
2

F0�
2kζ

F0�
k

2ζω/ωn��
1 − ω2/ωn

2

sin (ωt − θ)
���
�(1� −� ω�2/�ω�n

2�)2� +� (�2�ζω�/ω�n)�2�
x

�
F0/k
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The velocity and acceleration response factors defined by Eqs. (2.36) and (2.37) are
shown graphically in Fig. 2.13, the former to the horizontal coordinates and the lat-
ter to the coordinates having a negative 45° slope. Note that the velocity response
factor approaches zero as ω → 0 and ω → ∞, whereas the acceleration response fac-
tor approaches 0 as ω → 0 and approaches unity as ω → ∞.

BASIC VIBRATION THEORY 2.11

FIGURE 2.13 Response factors for a viscous-damped single-degree-of-freedom system
excited in forced vibration by a force acting on the mass.The velocity response factor shown
by horizontal lines is defined by Eq. (2.36), the displacement response factor shown by diag-
onal lines of positive slope is defined by Eq. (2.33), and the acceleration response factor
shown by diagonal lines of negative slope is defined by Eq. (2.37).



Force Transmission. The force transmitted to the foundation of the system is

FT = cẋ + kx (2.38)

Since the forces cẋ and kx are 90° out of phase, the magnitude of the transmitted
force is


FT 
 = �c2ẋ2 + k2x2 (2.39)

The ratio of the transmitted force FT to the applied force F0 can be expressed in
terms of transmissibility T:

= T sin (ωt − ψ) (2.40)

where

T = � (2.41)

and

ψ = tan−1

The transmissibility T and phase angle ψ are shown in Figs. 2.17 and 2.18, respec-
tively, as a function of the frequency ratio ω/ωn and for several values of the fraction
of critical damping ζ.

2ζ(ω/ωn)3

���
1 − ω2/ωn

2 + 4ζ2ω2/ωn
2

1 + (2ζω/ωn)2

���
(1 − ω2/ωn

2)2 + (2ζω/ωn)2

FT�
F0
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FIGURE 2.14 Phase angle between the response displacement and the excitation
force for a single-degree-of-freedom system with viscous damping, excited by a
force acting on the mass of the system.
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FIGURE 2.15 In-phase component of response factor of a viscous-damped system in
forced vibration. All values of the response factor for ω/ωn > 1 are negative but are plotted
without regard for sign. The fraction of critical damping is denoted by ζ.
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FIGURE 2.16 Out-of-phase component of response factor of a viscous-damped system in
forced vibration. The fraction of critical damping is denoted by ζ.
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FIGURE 2.17 Transmissibility of a viscous-damped system. Force transmissibility
and motion transmissibility are identical numerically. The fraction of critical damp-
ing is denoted by ζ.



Hysteresis. When the viscous damped, single-degree-of-freedom system shown
in Fig. 2.12 undergoes vibration defined by

x = x0 sin ωt (2.42)

the net force exerted on the mass by the spring and damper is

F = kx0 sin ωt + cωx0 cos ωt (2.43)

Equations (2.42) and (2.43) define the
relation between F and x; this relation 
is the ellipse shown in Fig. 2.19. The
energy dissipated in one cycle of oscilla-
tion is

W = �T + 2π/ω

T
F dt = πcωx0

2 (2.44)

Motion of Foundation. The excita-
tion for the elastic system shown in Fig.
2.20 may be a motion u(t) of the founda-
tion.The differential equation of motion
for the system is

mẍ + c(ẋ − u̇) + k(x − u) = 0 (2.45)

Consider the motion of the foundation
to be a displacement that varies sinu-

dx
�
dt
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FIGURE 2.18 Phase angle of force transmission (or motion transmission) of a vis-
cous-damped system excited (1) by force acting on mass and (2) by motion of foun-
dation. The fraction of critical damping is denoted by ζ.

FIGURE 2.19 Hysteresis curve for a spring
and viscous damper in parallel.



soidally with time, u = u0 sin ωt. A
steady-state condition exists after the
oscillations at the natural frequency ωn

are damped out, defined by the dis-
placement x of mass m:

x = Tu0 sin (ωt − ψ) (2.46)

where T and ψ are defined in connection
with Eq. (2.40) and are shown graphi-
cally in Figs. 2.17 and 2.18, respectively.
Thus, the motion transmissibility T in
Eq. (2.46) is identical numerically to the
force transmissibility T in Eq. (2.40).
The motion of the foundation and of the
mass m may be expressed in any consis-
tent units, such as displacement, velocity,
or acceleration, and the same expression
for T applies in each case.

Vibration Due to a Rotating Eccentric
Weight. In the mass-spring-damper
system shown in Fig. 2.21, a mass mu is
mounted by a shaft and bearings to the
mass m. The mass mu follows a circular
path of radius e with respect to the bear-
ings. The component of displacement in
the X direction of mu relative to m is

x3 − x1 = e sin ωt (2.47)

where x3 and x1 are the absolute displacements of mu and m, respectively, in the X
direction; e is the length of the arm supporting the mass mu; and ω is the angular
velocity of the arm in radians per second.The differential equation of motion for the
system is

mẍ1 + mu ẍ3 + cẋ1 + kx1 = 0 (2.48)

Differentiating Eq. (2.47) with respect to time, solving for ẍ3, and substituting in 
Eq. (2.48):

(m + mu) ẍ1 + cẋ1 + kx1 = mueω2 sin ωt (2.49)

Equation (2.49) is of the same form as Eq. (2.31); thus, the response relations of
Eqs. (2.33), (2.36), and (2.37) apply by substituting (m + mu) for m and mueω2 for F0.
The resulting displacement, velocity, and acceleration responses are

= Rd sin (ωt − θ) = Rv cos (ωt − θ)
(2.50)

= −Ra sin (ωt − θ)
ẍ1m�

mueω2

ẋ1��km
�
mueω2

x1�
mueω2
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FIGURE 2.20 Single-degree-of-freedom sys-
tem with viscous damper, excited in forced
vibration by foundation motion.

FIGURE 2.21 Single-degree-of-freedom sys-
tem with viscous damper, excited in forced
vibration by rotating eccentric weight.



Resonance Frequencies. The peak values of the displacement, velocity, and
acceleration response of a system undergoing forced, steady-state vibration occur at
slightly different forcing frequencies. Since a resonance frequency is defined as the
frequency for which the response is a maximum, a simple system has three resonance
frequencies if defined only generally. The natural frequency is different from any of
the resonance frequencies. The relations among the several resonance frequencies,
the damped natural frequency, and the undamped natural frequency ωn are:

Displacement resonance frequency: ωn(1 − 2ζ2)1/2

Velocity resonance frequency: ωn

Acceleration resonance frequency: ωn/(1 − 2ζ2)1/2

Damped natural frequency: ωn(1 − ζ2)1/2

For the degree of damping usually embodied in physical systems, the difference
among the three resonance frequencies is negligible.

Resonance, Bandwidth, and the Quality Factor Q. Damping in a system can
be determined by noting the maximum response, i.e., the response at the resonance
frequency as indicated by the maximum value of Rv in Eq. (2.36). This is defined by
the factor Q sometimes used in electrical engineering terminology and defined with
respect to mechanical vibration as

Q = (R�)max = 1/2ζ

The maximum acceleration and displacement responses are slightly larger, being

(Rd)max = (Ra)max =

The damping in a system is also indi-
cated by the sharpness or width of the
response curve in the vicinity of a reso-
nance frequency ωn. Designating the
width as a frequency increment Δω mea-
sured at the “half-power point” (i.e., at a
value of R equal to Rmax/2), as illustrated
in Fig. 2.22, the damping of the system is
defined to a good approximation by

= = 2ζ (2.51)

for values of ζ less than 0.1.The quantity
Δω, known as the bandwidth, is com-
monly represented by the letter B.

Structural Damping. The energy dis-
sipated by the damper is known as hys-
teresis loss; as indicated by Eq. (2.44), it
is proportional to the forcing frequency
ω. However, the hysteresis loss of many
engineering structures has been found

1
�
Q

Δω
�
ωn

(R�)max��
(1 − ζ2)1/2
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FIGURE 2.22 Response curve showing band-
width at “half-power point.”



to be independent of frequency.To provide a better model for defining the structural
damping experienced during vibration, an arbitrary damping term k� = cω is intro-
duced. In effect, this defines the damping force as being equal to the viscous damp-
ing force at some frequency, depending upon the value of �, but being invariant with
frequency.The relation of the damping force F to the displacement x is defined by an
ellipse similar to Fig. 2.19, and the displacement response of the system is described
by an expression corresponding to Eq. (2.33) as follows:

= Rg sin (ωt − θ) =  (2.52)

where � = 2ζω/ωn.The resonance frequency is ωn, and the value of Rg at resonance is
1/� = Q.

The equations for the hysteresis ellipse for structural damping are

F = kx0 (sin ωt + � cos ωt)

x = x0 sin ωt
(2.53)

UNDAMPED MULTIPLE-DEGREE-OF-FREEDOM

SYSTEMS

An elastic system sometimes cannot be described adequately by a model having
only one mass but rather must be represented by a system of two or more masses
considered to be point masses or particles having no rotational inertia. If a group of
particles is bound together by essentially rigid connections, it behaves as a rigid body
having both mass (significant for translational motion) and moment of inertia (sig-
nificant for rotational motion). There is no limit to the number of masses that may
be used to represent a system. For example, each mass in a model representing a
beam may be an infinitely thin slice representing a cross section of the beam; a dif-
ferential equation is required to treat this continuous distribution of mass.

DEGREES OF FREEDOM

The number of independent parameters required to define the distance of all the
masses from their reference positions is called the number of degrees of freedom N.
For example, if there are N masses in a system constrained to move only in transla-
tion in the X and Y directions, the system has 2N degrees of freedom. A continuous
system such as a beam has an infinitely large number of degrees of freedom.

For each degree of freedom (each coordinate of motion of each mass) a differen-
tial equation can be written in one of the following alternative forms:

mjẍj = Fxj Ikα̈k = Mαk (2.54)

where Fxj is the component in the X direction of all external, spring, and damper
forces acting on the mass having the jth degree of freedom, and Mαk is the compo-
nent about the α axis of all torques acting on the body having the kth degree of
freedom. The moment of inertia of the mass about the α axis is designated by Ik.
(This is assumed for the present analysis to be a principal axis of inertia, and prod-

sin (ωt − θ)
��
�(1� −� ω�2/�ω�n

2�)2� +� ��2�
x

�
F0/k
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uct of inertia terms are neglected. See Chap. 3 for a more detailed discussion.) Equa-
tions (2.54) are identical in form and can be represented by

mjẍj = Fj (2.55)

where Fj is the resultant of all forces (or torques) acting on the system in the jth
degree of freedom, ẍj is the acceleration (translational or rotational) of the system
in the jth degree of freedom, and mj is the mass (or moment of inertia) in the jth
degree of freedom.Thus, the terms defining the motion of the system (displacement,
velocity, and acceleration) and the deflections of structures may be either transla-
tional or rotational, depending upon the type of coordinate. Similarly, the “force”
acting on a system may be either a force or a torque, depending upon the type of
coordinate. For example, if a system has n bodies each free to move in three transla-
tional modes and three rotational modes, there would be 6n equations of the form of
Eq. (2.55), one for each degree of freedom.

DEFINING A SYSTEM AND ITS EXCITATION

The first step in analyzing any physical structure is to represent it by a mathematical
model which will have essentially the same dynamic behavior. A suitable number
and distribution of masses, springs, and dampers must be chosen, and the input
forces or foundation motions must be defined. The model should have sufficient
degrees of freedom to determine the modes which will have significant response to
the exciting force or motion.

The properties of a system that must be known are the natural frequencies ωn, the
normal mode shapes Djn, the damping of the respective modes, and the mass distri-
bution mj. The detailed distributions of stiffness and damping of a system are not
used directly but rather appear indirectly as the properties of the respective modes.
The characteristic properties of the modes may be determined experimentally as
well as analytically.

STIFFNESS COEFFICIENTS

The spring system of a structure of N degrees of freedom can be defined completely
by a set of N 2 stiffness coefficients. A stiffness coefficient Kjk is the change in spring
force acting on the jth degree of freedom when only the kth degree of freedom is
slowly displaced a unit amount in the negative direction.This definition is a general-
ization of the linear, elastic spring defined by Eq. (2.1). Stiffness coefficients have the
characteristic of reciprocity, i.e., Kjk = Kkj.The number of independent stiffness coef-
ficients is (N 2 + N)/2.

The total elastic force acting on the jth degree of freedom is the sum of the effects
of the displacements in all of the degrees of freedom:

Fel = − �
N

k = 1
Kjkxk (2.56)

Inserting the spring force Fel from Eq. (2.56) in Eq. (2.55) together with the external
forces Fj results in the n equations:

mjẍj = Fj − �
k

Kjkxk (2.56a)
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FREE VIBRATION

When the external forces are zero, the preceding equations become

mj ẍj + �
k

Kjkxk = 0 (2.57)

Solutions of Eq. (2.57) have the form

xj = Dj sin (ωt + θ) (2.58)

Substituting Eq. (2.58) in Eq. (2.57),

mjω2Dj = �
k

KjkDk (2.59)

This is a set of n linear algebraic equations with n unknown values of D. A solution
of these equations for values of D other than zero can be obtained only if the deter-
minant of the coefficients of the D’s is zero:

(m1ω2 − K11) − K12 ⋅ ⋅ − Kin

− K21 (m2ω2 − K22) ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ = 0 (2.60)
 ⋅ ⋅ ⋅ ⋅ ⋅ 


− Kni ⋅ ⋅ ⋅ (mnω2 − Knn)

Equation (2.60) is an algebraic equation of the nth degree in ω2; it is called the fre-
quency equation since it defines n values of ω which satisfy Eq. (2.57). The roots are
all real; some may be equal, and others may be zero.These values of frequency deter-
mined from Eq. (2.60) are the frequencies at which the system can oscillate in the
absence of external forces. These frequencies are the natural frequencies ωn of the
system. Depending upon the initial conditions under which vibration of the system
is initiated, the oscillations may occur at any or all of the natural frequencies and at
any amplitude.

Example 2.1. Consider the three-degree-of-freedom system shown in Fig. 2.23;
it consists of three equal masses m and a foundation connected in series by three
equal springs k. The absolute displacements of the masses are x1, x2, and x3. The 
stiffness coefficients (see section entitled “Stiffness Coefficients”) are thus K11 = 2k,
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FIGURE 2.23 Undamped three-degree-of-freedom system on foundation.



K22 = 2k, K33 = k, K12 = K21 = −k, K23 = K32 = −k, and K13 = K31 = 0.The frequency equa-
tion is given by the determinant, Eq. (2.60),

(mω2 − 2k) k 0


 k (mω2 − 2k) k 
 = 0
0 k (mω2 − k)

The determinant expands to the following polynomial:

� 	
3

− 5 � 	
2

+ 6 � 	 − 1 = 0

Solving for ω,

ω = 0.445�� , 1.25�� , 1.80��
Normal Modes of Vibration. A structure vibrating at only one of its natural fre-
quencies ωn does so with a characteristic pattern of amplitude distribution called a
normal mode of vibration. A normal mode is defined by a set of values of Djn [see
Eq. (2.58)] which satisfy Eq. (2.59) when ω = ωn:

ωn
2mjDjn = �

k
KjnDkn (2.61)

A set of values of Djn, which form a normal mode, is independent of the absolute
values of Djn but depends only on their relative values. To define a mode shape by a
unique set of numbers, any arbitrary normalizing condition which is desired can be
used. A condition often used is to set D1n = 1 but �

j
mjDjn

2 = 1 and �
j

mjDjn
2 = �

j
mj

also may be found convenient.

Orthogonality of Normal Modes. The usefulness of normal modes in dealing
with multiple-degree-of-freedom systems is due largely to the orthogonality of the
normal modes. It can be shown that the set of inertia forces ωn

2mjDjn for one mode
does not work on the set of deflections Djm of another mode of the structure:

�
j

mjDjmDjn = 0 [m ≠ n] (2.62)

This is the orthogonality condition.

Normal Modes and Generalized Coordinates. Any set of N deflections xj can
be expressed as the sum of normal mode amplitudes:

xj = �
N

n = 1
qnDjn (2.63)

The numerical values of the Djn’s are fixed by some normalizing condition, and a set
of values of the N variables qn can be found to match any set of xj’s. The N values of
qn constitute a set of generalized coordinates which can be used to define the position
coordinates xj of all parts of the structure. The q’s are also known as the amplitudes
of the normal modes, and are functions of time. Equation (2.63) may be differenti-
ated to obtain

ẍj = �
N

n = 1
q̈nDjn (2.64)

k
�
m

k
�
m

k
�
m

mω2
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k

mω2
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k

mω2
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Any quantity which is distributed over the j coordinates can be represented by a lin-
ear transformation similar to Eq. (2.63). It is convenient now to introduce the
parameter γn relating Djn and Fj/mj as follows:

= �
n

γnDjn (2.65)

where Fj may be zero for certain values of n.

FORCED MOTION

Substituting the expressions in generalized coordinates, Eqs. (2.63) to (2.65), in the
basic equation of motion, Eq. (2.56a),

mj �
n

q̈nDjn + �
k

kjk �
n

qnDkn − mj �
n

γnDjn = 0 (2.66)

The center term in Eq. (2.66) may be simplified by applying Eq. (2.61) and the equa-
tion rewritten as follows:

�
n

(q̈n + ωn
2qn − γn)mjDjn = 0 (2.67)

Multiplying Eqs. (2.67) by Djm and taking the sum over j (i.e., adding all the equa-
tions together),

�
n

(q̈n + ωn
2qn − γn) �

j
mjDjnDjm = 0

All terms of the sum over n are zero, except for the term for which m = n, according
to the orthogonality condition of Eq. (2.62). Then since �

j
mjDjn

2 is not zero, it fol-
lows that

q̈n + ωn
2qn − γn = 0

for every value of n from 1 to N.
An expression for γn may be found by using the orthogonality condition again.

Multiplying Eq. (2.65) by mjDjm and taking the sum taken over j,

�
j

FjDjm = �
n

γn �
j

mjDjnDjm (2.68)

All the terms of the sum over n are zero except when n = m, according to Eq. (2.62),
and Eq. (2.68) reduces to

γn = (2.69)

Then the differential equation for the response of any generalized coordinate to the
externally applied forces Fj is

q̈n + ωn
2qn = γn = (2.70)

�
j

FjDjn

��
�

j
mjDjn

2

�
j

FjDjn

��
�

j
mjDjn

2

Fj
�
mj
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where ΣFjDjn is the generalized force, i.e., the total work done by all external forces
during a small displacement δqn divided by δqn, and ΣmjDjn

2 is the generalized mass.
Thus the amplitude qn of each normal mode is governed by its own equation,

independent of the other normal modes, and responds as a simple mass-spring sys-
tem. Equation (2.70) is a generalized form of Eq. (2.23).

The forces Fj may be any functions of time. Any equation for the response of an
undamped mass-spring system applies to each mode of a complex structure by sub-
stituting:

The generalized coordinate qn for x

The generalized force �
j

FjDjn for F

(2.71)
The generalized mass �

j
mjDjn for m

The mode natural frequency ωn for ωn

Response to Sinusoidal Forces. If a system is subjected to one or more sinu-
soidal forces Fj = F0j sin ωt, the response is found from Eq. (2.26) by noting that k =
mωn

2 [Eq. (2.6)] and then substituting from Eq. (2.71):

qn = (2.72)

Then the displacement of the kth degree-of-freedom, from Eq. (2.63), is

xk = �
N

n = 1
(2.73)

This is the general equation for the response to sinusoidal forces of an undamped
system of N degrees of freedom. The application of the equation to systems free in
space or attached to immovable foundations is discussed below.

Example 2.2. Consider the system shown in Fig. 2.24; it consists of three equal
masses m connected in series by two equal springs k. The system is free in space and
a force F sin ωt acts on the first mass. Absolute displacements of the masses are x1,
x2, and x3. Determine the acceleration ẍ3. The stiffness coefficients (see section enti-

Dkn �
j

F0jDjn sin ωt

���
ωn

2 �
j

mjDjn
2(1 − ω2/ωn

2)

sin ωt
��
(1 − ω2/ωn

2)

�
j

F0jDjn

��
ωn

2 �
j

mjDjn
2
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FIGURE 2.24 Undamped three-degree-of-freedom system
acted on by sinusoidal force.



tled “Stiffness Coefficients”) are K11 = K33 = k, K22 = 2k, K12 = K21 = −k, K13 = K31 = 0,
and K23 = K32 = −k. Substituting in Eq. (2.60), the frequency equation is

(mω2 − k) k 0


 k (mω2 − 2k) k 
 = 0
0 k (mω2 − k)

The roots are ω1 = 0, ω2 = �k�/m�, and ω3 = �3�k�/m�. The zero value for one of the natu-
ral frequencies indicates that the entire system translates without deflection of the
springs.The mode shapes are now determined by substituting from Eq. (2.58) in Eq.
(2.57), noting that ẍ = −Dω2, and writing Eq. (2.59) for each of the three masses in
each of the oscillatory modes 2 and 3:

mD21 � 	 = K11D21 + K21D22 + K31D23

mD22 � 	 = K12D21 + K22D22 + K32D23

mD23 � 	 = K13D21 + K23D22 + K33D23

mD31 � 	 = K11D31 + K21D32 + K31D33

mD32 � 	 = K12D31 + K22D32 + K32D33

mD33 � 	 = K13D31 + K23D32 + K33D33

where the first subscript on the D’s indicates the mode number (according to ω1 and
ω2 above) and the second subscript indicates the displacement amplitude of the par-
ticular mass. The values of the stiffness coefficients K are calculated above. The
mode shapes are defined by the relative displacements of the masses.Thus, assigning
values of unit displacement to the first mass (i.e., D21 = D31 = 1), the above equations
may be solved simultaneously for the D’s:

D21 = 1 D22 = 0 D23 = −1

D31 = 1 D32 = −2 D33 = 1

Substituting these values of D in Eq. (2.71), the generalized masses are determined:
M2 = 2m, M3 = 6m.

Equation (2.73) then can be used to write the expression for acceleration ẍ3:

ẍ3 = � + +  F1 sin ωt
(ω2/ω3

2)(+1)(+1)
��

6m(1 − ω2/ω3
2)

(ω2/ω2
2)(−1)(+1)

��
2m(1 − ω2/ω2

2)
1

�
3m

3k
�
m

3k
�
m

3k
�
m

k
�
m

k
�
m

k
�
m
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Free and Fixed Systems. For a structure which is free in space, there are six “nor-
mal modes” corresponding to ωn = 0. These represent motion of the structure 
without relative motion of its parts; this is rigid-body motion with six degrees of
freedom.

The rigid-body modes all may be described by equations of the form

Djm = ajmDm [m = 1,2, . . . ,6]

where Dm is a motion of the rigid body in the m coordinate and a is the displacement
of the jth degree of freedom when Dm is moved a unit amount. The geometry of the
structure determines the nature of ajm. For example, if Dm is a rotation about the Z
axis, ajm = 0 for all modes of motion in which j represents rotation about the X or Y
axis and ajm = 0 if j represents translation parallel to the Z axis. If Djm is a transla-
tional mode of motion parallel to X or Y, it is necessary that ajm be proportional to
the distance rj of mj from the Z axis and to the sine of the angle between rj and the
jth direction. The above relations may be applied to an elastic body. Such a body
moves as a rigid body in the gross sense in that all particles of the body move
together generally but may experience relative vibratory motion. The orthogonality
condition applied to the relation between any rigid-body mode Djm and any oscilla-
tory mode Djn yields

�
j

mjDjnDjm = �
j

mjajmDjn = 0 �  (2.74)

These relations are used in computations of oscillatory modes and show that normal
modes of vibration involve no net translation or rotation of a body.

A system attached to a fixed foundation may be considered as a system free in
space in which one or more “foundation” masses or moments of inertia are infinite.
Motion of the system as a rigid body is determined entirely by the motion of the
foundation. The amplitude of an oscillatory mode representing motion of the foun-
dation is zero; i.e., MjDjn

2 = 0 for the infinite mass. However, Eq. (2.73) applies
equally well regardless of the size of the masses.

Foundation Motion. If a system is small relative to its foundation, it may be
assumed to have no effect on the motion of the foundation. Consider a foundation
of large but unknown mass m0 having a motion x0 sin ωt, the consequence of some
unknown force

F0 sin ωt = −m0x0ω2 sin ωt (2.75)

acting on m0 in the x0 direction. Equation (2.73) is applicable to this case upon 
substituting

−m0x0ω2D0n = �
j

F0jDjn (2.76)

where D0n is the amplitude of the foundation (the 0 degree of freedom) in the nth
mode.

The oscillatory modes of the system are subject to Eqs. (2.74):

�
j

= 0 mjajmDjn = 0

Separating the 0th degree of freedom from the other degrees of freedom:

�
j = 0

mjajmDjn = m0a0mD0n + �
j = 1

mj ajmDjn

m ≤ 6
n > 6
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If m0 approaches infinity as a limit, D0n approaches zero and motion of the system as
a rigid body is identical with the motion of the foundation. Thus, a0m approaches
unity for motion in which m = 0, and approaches zero for motion in which m ≠ 0. In
the limit:

lim
m0→∞

m0D0n = − �
j

mjaj0Djn (2.77)

Substituting this result in Eq. (2.76),

lim
m0→∞ �

j
F0jDjn = x0ω2 �

j
mjaj0Djn (2.78)

The generalized mass in Eq. (2.73) includes the term m0D0n
2, but this becomes zero

as m0 becomes infinite.
The equation for response of a system to motion of its foundation is obtained by

substituting Eq. (2.78) in Eq. (2.73):

xk = �
N

n = 1
Dkn + x0 sin ωt (2.79)

DAMPED MULTIPLE-DEGREE-OF-FREEDOM

SYSTEMS

Consider a set of masses interconnected by a network of springs and acted upon by
external forces, with a network of dampers acting in parallel with the springs. The
viscous dampers produce forces on the masses which are determined in a manner
analogous to that used to determine spring forces and summarized by Eq. (2.56).The
damping force acting on the jth degree of freedom is

(Fd)j = − �
k

Cjkẋk (2.80)

where Cjk is the resultant force on the jth degree of freedom due to a unit velocity of
the kth degree of freedom.

In general, the distribution of damper sizes in a system need not be related to the
spring or mass sizes. Thus, the dampers may couple the normal modes together,
allowing motion of one mode to affect that of another. Then the equations of
response are not easily separable into independent normal mode equations. How-
ever, there are two types of damping distribution which do not couple the normal
modes. These are known as uniform viscous damping and uniform mass damping.

UNIFORM VISCOUS DAMPING

Uniform damping is an appropriate model for systems in which the damping effect
is an inherent property of the spring material. Each spring is considered to have a
damper acting in parallel with it, and the ratio of damping coefficient to stiffness
coefficient is the same for each spring of the system. Thus, for all values of j and k,

= 2G (2.81)

where G is a constant.

Cjk
�
kjk

�
j

mjaj 0Djnx0 sin ωt

���
�

j
mjDjn

2(1 − ω2/ωn
2)

ω2

�
ωn

2
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Substituting from Eq. (2.81) in Eq. (2.80),

−(Fd)j = �
k

Cjk ẋk = 2G �
k

kjk ẋk (2.82)

Since the damping forces are “external” forces with respect to the mass-spring sys-
tem, the forces (Fd)j can be added to the external forces in Eq. (2.70) to form the
equation of motion:

q̈n + ωn
2qn = (2.83)

Combining Eqs. (2.61), (2.63), and (2.82), the summation involving (Fd)j in Eq. (2.83)
may be written as follows:

�
j

(Fd)jDjn = −2Gωn
2q̇n �

j
mjDjn

2 (2.84)

Substituting Eq. (2.84) in Eq. (2.83),

q̈n + 2Gωn
2q̇n + ωn

2qn = γn (2.85)

Comparison of Eq. (2.85) with Eq. (2.31) shows that each mode of the system
responds as a simple damped oscillator.

The damping term 2Gωn
2 in Eq. (2.85) corresponds to 2ζωn in Eq. (2.31) for a sim-

ple system. Thus, Gωn may be considered the critical damping ratio of each mode.
Note that the effective damping for a particular mode varies directly as the natural
frequency of the mode.

Free Vibration. If a system with uniform viscous damping is disturbed from its
equilibrium position and released at time t = 0 to vibrate freely, the applicable equa-
tion of motion is obtained from Eq. (2.85) by substituting 2ζω for 2Gωn

2 and letting
γn = 0:

q̈n + 2ζωnq̇n + ωn
2qn = 0 (2.86)

The solution of Eq. (2.86) for less than critical damping is

xj(t) = �
n

Djne−ζωnt(An sin ωdt + Bn cos ωdt) (2.87)

where ωd = ωn(1 − ζ2)1/2.
The values of A and B are determined by the displacement xj(0) and velocity

ẋj(0) at time t = 0:

xj(0) = �
n

BnDjn

ẋj(0) = �
n

(Anωdn − Bnζωn)Djn

�
j

(Fd)jDjn + �
j

FjDjn

���
�

j
mjDjn

2
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Applying the orthogonality relation of Eq. (2.62) in the manner used to derive Eq.
(2.69),

Bn =

(2.88)

Anωdn − Bnζωdn =

Thus, each mode undergoes a decaying oscillation at the damped natural frequency
for the particular mode, and the amplitude of each mode decays from its initial
value, which is determined by the initial displacements and velocities.

UNIFORM STRUCTURAL DAMPING

To avoid the dependence of viscous damping upon frequency, as indicated by Eq.
(2.85), the uniform viscous damping factor G is replaced by �/ω for uniform struc-
tural damping.This corresponds to the structural damping parameter � in Eqs. (2.52)
and (2.53) for sinusoidal vibration of a simple system. Thus, Eq. (2.85) for the
response of a mode to a sinusoidal force of frequency ω is

q̈n + ωn
2q̇n + ωn

2qn = γn (2.89)

The amplification factor at resonance (Q = 1/�) has the same value in all modes.

UNIFORM MASS DAMPING

If the damping force on each mass is proportional to the magnitude of the mass,

(Fd)j = −Bmj ẋj (2.90)

where B is a constant. For example, Eq. (2.90) would apply to a uniform beam
immersed in a viscous fluid.

Substituting as ẋj in Eq. (2.90) the derivative of Eq. (2.63),

Σ(Fd)jDjn = −B �
j

mjDjn �
m

q̇mDjm (2.91)

Because of the orthogonality condition, Eq. (2.62):

Σ(Fd)jDjn = −Bq̇n �
j

mjDjn
2

Substituting from Eq. (2.91) in Eq. (2.83), the differential equation for the system is

q̈n + Bq̇n + ωn
2qn = γn (2.92)

2�
�
ω

�
j

ẋj(0)mjDjn

��
�

j
mjDjn

2

�
j

xj(0)mjDjn

��
�

j
mjDjn

2
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where the damping term B corresponds to 2ζω for a simple oscillator, Eq. (2.31).
Then B/2ωn represents the fraction of critical damping for each mode, a quantity
which diminishes with increasing frequency.

GENERAL EQUATION FOR FORCED VIBRATION

All the equations for response of a linear system to a sinusoidal excitation may be
regarded as special cases of the following general equation:

xk = �
N

n = 1
Rn sin (ωt − θn) (2.93)

where xk = displacement of structure in kth degree of freedom
N = number of degrees of freedom, including those of the foundation

Dkn = amplitude of kth degree of freedom in nth normal mode
Fn = generalized force for nth mode
mn = generalized mass for nth mode
Rn = response factor, a function of the frequency ratio ω/ωn (Fig. 2.13)
θn = phase angle (Fig. 2.14)

Equation (2.93) is of sufficient generality to cover a wide variety of cases, includ-
ing excitation by external forces or foundation motion, viscous or structural damp-
ing, rotational and translational degrees of freedom, and from one to an infinite
number of degrees of freedom.

LAGRANGIAN EQUATIONS

The differential equations of motion for a vibrating system sometimes are derived
more conveniently in terms of kinetic and potential energies of the system than by
the application of Newton’s laws of motion in a form requiring the determination of
the forces acting on each mass of the system. The formulation of the equations in
terms of the energies, known as lagrangian equations, is expressed as follows:

− + = Fn (2.94)

where T = total kinetic energy of system
V = total potential energy of system
qn = generalized coordinate—a displacement
q̇n = velocity at generalized coordinate qn

Fn = generalized force, the portion of the total forces not related to the
potential energy of the system (gravity and spring forces appear in the
potential energy expressions and are not included here)

The method of applying Eq. (2.94) is to select a number of independent coordi-
nates (generalized coordinates) equal to the number of degrees of freedom, and to
write expressions for total kinetic energy T and total potential energy V. Differenti-
ation of these expressions successively with respect to each of the chosen coordi-
nates leads to a number of equations similar to Eq. (2.94), one for each coordinate
(degree of freedom). These are the applicable differential equations and may be
solved by any suitable method.

∂V
�
∂qn

∂T
�
∂qn

∂T
�
∂q̇n

d
�
dt

Fn�
mn

Dkn�
ωn

2

2.30 CHAPTER TWO



Example 2.3. Consider free vibration of the three-degree-of-freedom system
shown in Fig. 2.23; it consists of three equal masses m connected in tandem by equal
springs k. Take as coordinates the three absolute displacements x1, x2, and x3. The
kinetic energy of the system is

T = 1⁄2m(ẋ1
2 + ẋ2

2 + ẋ3
2)

The potential energy of the system is

V = [x1
2 + (x1 − x2)2 + (x2 − x3)2] = (2x1

2 + 2x2
2 + x3

2 − 2x1x2 − 2x2x3)

Differentiating the expression for the kinetic energy successively with respect to the
velocities,

= mẋ1 = mẋ2 = mẋ3

The kinetic energy is not a function of displacement; therefore, the second term in
Eq. (2.94) is zero. The partial derivatives with respect to the displacement coordi-
nates are

= 2kx1 − kx2 = 2kx2 − kx1 − kx3 = kx3 − kx2

In free vibration, the generalized force term in Eq. (2.93) is zero. Then, substituting
the derivatives of the kinetic and potential energies from above into Eq. (2.94),

mẍ1 + 2kx1 − kx2 = 0

mẍ2 + 2kx2 − kx1 − kx3 = 0

mẍ3 + kx3 − kx2 = 0

The natural frequencies of the system may be determined by placing the preceding
set of simultaneous equations in determinant form, in accordance with Eq. (2.60):

(mω2 − 2k) k 0


 k (mω2 − 2k) k 
 = 0
0 k (mω2 − k)

The natural frequencies are equal to the
values of ω that satisfy the preceding
determinant equation.

Example 2.4. Consider the com-
pound pendulum of mass m shown in
Fig. 2.25, having its center of gravity
located a distance l from the axis of
rotation. The moment of inertia is I
about an axis through the center of
gravity. The position of the mass is
defined by three coordinates, x and y
to define the location of the center 
of gravity and θ to define the angle of 
rotation.

∂V
�
∂x3

∂V
�
∂x2

∂V
�
∂x1

∂T
�
∂ẋ3

∂T
�
∂ẋ2

∂T
�
∂ẋ1

k
�
2

k
�
2
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The equations of constraint are y = l cos θ; x = l sin θ. Each equation of constraint
reduces the number of degrees of freedom by 1; thus the pendulum is a one-degree-
of-freedom system whose position is defined uniquely by θ alone.

The kinetic energy of the pendulum is

T = 1⁄2(I + ml2)θ̇2

The potential energy is

V = mgl(1 − cos θ)

Then

= (I + ml2)θ̇ � 	 = (I + ml2)θ̈

= 0 = mgl sin θ

Substituting these expressions in Eq. (2.94), the differential equation for the pendu-
lum is

(I + ml2)θ̈ + mgl sin θ = 0

Example 2.5. Consider oscillation of
the water in the U-tube shown in Fig. 2.26. If
the displacements of the water levels in the
arms of a uniform-diameter U-tube are h1

and h2, then conservation of matter requires
that h1 = −h2. The kinetic energy of the water
flowing in the tube with velocity h1 is

T = 1⁄2ρSlḣ1
2

where ρ is the water density, S is the cross-
section area of the tube, and l is the devel-
oped length of the water column. The

potential energy (difference in potential energy between arms of tube) is

V = Sρgh1
2

Taking h1 as the generalized coordinate, differentiating the expressions for energy,
and substituting in Eq. (2.94),

Sρlḧ1 + 2ρgSh1 = 0

Dividing through by ρSl,

ḧ1 + h1 = 0

This is the differential equation for a simple oscillating system of natural frequency
ωn, where

ωn = ��2g
�
l

2g
�
l

∂V
�
∂θ

∂T
�
∂θ

∂T
�
∂θ̇

d
�
dt

∂T
�
∂θ̇
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CHAPTER 3
VIBRATION OF A

RESILIENTLY SUPPORTED
RIGID BODY

Harry Himelblau

Sheldon Rubin

INTRODUCTION

This chapter discusses the vibration of a rigid body on resilient supporting elements,
including (1) methods of determining the inertial properties of a rigid body, (2) dis-
cussion of the dynamic properties of resilient elements, and (3) motion of a single
rigid body on resilient supporting elements for various dynamic excitations and
degrees of symmetry.

The general equations of motion for a rigid body on linear massless resilient sup-
ports are given; these equations are general in that they include any configuration of
the rigid body and any configuration and location of the supports. They involve six
simultaneous equations with numerous terms, for which a general solution is
impracticable without the use of high-speed automatic computing equipment. Vari-
ous degrees of simplification are introduced by assuming certain symmetry, and
results useful for engineering purposes are presented. Several topics are considered:
(1) determination of undamped natural frequencies and discussion of coupling of
modes of vibration, (2) forced vibration where the excitation is a vibratory motion
of the foundation, (3) forced vibration where the excitation is a vibratory force or
moment generated within the body, and (4) free vibration caused by an instanta-
neous change in velocity of the system (velocity shock). Results are presented math-
ematically and, where feasible, graphically.

SYSTEM OF COORDINATES

The motion of the rigid body is referred to a fixed “inertial” frame of reference. The
inertial frame is represented by a system of cartesian coordinates �X, �Y, �Z. A similar sys-
tem of coordinates X, Y, Z fixed in the body has its origin at the center of mass. The
two sets of coordinates are coincident when the body is in equilibrium under the
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action of gravity alone. The motions of
the body are described by giving the dis-
placement of the body axes relative to
the inertial axes. The translational dis-
placements of the center of mass of the
body are xc, yc , zc in the �X, �Y, �Z directions,
respectively. The rotational displace-
ments of the body are characterized by
the angles of rotation α, β, γ of the body
axes about the �X, �Y, �Z axes, respectively.
These displacements are shown graphi-
cally in Fig. 3.1.

Only small translations and rotations
are considered. Hence, the rotations are
commutative (i.e., the resulting position
is independent of the order of the com-
ponent rotations) and the angles of rota-
tion about the body axes are equal to
those about the inertial axes. Therefore,
the displacements of a point b in the body
(with the coordinates bx, by, bz in the X,Y,
Z directions, respectively) are the sums of
the components of the center-of-mass
displacement in the directions of the �X,
�Y, �Z axes plus the tangential components
of the rotational displacement of the
body:

xb = xc + bzβ − byγ

yb = yc − bzα + bxγ (3.1)

zb = zc − bxβ + byα

EQUATIONS OF SMALL MOTION OF A RIGID BODY

The equations of motion for the translation of a rigid body are

mẍc = Fx mÿc = Fy mz̈c = Fz (3.2)

where m is the mass of the body, Fx, Fy, Fz are the summation of all forces acting on
the body, and ẍc , ÿc , z̈c are the accelerations of the center of mass of the body in the
�X, �Y, �Z directions, respectively.The motion of the center of mass of a rigid body is the
same as the motion of a particle having a mass equal to the total mass of the body
and acted upon by the resultant external force.

The equations of motion for the rotation of a rigid body are

Ixxα̈ − Ixyβ̈ − Ixz γ̈ = Mx

−Ixyα̈ + Iyyβ̈ − Iyzγ̈ = My (3.3)

−Ixzα̈ − Iyzβ̈ + Izzγ̈ = Mz
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FIGURE 3.1 System of coordinates for the
motion of a rigid body consisting of a fixed iner-
tial set of reference axes (�X, �Y, �Z) and a set of
axes (X, Y, Z) fixed in the moving body with its
origin at the center of mass. The axes ��X, �Y, �Z and
X, Y, Z are coincident when the body is in equi-
librium under the action of gravity alone. The
displacement of the center of mass is given by
the translational displacements xc, yc, zc and the
rotational displacements α, β, γ as shown. A pos-
itive rotation about an axis is one which
advances a right-handed screw in the positive
direction of the axis.



where α̈, β̈, γ̈ are the rotational accelerations about the X, Y, Z axes, as shown in Fig.
3.1; Mx , My , Mz are the summation of torques acting on the rigid body about the axes
X, Y, Z, respectively; and Ixx . . . , Ixy . . . are the moments and products of inertia of
the rigid body as defined below.

INERTIAL PROPERTIES OF A RIGID BODY

The properties of a rigid body that are significant in dynamics and vibration are the
mass, the position of the center of mass (or center of gravity), the moments of iner-
tia, the products of inertia, and the directions of the principal inertial axes. This sec-
tion discusses the properties of a rigid body, together with computational and
experimental methods for determining the properties.

MASS

Computation of Mass. The mass of a body is computed by integrating the prod-
uct of mass density ρ(V) and elemental volume dV over the body:

m = �
v
ρ(V)dV (3.4)

If the body is made up of a number of elements, each having constant or an average
density, the mass is

m = ρ1V1 + ρ2V2 + ⋅⋅⋅ + ρnVn (3.5)

where ρ1 is the density of the element V1, etc. Densities of various materials may be
found in handbooks containing properties of materials.1

If a rigid body has a common geometrical shape, or if it is an assembly of sub-
bodies having common geometrical shapes, the volume may be found from compi-
lations of formulas. Typical formulas are included in Tables 3.1 and 3.2. Tables of
areas of plane sections as well as volumes of solid bodies are useful.

If the volume of an element of the body is not given in such a table, the integra-
tion of Eq. (3.4) may be carried out analytically, graphically, or numerically.A graph-
ical approach may be used if the shape is so complicated that the analytical
expression for its boundaries is not available or is not readily integrable. This is
accomplished by graphically dividing the body into smaller parts, each of whose
boundaries may be altered slightly (without change to the area) in such a manner
that the volume is readily calculable or measurable.

The weight W of a body of mass m is a function of the acceleration of gravity g at
the particular location of the body in space:

W = mg (3.6)

Unless otherwise stated, it is understood that the weight of a body is given for an
average value of the acceleration of gravity on the surface of the earth. For engi-
neering purposes, g = 32.2 ft/sec2 or 386 in./sec2 (9.81 m/sec2) is usually used.

Experimental Determination of Mass. Although Newton’s second law of
motion, F = mẍ, may be used to measure mass, this usually is not convenient. The
mass of a body is most easily measured by performing a static measurement of the
weight of the body and converting the result to mass.This is done by use of the value
of the acceleration of gravity at the measurement location [Eq. (3.6)].
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TABLE 3.1 Properties of Plane Sections (After G. W. Housner and D. E. Hudson.2)

The dimensions Xc,Yc are the X,Y coordinates of the centroid, A is the area, Ix . . . is the area moment
of inertia with respect to the X . . . axis, ρx . . . is the radius of gyration with respect to the X . . . axis; uni-
form solid cylindrical bodies of length l in the Z direction having the various plane sections as their cross
sections have mass moment and product of inertia values about the Z axis equal to ρl times the values
given in the table, where ρ is the mass density of the body; the radii of gyration are unchanged.
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TABLE 3.1 Properties of Plane Sections (Continued)
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TABLE 3.1 Properties of Plane Sections (Continued)
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TABLE 3.2 Properties of Homogeneous Solid Bodies (After G. W. Housner and D. E. Hudson.2)

The dimensions Xc,Yc, Zc are the X,Y, Z coordinates of the centroid, S is the cross-sectional area of the
thin rod or hoop in cases 1 to 3, V is the volume, Ix . . . is the mass moment of inertia with respect to the
X . . . axis, ρx . . . is the radius of gyration with respect to the X . . . axis, ρ is the mass density of the body.

3
.9



TABLE 3.2 Properties of Homogeneous Solid Bodies (Continued)
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TABLE 3.2 Properties of Homogeneous Solid Bodies (Continued)
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CENTER OF MASS

Computation of Center of Mass. The center of mass (or center of gravity) is that
point located by the vector

rc = �
m

r(m)dm (3.7)

where r(m) is the radius vector of the element of mass dm. The center of mass of a
body in a cartesian coordinate system X, Y, Z is located at

Xc = �
V

X(V)ρ(V)dV

Yc = �
V

Y(V)ρ(V)dV (3.8)

Zc = �
V

Z(V)ρ(V)dV

where X(V), Y(V), Z(V) are the X, Y, Z coordinates of the element of volume dV
and m is the mass of the body.

If the body can be divided into elements whose centers of mass are known, the
center of mass of the entire body having a mass m is located by equations of the fol-
lowing type:

Xc = (Xc1m1 + Xc2m2 + ⋅⋅⋅ + Xcnmn), etc. (3.9)

where Xc1 is the X coordinate of the center of mass of element m1.Tables (see Tables
3.1 and 3.2) which specify the location of centers of area and volume (called cen-
troids) for simple sections and solid bodies often are an aid in dividing the body into
the submasses indicated in the above equation. The centroid and center of mass of
an element are coincident when the density of the material is uniform throughout
the element.

Experimental Determination of Center of Mass. The location of the center of
mass is normally measured indirectly by locating the center of gravity of the body,
and may be found in various ways. Theoretically, if the body is suspended by a flexi-
ble wire attached successively at different points on the body, all lines represented
by the wire in its various positions when extended inwardly into the body intersect
at the center of gravity.Two such lines determine the center of gravity, but more may
be used as a check.There are practical limitations to this method in that the point of
intersection often is difficult to designate.

Other techniques are based on the balancing of the body on point or line supports.
A point support locates the center of gravity along a vertical line through the point; a
line support locates it in a vertical plane through the line.The intersection of such lines
or planes determined with the body in various positions locates the center of gravity.
The greatest difficulty with this technique is the maintenance of the stability of the

1
�
m

1
�
m

1
�
m

1
�
m

1
�
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body while it is balanced, particularly
where the height of the body is great rel-
ative to a horizontal dimension. If a per-
fect point or edge support is used, the
equilibrium position is inherently unsta-
ble. It is only if the support has width that
some degree of stability can be achieved,
but then a resulting error in the location
of the line or plane containing the center
of gravity can be expected.

Another method of locating the 
center of gravity is to place the body in a
stable position on three scales. From static
moments the vector weight of the body is
the resultant of the measured forces at the
scales, as shown in Fig. 3.2. The vertical
line through the center of gravity is
located by the distances a0 and b0:

a0 = a1

(3.10)

b0 = b1

This method cannot be used with more than three scales.

MOMENT AND PRODUCT OF INERTIA

Computation of Moment and Product of Inertia.2,3 The moments of inertia of
a rigid body with respect to the orthogonal axes X, Y, Z fixed in the body are

Ixx = �
m

(Y 2 + Z 2) dm Iyy = �
m

(X 2 + Z 2) dm Izz = �
m

(X 2 + Y 2) dm (3.11)

where dm is the infinitesimal element of mass located at the coordinate distances X,
Y, Z; and the integration is taken over the mass of the body. Similarly, the products
of inertia are

Ixy = �
m

XY dm Ixz = �
m

XZ dm Iyz = �
m

YZ dm (3.12)

It is conventional in rigid-body mechanics to take the center of coordinates at the
center of mass of the body. Unless otherwise specified, this location is assumed, and
the moments of inertia and products of inertia refer to axes through the center of
mass of the body. For a unique set of axes, the products of inertia vanish. These axes
are called the principal inertial axes of the body.The moments of inertia about these
axes are called the principal moments of inertia. The moments of inertia of a rigid
body can be defined in terms of radii of gyration as follows:

Ixx = mρx
2 Iyy = mρy

2 Izz = mρz
2 (3.13)

F3��
F1 + F2 + F3

F2��
F1 + F2 + F3
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FIGURE 3.2 Three-scale method of locating
the center of gravity of a body. The vertical
forces F1, F2, F3 at the scales result from the
weight of the body. The vertical line located by
the distances a0 and b0 [see Eqs. (3.10)] passes
through the center of gravity of the body.



where Ixx, . . . are the moments of inertia of the body as defined by Eqs. (3.11), m is
the mass of the body, and ρx, . . . are the radii of gyration. The radius of gyration has
the dimension of length, and often leads to convenient expressions in dynamics of
rigid bodies when distances are normalized to an appropriate radius of gyration.
Solid bodies of various shapes have characteristic radii of gyration which sometimes
are useful intuitively in evaluating dynamic conditions.

Unless the body has a very simple shape, it is laborious to evaluate the integrals
of Eqs. (3.11) and (3.12). The problem is made easier by subdividing the body into
parts for which simplified calculations are possible. The moments and products of
inertia of the body are found by first determining the moments and products of iner-
tia for the individual parts with respect to appropriate reference axes chosen in the
parts, and then summing the contributions of the parts.This is done by selecting axes
through the centers of mass of the parts, and then determining the moments and
products of inertia of the parts relative to these axes. Then the moments and prod-
ucts of inertia are transferred to the axes chosen through the center of mass of the
whole body, and the transferred quantities summed. In general, the transfer involves

two sets of nonparallel coordinates
whose centers are displaced. Two trans-
formations are required as follows.

Transformation to Parallel Axes.
Referring to Fig. 3.3, suppose that X, Y,
Z is a convenient set of axes for the
moment of inertia of the whole body
with its origin at the center of mass. The
moments and products of inertia for a
part of the body are Ix″x″, Iy″y″, Iz″z″, Ix″y″,
Ix″z″, and Iy″z″, taken with respect to a set
of axes X″, Y″, Z″ fixed in the part and
having their center at the center of mass
of the part.The axes X′,Y′, Z′ are chosen
parallel to X″, Y″, Z″ with their origin at
the center of mass of the body. The per-
pendicular distance between the X″ and
X′ axes is ax; that between Y″ and Y′ is
ay; that between Z″ and Z′ is az. The
moments and products of inertia of the
part of mass mn with respect to the X′,
Y′, Z′ axes are

Ix′x′ = Ix″x″ + mnax
2

Iy′y′ = Iy″y″ + mnay
2 (3.14)

Iz′z′ = Iz″z″ + mnaz
2

The corresponding products of inertia are

Ix′y′ = Ix″y″ + mnaxay

Ix′z′ = Ix″z″ + mnaxaz (3.15)

Iy′z′ = Iy″z″ + mnayaz

If X″, Y″, Z″ are the principal axes of the part, the product of inertia terms on the
right-hand side of Eqs. (3.15) are zero.
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FIGURE 3.3 Axes required for moment and
product of inertia transformations. Moments
and products of inertia with respect to the axes
X″, Y″, Z″ are transferred to the mutually paral-
lel axes X′, Y′, Z′ by Eqs. (3.14) and (3.15), and
then to the inclined axes X, Y, Z by Eqs. (3.16)
and (3.17).



Transformation to Inclined Axes. The desired moments and products of iner-
tia with respect to axes X, Y, Z are now obtained by a transformation theorem relat-
ing the properties of bodies with respect to inclined sets of axes whose centers
coincide.This theorem makes use of the direction cosines λ for the respective sets of
axes. For example, λxx′ is the cosine of the angle between the X and X′ axes. The
expressions for the moments of inertia are

Ixx = λxx′
2Ix′x′ + λxy′

2Iy′y′ + λxz′
2Iz′z′ − 2λxx′λxy′Ix′y′ − 2λxx′λxz′Ix′z′ − 2λxy′λxz′Iy′z′

Iyy = λyx′
2Ix′x′ + λyy′

2Iy′y′ + λyz′
2Iz′z′ − 2λyx′λyy′Ix′y′ − 2λyx′λyz′Ix′z′ − 2λyy′λyz′Iy′z′ (3.16)

Izz = λzx′
2Ix′x′ + λzy′

2Iy′y′ + λzz′
2Iz′z′ − 2λzx′λzy′Ix′y′ − 2λzx′λzz′Ix′z′ − 2λzy′λzz′Iy′z′

The corresponding products of inertia are

−Ixy = λxx′λyx′Ix′x′ + λxy′λyy′Iy′y′ + λxz′λyz′Iz′z′ − (λxx′λyy′ + λxy′λyx′)Ix′y′
− (λxy′λyz′ + λxz′λyy′)Iy′z′ − (λxz′λyx′ + λxx′λyz′)Ix′z′

−Ixz = λxx′λzx′Ix′x′ + λxy′λzy′Iy′y′ + λxz′λzz′Iz′z′ − (λxx′λzy′ + λxy′λzx′)Ix′y′
− (λxy′λzz′ + λxz′λzy′)Iy′z′ − (λxx′λzz′ + λxz′λzx′)Ix′z′

(3.17)

−Iyz = λyx′λzx′Ix′x′ + λyy′λzy′Iy′y′ + λyz′λzz′Iz′z′ − (λyx′λzy′ + λyy′λzx′)Ix′y′
− (λyy′λzz′ + λyz′λzy′)Iy′z′ − (λyz′λzx′ + λyx′λzz′)Ix′z′

Experimental Determination of Moments of Inertia. The moment of inertia of
a body about a given axis may be found experimentally by suspending the body as a
pendulum so that rotational oscillations about that axis can occur.The period of free
oscillation is then measured, and is used with the geometry of the pendulum to cal-
culate the moment of inertia.

Two types of pendulums are useful:
the compound pendulum and the tor-
sional pendulum. When using the com-
pound pendulum, the body is supported
from two overhead points by wires,
illustrated in Fig. 3.4. The distance l is
measured between the axis of support
O–O and a parallel axis C–C through
the center of gravity of the body. The
moment of inertia about C–C is given by

Icc = ml2�� 	2� 	 − 1 (3.18)

where τ0 is the period of oscillation in sec-
onds, l is the pendulum length in inches,
g is the gravitational acceleration in
in./sec2, and m is the mass in lb-sec2/in.,
yielding a moment of inertia in lb-in./sec2.

The accuracy of the above method 
is dependent upon the accuracy with

which the distance l is known. Since the center of gravity often is an inaccessible
point, a direct measurement of l may not be practicable. However, a change in l can
be measured quite readily. If the experiment is repeated with a different support axis
O′–O′, the length l becomes l + Δl and the period of oscillation becomes τ0′.Then, the
distance l can be written in terms of Δl and the two periods τ0, τ0′ :

g
�
l

τ0�
2π
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FIGURE 3.4 Compound pendulum method of
determining moment of inertia. The period of
oscillation of the test body about the horizontal
axis O–O and the perpendicular distance l
between the axis O–O and the parallel axis C–C
through the center of gravity of the test body
give Icc by Eq. (3.18).



l = Δl�  (3.19)

This value of l can be substituted into Eq. (3.18) to compute Icc.
Note that accuracy is not achieved if l is much larger than the radius of gyration

ρc of the body about the axis C–C (Icc = mρc
2). If l is large, then (τ0/2π)2 � l/g and the

expression in brackets in Eq. (3.18) is very small; thus, it is sensitive to small errors in
the measurement of both τ0 and l. Consequently, it is highly desirable that the dis-
tance l be chosen as small as convenient, preferably with the axis O–O passing
through the body.

A torsional pendulum may be constructed with the test body suspended by a sin-
gle torsional spring (in practice, a rod or wire) of known stiffness, or by three flexi-
ble wires. A solid body supported by a single torsional spring is shown in Fig. 3.5.
From the known torsional stiffness kt and the measured period of torsional oscilla-
tion τ, the moment of inertia of the body about the vertical torsional axis is

Icc = (3.20)

A platform may be constructed below the torsional spring to carry the bodies to
be measured, as shown in Fig. 3.6. By repeating the experiment with two different
bodies placed on the platform, it becomes unnecessary to measure the torsional stiff-
ness kt. If a body with a known moment of inertia I1 is placed on the platform and an
oscillation period τ1 results, the moment of inertia I2 of a body which produces a
period τ2 is given by

I2 = I1�  (3.21)

where τ0 is the period of the pendulum composed of platform alone.
A body suspended by three flexible wires, called a trifilar pendulum, as shown in

Fig. 3.7, offers some utilitarian advantages. Designating the perpendicular distances

(τ2/τ0)2 − 1
��
(τ1/τ0)2 − 1

ktτ2

�
4π2

(τ0′2/4π2)(g/Δl) − 1
���
[(τ0

2 − τ0′2)/4π2][g/Δl] − 1
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FIGURE 3.5 Torsional pendulum method of
determining moment of inertia. The period of
torsional oscillation of the test body about the
vertical axis C–C passing through the center of
gravity and the torsional spring constant kt give
Icc by Eq. (3.20).

FIGURE 3.6 A variation of the torsional pen-
dulum method shown in Fig. 3.5 wherein a light
platform is used to carry the test body. The
moment of inertia Icc is given by Eq. (3.20).



of the wires to the vertical axis C–C through the center of gravity of the body by R1,
R2, R3, the angles between wires by φ1, φ2, φ3, and the length of each wire by l, the
moment of inertia about axis C–C is

Icc = (3.22)

Apparatus that is more convenient for
repeated use embodies a light platform
supported by three equally spaced wires.
The body whose moment of inertia is to
be measured is placed on the platform
with its center of gravity equidistant
from the wires.Thus R1 = R2 = R3 = R and
φ1 = φ2 = φ3 = 120°. Substituting these
relations in Eq. (3.22), the moment of
inertia about the vertical axis C–C is

Icc = (3.23)

where the mass m is the sum of the
masses of the test body and the plat-
form. The moment of inertia of the plat-
form is subtracted from the test result to
obtain the moment of inertia of the
body being measured. It becomes un-
necessary to know the distances R and l
in Eq. (3.23) if the period of oscillation is
measured with the platform empty, with

the body being measured on the platform, and with a second body of known mass m1

and known moment of inertia I1 on the platform. Then the desired moment of iner-
tia I2 is

I2 = I1 �  (3.24)

where m0 is the mass of the unloaded platform, m2 is the mass of the body being
measured, τ0 is the period of oscillation with the platform unloaded, τ1 is the period
when loaded with known body of mass m1, and τ2 is the period when loaded with the
unknown body of mass m2.

Experimental Determination of Product of Inertia. The experimental determi-
nation of a product of inertia usually requires the measurement of moments of iner-
tia. (An exception is the balancing machine technique described later.) If possible,
symmetry of the body is used to locate directions of principal inertial axes, thereby
simplifying the relationship between the moments of inertia as known and the prod-
ucts of inertia to be found. Several alternative procedures are described below,
depending on the number of principal inertia axes whose directions are known.
Knowledge of two principal axes implies a knowledge of all three since they are
mutually perpendicular.

If the directions of all three principal axes (X′, Y′, Z′) are known and it is desir-
able to use another set of axes (X, Y, Z), Eqs. (3.16) and (3.17) may be simplified

[1 + (m2/m0)][τ2/τ0]2 − 1
���
[1 + (m1/m0)][τ1/τ0]2 − 1

mgR2τ2

�
4π2l

R1 sin φ1 + R2 sin φ2 + R3 sin φ3�����
R2R3 sin φ1 + R1R3 sin φ2 + R1R2 sin φ3

mgR1R2R3τ2

��
4π2l
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FIGURE 3.7 Trifilar pendulum method of
determining moment of inertia. The period of
torsional oscillation of the test body about the
vertical axis C–C passing through the center of
gravity and the geometry of the pendulum give
Icc by Eq. (3.22); with a simpler geometry, Icc is
given by Eq. (3.23).



because the products of inertia with respect to the principal directions are zero. First,
the three principal moments of inertia (Ix′x′, Iy′y′, Iz′z′) are measured by one of the
above techniques; then the moments of inertia with respect to the X, Y, Z axes are

Ixx = λxx′
2Ix′x′ + λxy′

2Iy′y′ + λxz′
2Iz′z′

Iyy = λyx′
2Ix′x′ + λyy′

2Iy′y′ + λyz′
2Iz′z′ (3.25)

Izz = λzx′
2Ix′x′ + λzy′

2Iy′y′ + λzz′
2Iz′z′

The products of inertia with respect to the X, Y, Z axes are

−Ixy = λxx′λyx′Ix′x′ + λxy′λyy′Iy′y′ + λxz′λyz′Iz′z′

−Ixz = λxx′λzx′Ix′x′ + λxy′λzy′Iy′y′ + λxz′λzz′Iz′z′ (3.26)

−Iyz = λyx′λzx′Ix′x′ + λyy′λzy′Iy′y′ + λyz′λzz′Iz′z′

The direction of one principal axis Z may be known from symmetry. The axis
through the center of gravity perpendicular to the plane of symmetry is a principal
axis.The product of inertia with respect to X and Y axes, located in the plane of sym-
metry, is determined by first establishing another axis X′ at a counterclockwise angle
θ from X, as shown in Fig. 3.8. If the three moments of inertia Ixx , Ix′x′, and Iyy are
measured by any applicable means, the product of inertia Ixy is

Ixy = (3.27)

where 0 < θ < π. For optimum accuracy, θ
should be approximately π/4 or 3π/4.
Since the third axis Z is a principal axis,
Ixz and Iyz are zero.

Another method is illustrated in Fig.
3.9.4, 5 The plane of the X and Z axes is a
plane of symmetry, or the Y axis is other-
wise known to be a principal axis of iner-
tia. For determining Ixz , the body is
suspended by a cable so that the Y axis is
horizontal and the Z axis is vertical.Tor-
sional stiffness about the Z axis is pro-
vided by four springs acting in the Y
direction at the points shown. The body
is oscillated about the Z axis with vari-

ous positions of the springs so that the angle θ can be varied. The spring stiffnesses
and locations must be such that there is no net force in the Y direction due to a rota-
tion about the Z axis. In general, there is coupling between rotations about the X
and Z axes, with the result that oscillations about both axes occur as a result of an
initial rotational displacement about the Z axis. At some particular value of θ = θ0,
the two rotations are uncoupled; i.e., oscillation about the Z axis does not cause
oscillation about the X axis. Then

Ixz = Izz tan θ0 (3.28)

The moment of inertia Izz can be determined by one of the methods described under
“Experimental Determination of Moments of Inertia.”

Ixx cos2 θ + Iyy sin2 θ − Ix′x′
���sin 2θ
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FIGURE 3.8 Axes required for determining
the product of inertia with respect to the axes X
and Y when Z is a principal axis of inertia. The
moments of inertia about the axes X, Y, and X′,
where X′ is in the plane of X and Y at a counter-
clockwise angle θ from X, give Ixy by Eq. (3.27).



When the moments and product of inertia with respect to a pair of axes X and Z
in a principal plane of inertia XZ are known, the orientation of a principal axis P is
given by

θp = 1⁄2 tan−1� 	 (3.29)

where θp is the counterclockwise angle from the X axis to the P axis. The second
principal axis in this plane is at θp + 90°.

Consider the determination of products of inertia when the directions of all
principal axes of inertia are unknown. In one method, the moments of inertia about
two independent sets of three mutually perpendicular axes are measured, and the
direction cosines between these sets of axes are known from the positions of the
axes. The values for the six moments of inertia and the nine direction cosines are
then substituted into Eqs. (3.16) and (3.17). The result is six linear equations in the
six unknown products of inertia, from which the values of the desired products of
inertia may be found by simultaneous solution of the equations. This method leads
to experimental errors of relatively large magnitude because each product of iner-
tia is, in general, a function of all six moments of inertia, each of which contains an
experimental error.

An alternative method is based upon the knowledge that one of the principal
moments of inertia of a body is the largest and another is the smallest that can be
obtained for any axis through the center of gravity. A trial-and-error procedure can
be used to locate the orientation of the axis through the center of gravity having the
maximum and/or minimum moment of inertia. After one or both are located, the
moments and products of inertia for any set of axes are found by the techniques pre-
viously discussed.

The products of inertia of a body also may be determined by rotating the body at
a constant angular velocity Ω about an axis passing through the center of gravity, as
illustrated in Fig. 3.10. This method is similar to the balancing machine technique
used to balance a body dynamically. If the bearings are a distance l apart and the
dynamic reactions Fx and Fy are measured, the products of inertia are

2Ixz�
Izz − Ixx
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FIGURE 3.9 Method of determining the product of inertia with
respect to the axes X and Z when Y is a principal axis of inertia. The
test body is oscillated about the vertical Z axis with torsional stiff-
ness provided by the four springs acting in the Y direction at the
points shown.There should be no net force on the test body in the Y
direction due to a rotation about the Z axis. The angle θ is varied
until, at some value of θ = θ0, oscillations about X and Z are uncou-
pled.The angle θ0 and the moment of inertia about the Z axis give Ixz

by Eq. (3.28).



Ixz = − Iyz = − (3.30)

Limitations to this method are (1) the size of the body that can be accommodated
by the balancing machine and (2) the angular velocity that the body can withstand
without damage from centrifugal forces. If the angle between the Z axis and a prin-
cipal axis of inertia is small, high rotational speeds may be necessary to measure the
reaction forces accurately.

PROPERTIES OF RESILIENT SUPPORTS

A resilient support is considered to be a
three-dimensional element having two
terminals or end connections. When the
end connections are moved one relative
to the other in any direction, the ele-
ment resists such motion. In this chap-
ter, the element is considered to be
massless; the force that resists relative
motion across the element is considered
to consist of a spring force that is
directly proportional to the relative dis-
placement (deflection across the ele-
ment) and a damping force that is
directly proportional to the relative
velocity (velocity across the element).
Such an element is defined as a linear
resilient support. Nonlinear elements are
discussed in Chap. 4, and nonlinear
damping is discussed in Chap. 2.

In a single-degree-of-freedom system
or in a system having constraints on the paths of motion of elements of the system
(Chap. 2), the resilient element is constrained to deflect in a given direction and the
properties of the element are defined with respect to the force opposing motion in
this direction. In the absence of such constraints, the application of a force to a
resilient element generally causes a motion in a different direction. The principal
elastic axes of a resilient element are those axes for which the element, when uncon-
strained, experiences a deflection colineal with the direction of the applied force.
Any axis of symmetry is a principal elastic axis.

In rigid-body dynamics, the rigid body sometimes vibrates in modes that are cou-
pled by the properties of the resilient elements as well as by their location. For
example, if the body experiences a static displacement x in the direction of the X
axis only, a resilient element opposes this motion by exerting a force kxxx on the
body in the direction of the X axis, where one subscript on the spring constant k
indicates the direction of the force exerted by the element and the other subscript
indicates the direction of the deflection. If the X direction is not a principal elastic
direction of the element and the body experiences a static displacement x in the X
direction, the body is acted upon by a force kyxx in the Y direction if no displacement
y is permitted. The stiffnesses have reciprocal properties; i.e., kxy = kyx. In general,

Fyl�
Ω2

Fxl�
Ω2
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FIGURE 3.10 Balancing machine technique
for determining products of inertia. The test
body is rotated about the Z axis with angular
velocity Ω. The dynamic reactions Fx and Fy

measured at the bearings, which are a distance l
apart, give Ixz and Iyz by Eq. (3.30).



the stiffnesses in the directions of the coordinate axes can be expressed in terms of
(1) principal stiffnesses and (2) the angles between the coordinate axes and the
principal elastic axes of the element. Therefore, the stiffness of a resilient element
can be represented pictorially by the combination of three mutually perpendicular,
idealized springs oriented along the principal elastic directions of the resilient ele-
ment. Each spring has a stiffness equal to the principal stiffness represented.

A resilient element is assumed to have damping properties such that each spring
representing a value of principal stiffness is paralleled by an idealized viscous
damper, each damper representing a value of principal damping. Hence, coupling
through damping exists in a manner similar to coupling through stiffness. Conse-
quently, the viscous damping coefficient c is analogous to the spring coefficient k;
i.e., the force exerted by the damping of the resilient element in response to a veloc-
ity ẋ is cxxẋ in the direction of the X axis and cyxẋ in the direction of the Y axis if ẏ is
zero. Reciprocity exists; i.e., cxy = cyx.

The point of intersection of the principal elastic axes of a resilient element is des-
ignated as the elastic center of the resilient element. The elastic center is important
since it defines the theoretical point location of the resilient element for use in the
equations of motion of a resiliently supported rigid body. For example, the torque on
the rigid body about the Y axis due to a force kxxx transmitted by a resilient element
in the X direction is kxxazx, where az is the Z coordinate of the elastic center of the
resilient element.

In general, it is assumed that a resilient element is attached to the rigid body by
means of “ball joints”; i.e., the resilient element is incapable of applying a couple to
the body. If this assumption is not made, a resilient element would be represented
not only by translational springs and dampers along the principal elastic axes but
also by torsional springs and dampers resisting rotation about the principal elastic
directions.

Figure 3.11 shows that the torsional elements usually can be neglected. The
torque which acts on the rigid body due to a rotation β of the body and a rotation b
of the support is (kt + az

2kx) (β − b), where kt is the torsional spring constant in the β
direction. The torsional stiffness kt usually is much smaller than az

2kx and can be ne-
glected.Treatment of the general case indicates that if the torsional stiffnesses of the
resilient element are small compared with the product of the translational stiffnesses
times the square of distances from the elastic center of the resilient element to the
center of gravity of the rigid body, the torsional stiffnesses have a negligible effect on
the vibrational behavior of the body. The treatment of torsional dampers is com-
pletely analogous.

EQUATIONS OF MOTION FOR A RESILIENTLY

SUPPORTED RIGID BODY

The differential equations of motion for the rigid body are given by Eqs. (3.2) and
(3.3), where the F’s and M’s represent the forces and moments acting on the body,
either directly or through the resilient supporting elements. Figure 3.12 shows a view
of a rigid body at rest with an inertial set of axes �X, �Y, �Z and a coincident set of axes
X,Y, Z fixed in the rigid body, both sets of axes passing through the center of mass.A
typical resilient element (2) is represented by parallel spring and viscous damper
combinations arranged respectively parallel with the �X, �Y, �Z axes. Another resilient
element (1) is shown with its principal axes not parallel with �X, �Y, �Z.
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The displacement of the center of
gravity of the body in the �X, �Y, �Z direc-
tions is in Fig. 3.1 indicated by xc , yc , zc ,
respectively; and rotation of the rigid
body about these axes is indicated by a,
b, g, respectively. In Fig. 3.12, each
resilient element is represented by three
mutually perpendicular spring-damper
combinations. One end of each such
combination is attached to the rigid
body; the other end is considered to 
be attached to a foundation whose cor-
responding translational displacement is
defined by u, v, w in the �X, �Y, �Z di-
rections, respectively, and whose rota-
tional displacement about these axes is
defined by a, b, g, respectively.The point
of attachment of each of the idealized
resilient elements is located at the coor-
dinate distances ax , ay , az of the elastic
center of the resilient element.

Consider the rigid body to experi-
ence a translational displacement xc of
its center of gravity and no other dis-
placement, and neglect the effects of the

viscous dampers.The force developed by a resilient element has the effect of a force
−kxx(xc − u) in the X direction, a moment kxx(xc − u)ay in the γ coordinate (about the
Z axis), and a moment −kxx(xc − u)az in the β coordinate (about the Y axis). Further-
more, the coupling stiffness causes a force −kxy(xc − u) in the Y direction and a force
−kxz(xc − u) in the Z direction. These forces have the moments kxy(xc − u)az in the α
coordinate; −kxy(xc − u)ax in the γ coordinate; kxz(xc − u)ax in the β coordinate; and 
−kxz(xc − u)ay in the α coordinate. By considering in a similar manner the forces and
moments developed by a resilient element for successive displacements of the rigid
body in the three translational and three rotational coordinates, and summing over
the number of resilient elements, the equations of motion are written as follows:6, 7

mẍc + Σkxx(xc − u) + Σkxy(yc − v) + Σkxz(zc − w)

+ Σ(kxzay − kxyaz)(α − a) + Σ(kxxaz − kxzax)(β − b)

+ Σ(kxyax − kxxay)(γ − g) = Fx (3.31a)

Ixxα̈ − Ixyβ̈ − Ixzγ̈ + Σ(kxzay − kxyaz)(xc − u)

+ Σ(kyzay − kyyaz)(yc − v) + Σ(kzzay − kyzaz)(zc − w)

+ Σ(kyyaz
2 + kzzay

2 − 2kyzayaz)(α − a)

+ Σ(kxzayaz + kyzaxaz − kzzaxay − kxyaz
2)(β − b)

+ Σ(kxy ayaz + kyzaxay − kyyaxaz − kxzay
2)(γ − g) = Mx (3.31b)

mÿc + Σkxy(xc − u) + Σkyy(yc − v) + Σkyz(zc − w)

+ Σ(kyzay − kyyaz)(α − a) + Σ(kxyaz − kyzax)(β − b)

+ Σ(kyyax − kxyay)(γ − g) = Fy (3.31c)
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FIGURE 3.11 Pictorial representation of the
properties of an undamped resilient element in
the XZ plane including a torsional spring kt. An
analysis of the motion of the supported body in
the XZ plane shows that the torsional spring can
be neglected if kt << az

2kx.



Iyyβ̈ − Ixyα̈ − Iyzγ̈ + Σ(kxxaz − kxzax)(xc − u)

+ Σ(kxyaz − kyzax)(yc − v) + Σ(kxzaz − kzzax)(zc − w)

+ Σ(kxzayaz + kyzaxaz − kzzaxay − kxyaz
2)(α − a)

+ Σ(kxxaz
2 + kzzax

2 − 2kxzaxaz)(β − b)

+ Σ(kxyaxaz + kxzaxay − kxxayaz − kyzax
2)(γ − g) = My (3.31d)
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FIGURE 3.12 Rigid body at rest supported by resilient elements, with inertial axes �X, �Y, �Z and
coincident reference axes X, Y, Z passing through the center of mass. The forces Fx, Fy, Fz and the
moments Mx, My, Mz are applied directly to the body; the translations u, v, w and rotations a, b, g in
and about the X, Y, Z axes, respectively, are applied to the resilient elements located at the coordi-
nates ax, ay, az. The principal directions of resilient element (2) are parallel to the �X, �Y, �Z axes
(orthogonal), and those of resilient element (1) are not parallel to the �X, �Y, �Z axes (inclined).



mz̈c + Σkxz(xc − u) + Σkyz(yc − v) + Σkzz(zc − w)

+ Σ(kzzay − kyzaz)(α − a) + Σ(kxzaz − kzzax)(β − b)

+ Σ(kyzax − kxzay)(γ − g) = Fz (3.31e)

Izzγ̈ − Ixzα̈ − Iyzβ̈ + Σ(kxyax − kxxay)(xc − u)

+ Σ(kyyax − kxyay)(yc − v) + Σ(kyzax − kxzay)(zc − w)

+ Σ(kxyayaz + kyzaxay − kyyaxaz − kxzay
2)(α − a)

+ Σ(kxyaxaz + kxzaxay − kxxayaz − kyzax
2)(β − b)

+ Σ(kxxay
2 + kyyax

2 − 2kxyaxay)(γ − g) = Mz (3.31f )

where the moments and products of inertia are defined by Eqs. (3.11) and (3.12) and
the stiffness coefficients are defined as follows:

kxx = kpλxp
2 + kqλxq

2 + krλxr
2

kyy = kpλyp
2 + kqλyq

2 + krλyr
2

kzz = kpλzp
2 + kqλzq

2 + krλzr
2

kxy = kpλxpλyp + kqλxqλyq + krλxrλyr

(3.32)

kxz = kpλxpλzp + kqλxqλzq + krλxrλzr

kyz = kpλypλzp + kqλyqλzq + krλyrλzr

where the λ’s are the cosines of the angles between the principal elastic axes of the
resilient supporting elements and the coordinate axes. For example, λxp is the cosine
of the angle between the X axis and the P axis of principal stiffness.

The equations of motion, Eqs. (3.31), do not include forces applied to the rigid
body by damping forces from the resilient elements. To include damping, appropri-
ate damping terms analogous to the corresponding stiffness terms are added to each
equation. For example, Eq. (3.31a) would become

mẍc + Σcxx(ẋc −u̇) + Σkxx(xc − u) + ⋅⋅⋅
+ Σ(cxzay − cxyaz)(α̇ − ȧ ) + Σ(kxzay − kxyaz)(α − a) + ⋅⋅⋅ = Fx (3.31a′ )

where cxx = cpλxp
2 + cqλxq

2 + crλxr
2

cxy = cpλxpλyp + cqλxqλyq + crλxrλyr

The number of degrees of freedom of a vibrational system is the minimum num-
ber of coordinates necessary to define completely the positions of the mass elements
of the system in space.The system of Fig. 3.12 requires a minimum of six coordinates
(xc ,yc ,zc ,α,β,γ) to define the position of the rigid body in space; thus, the system is
said to vibrate in six degrees of freedom. Equations (3.31) may be solved simulta-
neously for the three components xc , yc , zc of the center-of-gravity displacement and
the three components α, β, γ of the rotational displacement of the rigid body. In most
practical instances, the equations are simplified considerably by one or more of the
following simplifying conditions:

1. The reference axes X,Y, Z are selected to coincide with the principal inertial axes
of the body; then
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Ixy = Ixz = Iyz = 0 (3.33)

2. The resilient supporting elements are so arranged that one or more planes of
symmetry exist; i.e., motion parallel to the plane of symmetry has no tendency to
excite motion perpendicular to it, or rotation about an axis lying in the plane 
does not excite motion parallel to the plane. For example, in Eq. (3.31a), motion
in the XY plane does not tend to excite motion in the XZ or YZ plane if Σkxz,
Σ(kxzay − kxy az), and Σ(kxxaz − kxzax) are zero.

3. The principal elastic axes P, Q, R of all resilient supporting elements are orthog-
onal with the reference axes X,Y, Z of the body, respectively.Then, in Eqs. (3.32),

kxx = kp = kx kyy = kq = ky kzz = kr = kz

kxy = kxz = kyz = 0
(3.34)

where kx, ky, kz are defined for use when orthogonality exists. The supports are
then called orthogonal supports.

4. The forces Fx, Fy, Fz and moments Mx, My, Mz are applied directly to the body and
there are no motions (u = v = w = a = b = g = 0) of the foundation; or alternatively,
the forces and moments are zero and excitation results from motion of the foun-
dation.

In general, the effect of these simplifications is to reduce the numbers of terms in the
equations and, in some instances, to reduce the number of equations that must be
solved simultaneously. Simultaneous equations indicate coupled modes; i.e., motion
cannot exist in one coupled mode independently of motion in other modes which
are coupled to it.

MODAL COUPLING AND NATURAL

FREQUENCIES

Several conditions of symmetry resulting from zero values for the product of inertia
terms in Eq. (3.33) are discussed in the following sections.

ONE PLANE OF SYMMETRY WITH ORTHOGONAL RESILIENT

SUPPORTS

When the YZ plane of the rigid body system in Fig. 3.12 is a plane of symmetry, the
following terms in the equations of motion are zero:

Σkyy ax = Σkzzax = Σkyy axaz = Σkzzaxay = 0 (3.35)

Introducing the further simplification that the principal elastic axes of the resilient
elements are parallel with the reference axes, Eqs. (3.34) apply. Then the motions in
the three coordinates yc , zc , α are coupled but are independent of motion in any of
the other coordinates; furthermore, the other three coordinates xc , β, γ also are cou-
pled. For example, Fig. 3.13 illustrates a resiliently supported rigid body, wherein the
YZ plane is a plane of symmetry that meets the requirements of Eq. (3.35).The three
natural frequencies for the yc , zc , α coupled directions are found by solving Eqs.
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(3.31b), (3.31c), and (3.31e) [or Eqs. (3.31a), (3.31d), and (3.31f) for the xc , β, γ cou-
pled directions] simultaneously.6

� 	
6

− A� 	
4

+ B� 	
2

− C = 0 (3.36)

where fz = � (3.37)

is a quantity having mathematical rather than physical significance if translational
motion in the direction of the Z axis is coupled to other modes of motion. (Such cou-
pling exists for the system of Fig. 3.13.) The roots fn represent the natural frequencies
of the system in the coupled modes. The coefficients A, B, C for the coupled modes
in the yc , zc , α coordinates are

Ayzα = 1 + + Dzx

Byzα = Dzx + (1 + Dzx) −

Cyzα = �Dzx − 	 −

where Dzx =

and ρx is the radius of gyration of the rigid body with respect to the X axis.
The corresponding coefficients for the coupled modes in the xc, β, γ coordinates are

Axβγ = + Dzy + Dzz

Bxβγ = (Dzy + Dzz) + DzyDzz

− − −

Cxβγ = �DzyDzz −  − Dzy

− Dzz + 2

where Dzy = Dzz =

and ρy , ρz are the radii of gyration of the rigid body with respect to the Y, Z axes.
The roots of the cubic equation Eq. (3.36) may be found graphically from Fig.

3.14.6 The coefficients A, B, C are first calculated from the above relations for the
appropriate set of coupled coordinates. Figure 3.14 is entered on the abscissa scale
at the appropriate value for the quotient B/A2. Small values of B/A2 are in Fig.
3.14A, and large values in Fig. 3.14B. The quotient C/A3 is the parameter for the
family of curves. Upon selecting the appropriate curve, three values of (fn /fz)/�A�
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are read from the ordinate and trans-
ferred to the left scale of the nomo-
graph in Fig. 3.14B. Diagonal lines are
drawn for each root to the value of A on
the right scale, as indicated by dotted
lines, and the roots fn/fz of the equation
are indicated by the intercept of these
dotted lines with the center scale of the
nomograph.

The coefficients A, B, C can be sim-
plified if all resilient elements have
equal stiffness in the same direction.The
stiffness coefficients always appear to be
equal powers in numerator and denomi-
nator, and lead to dimensionless ratios
of stiffness. For n resilient elements, typ-
ical terms reduce as follows:

= =

= � 	
2
, etc.

TWO PLANES OF SYMMETRY

WITH ORTHOGONAL RESILIENT

SUPPORTS

Two planes of symmetry may be achieved
if, in addition to the conditions of Eqs.
(3.33) to (3.35), the following terms of
Eqs. (3.31) are zero:

Σkxxay = Σkzzay = Σkxxay az = 0

(3.38)

Under these conditions, Eqs. (3.31) sep-
arate into two independent equations,
Eqs. (3.31e) and (3.31f ), and two sets
each consisting of two coupled equa-
tions [Eqs. (3.31a) and (3.31d); Eqs.

(3.31b) and (3.31c)]. The planes of symmetry are the XZ and YZ planes. For exam-
ple, a common system is illustrated in Fig. 3.15, where four identical resilient sup-
porting elements are located symmetrically about the Z axis in a plane not
containing the center of gravity.6 Coupling exists between translation in the X direc-
tion and rotation about the Y axis (xc ,β), as well as between translation in the Y
direction and rotation about the X axis (yc ,α).Translation in the Z direction (zc) and
rotation about the Z axis (γ) are each independent of all other modes.

The natural frequency in the Z direction is found by solving Eq. (3.31e) to obtain
Eq. (3.37), where Σkzz = 4kz. The rotational natural frequency fγ about the Z axis is
found by solving Eq. (3.31f); it can be expressed with respect to the natural fre-
quency in the direction of the Z axis:

Σay az
�ρyρz

kx
�
nkz

(Σkxayaz)2
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2ρz

2(Σkz)2

Σay
2

�
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FIGURE 3.13 Example of a rigid body on
orthogonal resilient supporting elements with
one plane of symmetry.The YZ plane is a plane of
symmetry since each resilient element has prop-
erties identical to those of its mirror image in the
YZ plane; i.e., kx1 = kx2, kx3 = kx4, kx5 = kx6, etc. The
conditions satisfied are Eqs. (3.33) to (3.35).



FIGURE 3.14A Graphical method of determining solutions of the cubic Eq. (3.36). Calculate A, B, C for the
appropriate set of coupled coordinates, enter the abscissa at B/A2 (values less than 0.2 on Fig. 3.14A, values greater
than 0.2 on Fig. 3.14B), and read three values of (fn/fz)/�A� from the curve having the appropriate value of C/A3.

3
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FIGURE 3.14B Using the above nomograph with values of (fn/fz)/�A� (see Fig. 3.14A), a diagonal line is drawn
from each value of (fn/fz)/�A� on the left scale of the nomograph to the value of A on the right scale, as indicated
by the dotted lines.The three roots fn/fz of Eq. (3.36) are given by the intercept of these dotted lines with the cen-
ter scale of the nomograph. (After F. F. Vane.6)
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= � � 	
2

+ � 	
2

(3.39)

where ρz is the radius of gyration with respect to the Z axis.
The natural frequencies in the coupled xc , β modes are found by solving Eqs.

(3.31a) and (3.31d) simultaneously; the roots yield the following expression for nat-
ural frequency:

= � �1 + 	 + ±

�� �1 + 	 + 2
− 4 �

(3.40)

Figure 3.16 provides a convenient
graphical method for determining the
two coupled natural frequencies fxβ. An
expression similar to Eq. (3.40) is
obtained for fyα

2 /fz
2 by solving Eqs.

(3.31b) and (3.31d) simultaneously. By
replacing ρy , ax , kx , fxβ with ρx , ay , ky , fyα ,
respectively, Fig. 3.16 also can be used to
determine the two values of fyα.

It may be desirable to select resilient
element locations ax, ay , az which will
produce coupled natural frequencies in
specified frequency ranges, with resilient
elements having specified stiffness ratios
kx /kz, ky /kz. For this purpose it is conve-
nient to plot solutions of Eq. (3.40) in the
form shown in Figs. 3.17 to 3.19. These
plots are termed space-plots and their
use is illustrated in Example 3.1.8

The space-plots are derived as fol-
lows: In general, the two roots of Eq.
(3.40) are numerically different, one
usually being greater than unity and the
other less than unity. Designating the
root associated with the positive sign
before the radical (higher value) as fh /fz ,
Eq. (3.40) may be written in the follow-
ing form:

+ = 1

(3.40a)

Equation (3.40a) is shown graphically
by the large ellipses about the center of
Figs. 3.17 to 3.19, for stiffness ratios kx/kz
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FIGURE 3.15 Example of a rigid body on
orthogonal resilient supporting elements with
two planes of symmetry. The XZ and YZ planes
are planes of symmetry since the four resilient
supporting elements are identical and are located
symmetrically about the Z axis. The conditions
satisfied are Eqs. (3.33), (3.34), (3.35), and (3.38).
At any single frequency, coupled vibration in the
xc, β direction due to X vibration of the founda-
tion is equivalent to a pure rotation of the rigid
body with respect to an axis of rotation as shown.
Points 1, 2, and 3 refer to the example of Fig. 3.26.



of 1⁄2, 1, and 2, respectively.A particular type of resilient element tends to have a con-
stant stiffness ratio kx/kz; thus, Figs. 3.17 to 3.19 may be used by cut-and-try methods
to find the coordinates ax, az of such elements to attain a desired value of fh.

Designating the root of Eq. (3.40) associated with the negative sign (lower value)
by fl, Eq. (3.40) may be written as follows:

− = 1 (3.40b)
(az/ρy)2

��
1 − (kz/kx)( fl /fz)2

(ax/ρy)2

�
( f2 /fx)2
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FIGURE 3.16 Curves showing the ratio of each of the two coupled
natural frequencies fxβ to the decoupled natural frequency fz , for motion
in the XZ plane of symmetry for the system in Fig. 3.15 [see Eq. (3.40)].
Calculate the abscissa (ρy/ax) �k�x /�k�z� and the parameter az/ρy , where ax,
az are indicated in Fig. 3.15; kx , kz are the stiffnesses of the resilient sup-
porting elements in the X, Z directions, respectively; and ρy is the radius
of gyration of the body about the Y axis. The two values read from the
ordinate when divided by ρy /ax give the natural frequency ratios fxβ /fz.



Equation (3.40b) is shown graphically by the family of hyperbolas on each side of
the center in Figs. 3.17 to 3.19, for values of the stiffness ratio kx/kz of 1⁄2, 1, and 2.

The two roots fh/fz and fl/fz of Eq. (3.40) may be expressed as the ratio of one to
the other. This relationship is given parametrically as follows:

�2 ± � � + 	
2

+ � 2 
2

= 1 (3.40c)

� � − 	 −

Equation (3.40c) is shown graphically by the smaller ellipses (shown dotted) dis-
placed from the vertical center line in Figs. 3.17 to 3.19.

Example 3.1. A rigid body is symmetrical with respect to the XZ plane; its
width in the X direction is 13 in. and its height in the Z direction is 12 in. The center
of gravity is 51⁄2 in. from the lower side and 63⁄4 in. from the right side. The radius of
gyration about the Y axis through the center of gravity is 5.10 in. Use a space-plot to
evaluate the effects of the location for attachment of resilient supporting elements
having the characteristic stiffness ratio kx/kz = 1⁄2.
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FIGURE 3.17 Space-plot for the system in Fig. 3.15 when the stiffness ratio kx/kz = 0.5,
obtained from Eqs. (3.40a) to (3.40c). With all dimensions divided by the radius of gyration ρy

about the Y axis, superimpose the outline of the rigid body in the XZ plane on the plot; the cen-
ter of gravity of the body is located at the coordinate center of the plot. The elastic centers of
the resilient supporting elements give the natural frequency ratios fl/fz, fh/fz, and fh/fl for xc, β
coupled motion, each ratio being read from one of the three families of curves as indicated on
the plot. Replacing kx, ρy, ax with ky, ρx, ay, respectively, allows the plot to be applied to motions
in the YZ plane.



Superimpose the outline of the body on the space-plot of Fig. 3.20, with its center
of gravity at the coordinate center of the plot. (Figure 3.20 is an enlargement of the
central portion of Fig. 3.17.) All dimensions are divided by the radius of gyration ρy .
Thus, the four corners of the body are located at coordinate distances as follows:

Upper right corner:

= = +1.28 = = +1.32

Upper left corner:

= = +1.28 = = −1.23

Lower right corner:

= = −1.08 = = +1.32

Lower left corner:

= = −1.08 = = −1.23
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FIGURE 3.18 Space-plot for the system in Fig. 3.15 when the stiffness ratio kx /kz = 1. See cap-
tion for Fig. 3.17.



The resilient supports are shown in heavy outline at A in Fig. 3.20, with their elastic
centers indicated by the solid dots. The horizontal coordinates of the resilient sup-
ports are ax/ρy = ±0.59, or ax = ±0.59 × 5.10 = ±3 in. from the vertical coordinate axis.
The corresponding natural frequencies are fh /fz = 1.25 (from the ellipses) and fl /fz =
0.33 (from the hyperbolas). An alternative position is indicated by the hollow cir-
cles B. The natural frequencies for this position are fh /fz = 1.43 and fl /fz = 0.50. The
natural frequency fz in vertical translation is found from the mass of the equipment
and the summation of stiffnesses in the Z direction, using Eq. (3.37). This example
shows how space-plots make it possible to determine the locations of the resilient
elements required to achieve given values of the coupled natural frequencies with
respect to fz.

THREE PLANES OF SYMMETRY WITH ORTHOGONAL RESILIENT

SUPPORTS

A system with three planes of symmetry is defined by six independent equations of
motion.A system having this property is sometimes called a center-of-gravity system.
The equations are derived from Eqs. (3.31) by substituting, in addition to the condi-
tions of Eqs. (3.33), (3.34), (3.35), and (3.38), the following condition:

Σkxx az = Σkyy az = 0 (3.41)
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FIGURE 3.19 Space-plot for the system in Fig. 3.15 when the stiffness ratio kx/kz = 2. See cap-
tion for Fig. 3.17.



The resulting six independent equations define six uncoupled modes of vibration,
three in translation and three in rotation. The natural frequencies are:

Translation along X axis:

fx = �
Translation along Y axis:

fy = �
Translation along Z axis:

fz = � Σkz�
m
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FIGURE 3.20 Enlargement of the central portion of Fig. 3.17 with the outline of the rigid body dis-
cussed in Example 3.1.



Rotation about X axis:

fα = � (3.42)

Rotation about Y axis:

fβ = �
Rotation about Z axis:

fγ = �

TWO PLANES OF SYMMETRY

WITH RESILIENT SUPPORTS

INCLINED IN ONE PLANE ONLY

When the principal elastic axes of the
resilient supporting elements are in-
clined with respect to the X, Y, Z axes,
the stiffness coefficients kxy , kxz , kyz are
nonzero. This introduces elastic cou-
pling, which must be considered in eval-
uating the equations of motion. Two
planes of symmetry may be achieved by
meeting the conditions of Eqs. (3.33),
(3.35), and (3.38). For example, consider
the rigid body supported by four identi-
cal resilient supporting elements located
symmetrically about the Z axis, as
shown in Fig. 3.21. The XZ and the YZ
planes are planes of symmetry, and the
resilient elements are inclined toward
the YZ plane so that one of their princi-
pal elastic axes R is inclined at the angle
φ with the Z direction as shown; hence
kyy = kq, and kxy = kyz = 0.

Because of symmetry, translational
motion zc in the Z direction and rotation
γ about the Z axis are each decoupled
from the other modes.The pairs of trans-
lational and rotational modes in the xc, β
and yc, α coordinates are coupled. The
natural frequency in the Z direction is

= � sin2 φ + cos2 φ (3.43)

where fr is a fictitious natural frequency used for convenience only; it is related to
Eq. (3.37) wherein 4kr is substituted for Σkz:
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FIGURE 3.21 Example of a rigid body on
resilient supporting elements inclined toward
the YZ plane. The resilient supporting elements
are identical and are located symmetrically
about the Z axis, making XZ and YZ planes of
symmetry. The principal stiffnesses in the XZ
plane are kp and kr . The conditions satisfied are
Eqs. (3.33), (3.35), and (3.38).



fr = �
Equation (3.43) is plotted in Fig. 3.22, where the angle φ is indicated by the upper of
the abscissa scales.

The rotational natural frequency about the Z axis is obtained from

= �� cos2 φ + sin2 φ	 � 	2
+ � 	2

(3.44)

For the xc , β coupled mode, the two natural frequencies are

= �A ± �A2 − 4 � 	2 (3.45)

where A = � cos2 φ + sin2 φ	�1 + � 	
2 + � sin2 φ + cos2 φ	� 	2

+ 2�1 − 	
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FIGURE 3.22 Curves showing the ratio of the decoupled natural frequency
fz of translation zc to the fictitious natural frequency fr for the system shown in
Fig. 3.21 [see Eq. (3.43)] when the resilient supporting elements are inclined at
the angle φ. The curves also indicate the ratio of the decoupled natural fre-
quency fx of translation xc to fr when φ has a value φ′ (use lower abscissa scale)
which decouples xc, β motions [see Eqs. (3.47) and (3.48)].



For the yc, α coupled mode, the natural frequencies are

= �B ± �B2 − 4 � sin2 φ + cos2 φ	� 	2 (3.46)

where B = �1 + � 	2 + � sin2 φ + cos2 φ	� 	2

DECOUPLING OF MODES IN A PLANE USING 

INCLINED RESILIENT SUPPORTS

The angle φ of inclination of principal elastic axes (see Fig. 3.21) can be varied to
produce changes in the amount of coupling between the xc and β coordinates.
Decoupling of the xc and β coordinates is effected if


 
 = (3.47)

where φ′ is the value of the angle of inclination φ required to achieve decoupling.
When Eq. (3.47) is satisfied, the configuration is sometimes called an “equivalent
center-of-gravity system” in the YZ plane since all modes of motion in that plane are
decoupled. Figure 3.23 is a graphical presentation of Eq. (3.47). There may be two
values of φ′ that decouple the xc and β modes for any combination of stiffness and
location for the resilient supporting elements.

The decoupled natural frequency for translation in the X direction is obtained from

= � cos2 φ′ + sin2 φ′ (3.48)

The relation of Eq. (3.48) is shown graphically in Fig. 3.22 where the angle φ′ is indi-
cated by the lower of the abscissa scales. The natural frequency in the β mode is
obtained from

= � (3.49)

COMPLETE DECOUPLING OF MODES USING 

RADIALLY INCLINED RESILIENT SUPPORTS

In general, the analysis of rigid-body motion with the resilient supporting elements
inclined in more than one plane is quite involved. A particular case where sufficient
symmetry exists to provide relatively simple yet useful results is the configuration
illustrated in Fig. 3.24. From symmetry about the Z axis, Ixx = Iyy. Any number n of
resilient supporting elements greater than 3 may be used. For clarity of illustration,
the rigid body is shown as a right circular cylinder with n = 3.

The resilient supporting elements are arranged symmetrically about the Z axis;
they are attached to one end face of the cylinder at a distance ar from the Z axis and
a distance az from the XY reference plane.The resilient elements are inclined so that
their principal elastic axes R intersect at a common point on the Z axis; thus, the angle
between the Z axis and the R axis for each element is φ. The principal elastic axes P
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also intersect at a common point on the Z axis, the angle between the Z axis and the
P axis for each element being 90° − φ. Consequently, the Q principal elastic axes are
each tangent to the circle of radius ar which bounds the end face of the cylinder.

The use of such a configuration permits decoupling of all six modes of vibration
of the rigid body. This complete decoupling is achieved if the angle of inclination φ
has the value φ′ which satisfies the following equation:


 
 = (3.50)
(1⁄2)[1 − (kp/kr)] sin 2φ′

����
(kq/kr) + (kp/kr) + [1 − (kp/kr)] sin2φ′

az�
ar
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FIGURE 3.23 Curves showing the angle of inclination φ′ of the resilient
elements which achieves decoupling of the xc , β motions in Fig. 3.21 [see
Eq. (3.47)]. Calculate the ordinate |az /ax| and with the stiffness ratio kp /kr

determine two values of φ′ for which decoupling is possible. Decoupling is
not possible for a particular value of kp /kr if |az /ay| has a value greater than
the maximum ordinate of the kp /kr curve.



Since complete decoupling is effected, the system may be termed an “equivalent
center-of-gravity system.”9, 10 The natural frequencies of the six decoupled modes are

= = � � cos2 φ′ + sin2 φ′ + 	 (3.51)

= = � � sin φ′ � sin φ′ + cos φ′	 + cos φ′ � cos φ′ − sin φ′	�1/2

(3.52)

= � (3.53)

The frequency ratio fz/fr is given by Eq.
(3.43) or Fig. 3.22. The fictitious natural
frequency fr is given by

fr = (1/2π)��nkr /m

Similar solutions are also available for
the configuration of four resilient sup-
ports located in a rectangular array and
inclined to achieve complete decou-
pling.11

FORCED VIBRATION

Forced vibration results from a continu-
ing excitation that varies sinusoidally
with time.The excitation may be a vibra-
tory displacement of the foundation for
the resiliently supported rigid body
( foundation-induced vibration), or a
force or moment applied to or gener-
ated within the rigid body (body-
induced vibration). These two forms of
excitation are considered separately.

FOUNDATION-INDUCED SINUSOIDAL VIBRATION

This section includes an analysis of foundation-induced vibration for two different
systems, each having two planes of symmetry. In one system, the principal elastic
axes of the resilient elements are parallel to the X,Y, Z axes; in the other system, the
principal elastic axes are inclined with respect to two of the axes but in a plane par-
allel to one of the reference planes. The excitation is translational movement of the
foundation in its own plane, without rotation. No forces or moments are applied
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FIGURE 3.24 Example of a rigid cylindrical
body on radially inclined resilient supports. The
resilient supports are attached symmetrically
about the Z axis to one end face of the cylinder
at a distance ar from the Z axis and a distance az

from the XY plane. The resilient elements are
inclined so that their principal elastic axes R and
P intersect the Z axis at common points. The
angle between the R axes and the Z axis is φ;
and the angle between the P axis and Z axis is
90° − φ.The Q principal elastic axes are each tan-
gent to the circle of radius ar.



directly to the rigid body; that is, in the equations of motion [Eqs. (3.31)], the follow-
ing terms are equal to zero:

Fx = Fy = Fz = Mx = My = Mz = a = b = g = 0 (3.54)

Two Planes of Symmetry with Orthogonal Resilient Supports. The system is
shown in Fig. 3.15.The excitation is a motion of the foundation in the direction of the
X axis defined by u = u0 sin ωt. (Alternatively, the excitation may be the displace-
ment v = v0 sin ωt in the direction of the Y axis, and analogous results are obtained.)
The resulting motion of the resiliently supported rigid body involves translation xc

and rotation β simultaneously. The conditions of symmetry are defined by Eqs.
(3.33), (3.34), (3.35), and (3.38); these conditions decouple Eqs. (3.31) so that only
Eqs. (3.31a) and (3.31d), and Eqs. (3.31b) and (3.31c), remain coupled. Upon substi-
tuting u = u0 sin ωt as the excitation, the response in the coupled modes is of a form
xc = xc0 sin ωt, β = β0 sin ωt where xc0 and β0 are related to u0 as follows:

xc 0
=

�� 	2
− � 	2

u0 � 	4

− � + � 	2

+ � 	2� 	2

+ � 	2
(3.55)

β0
=

− � 	2

(3.56)
u0 /ρy � 	4

− � + � 	2

+ � 	2� 	2

+ � 	2

where fz = �4�k�z/�m� in accordance with Eq. (3.37). A similar set of equations

applies for vibration in the coupled yc , α coordinates.There is no response of the sys-
tem in the zc or γ modes since there is no net excitation in these directions; that is, Fz

and Mz are zero.
As indicated by Eqs. (3.1), the displacement at any point in a rigid body is the sum

of the displacement at the center of gravity and the displacements resulting from
motion of the body in rotation about axes through the center of gravity. Equations

(3.55) and (3.56) together with analo-
gous equations for yc0, α 0 provide the
basis for calculating these displace-
ments. Care should be taken with phase
angles, particularly if two or more exci-
tations u, v, w exist concurrently.

At any single frequency, coupled
vibration in the xc , β modes is equivalent
to a pure rotation of the rigid body with
respect to an axis parallel to the Y axis,
in the YZ plane and displaced from the
center of gravity of the body (see Fig.
3.15).As a result, the rigid body has zero
displacement x in the horizontal plane
containing this axis. Therefore, the Z
coordinate of this axis bz′ satisfies xc 0 +
bz′β0 = 0, which is obtained from the first
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FIGURE 3.25 Curve showing the position of
the axis of pure rotation of the rigid body in Fig.
3.15 as a function of the frequency ratio f/fz when
the excitation is sinusoidal motion of the foun-
dation in the X direction [see Eq. (3.57)]. The
axis of rotation is parallel to the Y axis and in the
XZ plane, and its coordinate along the Z axis is
designated by bz′.



of Eqs. (3.1) by setting xb = 0 (γ0 motion is not considered). Substituting Eqs. (3.55)
and (3.56) for xc 0 and β0, respectively, the axis of rotation is located at

= (3.57)

Figure 3.25 shows the relation of Eq. (3.57) graphically. At high values of frequency
f /fz, the axis does not change position significantly with frequency; bz′ /ρy approaches
a positive value as f /fz becomes large, since az is negative (see Fig. 3.15).

When the resilient supporting elements have damping as well as elastic properties,
the solution of the equations of motion [see Eq. (3.31a)] becomes too laborious for
general use. Responses of systems with damping have been obtained for several typi-
cal cases using a digital computer. Figures 3.26 A, B, and C show the response at three
points in the body of the system shown in Fig. 3.15, with the excitation u = u0 sin ωt.
The weight of the body is 45 lb; each of the four resilient supporting elements has 
a stiffness kz = 1,050 lb/in. and stiffness ratios kx/kz = ky/kz = 1⁄2. The critical damping
coefficients in the X, Y, Z directions are taken as ccx = 2�4�k�xm�, ccy = 2�4�k�ym�, ccz =
2�4�k�zm�, respectively, where the expression for ccz follows from the single-degree-
of-freedom case defined by Eq. (2.12). The fractions of critical damping are cx/ccx =

(ax/ρy)2 − (f /fz)2

��
(az/ρy)(f /fz)2

bz′�
ρy
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FIGURE 3.26A Response curves for point 1 with damping in the resilient supports in the system
shown in Fig. 3.15. The response is the ratio of the amplitude at point 1 of the rigid body in the X
direction to the amplitude of the foundation in the X direction (x0/u0). The fraction of critical
damping c/cc is the same in the X, Y, Z directions.



cy /ccy = cz/ccz = c/cc , the parameter of the curves in Figs. 3.26A, B, and C. Coordinates
locating the resilient elements are ax = ±5.25 in., ay = ±3.50 in., and az = −6.50 in. The
radii of gyration with respect to the X, Y, Z axes are ρx = 4.40 in., ρy = 5.10 in., and 
ρz = 4.60 in.

Natural frequencies calculated from Eqs. (3.37) and (3.40) are fz = 30.0 Hz;
fxβ = 43.7 Hz, 15.0 Hz; and fyα = 43.2 Hz, 11.7 Hz. The fraction of critical damping 
c/cc varies between 0 and 0.25. Certain characteristic features of the response curves
in Figs. 3.26A, B, and C are:

1. The relatively small response at the frequency of 24.2 Hz in Fig. 3.26C occurs
because point 3 lies near the axis of rotation of the rigid body at that frequency. Point 2
lies near the axis of rotation at higher frequencies, and the response becomes corre-
spondingly low, as shown in Fig. 3.26B. The position of the axis of rotation changes rap-
idly for small changes of frequency in the low- and intermediate-frequency range
(indicated by the sharp dip in the curves for small damping in Fig. 3.26C) and varies
asymptotically toward a final position as the forcing frequency increases (see Fig.
3.25).

2. The effect of damping on the magnitude of the response at the higher and
lower natural frequencies in coupled modes is illustrated. When the fraction of crit-
ical damping is between 0.01 and 0.10, the response at the lower of the coupled nat-
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FIGURE 3.26B Response curves at point 2 in the system shown in Fig. 3.15. See caption for
Fig. 3.26A.



ural frequencies is approximately 10 times as great as the response at the higher of
the coupled natural frequencies.With greater damping (c/cc ≥ 0.15), the effect of res-
onance in the vicinity of the higher coupled natural frequency becomes so slight as
to be hardly discernible.

Two Planes of Symmetry with Resilient Supports Inclined in One Plane Only.
The system is shown in Fig. 3.21, and the excitation is u = u0 sin ωt. The conditions of
symmetry are defined by Eqs. (3.33), (3.35), and (3.38). The response is entirely in
the xc , β coupled mode with the following amplitudes:

xc0
=

� 	2
− � cos2 φ + sin2 φ	� 	2

u0 � 	4

− A� 	2

+ � 	2

(3.58)

β0
=

−�� cos2 φ + sin2 φ	� 	 + �1 − 	
 
 sin φ cos φ� 	2

u0/ρy � 	4

− A� 	2

+ � 	2

where A is defined after Eq. (3.45). A similar set of expressions may be written for
the response in the yc , α coupled mode when the excitation is the motion v = v0

sin ωt of the foundation:

yc 0
=

� sin2 φ + cos2 φ	� 	2
− � 	2

v0 � 	4
− B� 	2

+ � sin2 φ + cos2 φ	� 	
(3.59)

α0
� 	2

v0/ρx
=
� 	4

− B� 	2
+ � sin2 φ + cos2 φ	� 	

where B is defined after Eq. (3.46). No motion occurs in the zc or γ mode since the
quantities Fz and Mz are zero in Eqs. (3.31e) and (3.31f ).

Response curves for the system shown in Fig. 3.21 when damping is included are
qualitatively similar to those shown in Figs. 3.26.The significant advantage in the use
of inclined resilient supports is the additional versatility gained from the ability to
vary the angle of inclination φ, which directly affects the degree of coupling in the xc ,
β coupled mode. For example, a change in the angle φ produces a change in the posi-
tion of the axis of pure rotation of the rigid body. In a manner similar to that used to
derive Eq. (3.57), Eqs. (3.58) yield the following expression defining the location of
the axis of rotation:

bz′ � 	2
− � cos2 φ + sin2 φ	� 	2

ρy
=
�� cos2 φ + sin2 φ	 + �1 − 	 
 
 sin φ cos φ� 	2 (3.60)f
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BODY-INDUCED SINUSOIDAL VIBRATION

This section includes the analysis of a resiliently supported rigid body wherein the
excitation consists of forces and moments applied directly to the rigid body (or orig-
inating within the body). The system has two planes of symmetry with orthogonal
resilient supports; the modal coupling and natural frequencies for such a system are
considered above. Two types of excitation are considered: (1) a force rotating about
an axis parallel to one of the principal inertial axes and (2) an oscillatory moment
acting about one of the principal inertial axes. There is no motion of the foundation
that supports the resilient elements; thus, the following terms in Eqs. (3.31) are equal
to zero:

u = v = w = a = b = g = 0 (3.61)

Two Planes of Symmetry with Orthogonal Resilient Elements Excited by a
Rotating Force. The system excited by the rotating force is illustrated in Fig. 3.27.
The force F0 rotates at frequency ω about an axis parallel to the Y axis but spaced
therefrom by the coordinate distances dx, dz ; the force is in the XZ plane.The forces
and moments applied to the body by the rotating force F0 are
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FIGURE 3.26C Response curves at point 3 in the system shown in Fig. 3.15. See caption for
Fig. 3.26A.



Fx = F0 cos ωt Mx = 0

Fy = 0 My = F0(dz cos ωt − dx sin ωt) (3.62)

Fz = F0 sin ωt Mz = 0

The conditions of symmetry are defined by Eqs. (3.33), (3.34), (3.35), and (3.38); and
the excitation is defined by Eqs. (3.61) and (3.62). Substituting these conditions into
the equations of motion, Eqs. (3.31) show that vibration response is not excited in the
coupled yc , α mode or in the γ mode. In the Z direction, the motion zc 0 of the body
and the force Ftz transmitted through the resilient elements can be found from Eq.
(2.30) and Fig. 2.17 since single-degree-of-freedom behavior is involved. The hori-
zontal displacement amplitude xc 0 of the center of gravity in the X direction and the
rotational displacement amplitude β0 about the Y axis are given by

xc 0 kx
�� � − 	 + � 	2

− � 	22
+ � 2

F0 /4kx
=

kz � 	
4

− � + � 	
2

+ � 	
2

� 	
2

+ � 	
2

(3.63)
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FIGURE 3.27 Example of a rigid body on orthogonal resilient supports with
two planes of symmetry, excited by body-induced sinusoidal excitation. Alter-
native excitations are (1) the force F0 in the XZ plane rotating with angular
velocity ωt about an axis parallel to the Y axis and (2) the oscillatory moment
M0 sin ωt acting about the Y axis.There is no motion of the foundation that sup-
ports the resilient elements.



where ax, az are location coordinates of the resilient supports, and

fz = � (3.64)

The amplitude of the oscillating force Ftx in the X direction and the amplitude of the
oscillating moment Mty about the Y axis which are transmitted to the foundation by
the combination of resilient elements are

Ftx = 4kx �xc 0
2 − 2azxc 0β0 cos (φx − φβ) + az

2β0
2

(3.65)
Mty = 4kzax

2β0

where Ftx is the sum of the forces transmitted by the individual resilient elements
and Mty is a moment formed by forces in the Z direction of opposite sign at opposite
resilient supports. The angles φx and φβ are defined by

tan φx =
� − 	 + � 	

2
− � 	

2

[0° ≤ φx ≤ 360°]

tan φβ =
� − 	 + � 	2

[0° ≤ φβ ≤ 360°]

� − � 	
2

To obtain the correct value of (φx − φβ) in Eq. (3.65), the signs of the numerator and
denominator in each tangent term must be inspected to determine the proper quad-
rant for φx and φβ.

Example 3.2. Consider an electric motor which has an unbalanced rotor, creat-
ing a centrifugal force. The motor weighs 3750 lb and has a radius of gyration ρy =
9.10 in.The distances dx = dy = dz = 0; that is, the axis of rotation is the Y principal axis
and the center of gravity of the rotor is in the XZ plane. The resilient supports each
have a stiffness ratio of kx/kz = 1.16, and are located at az = −14.75 in., ax = ±12.00 in.
The resulting displacement amplitudes of the center of gravity, expressed dimen-
sionlessly, are shown in Fig. 3.28; the force and moment amplitudes transmitted to
the foundation, expressed dimensionlessly, are shown in Fig. 3.29.The displacements
of the center of gravity of the body are dimensionalized with respect to the dis-
placements at zero frequency:

zc 0(0) =

xc 0(0) = �1 + � 	2 (3.66)

β0(0) = � 	2

At excitation frequencies greater than the higher natural frequency of the xc , β cou-
pled motion, the displacements, forces, and moment all continuously decrease as the
frequency increases.
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Two Planes of Symmetry with Orthogonal Resilient Elements Excited by an
Oscillating Moment. Consider the oscillatory moment M0 acting about the Y axis
with forcing frequency ω. The resulting applied forces and moments acting on the
body are

My = M0 sin ωt

Fx = Fy = Fz = Mx = Mz = 0
(3.67)

Substituting conditions of symmetry defined by Eqs. (3.33), (3.34), (3.35), and (3.38),
and the excitation defined by Eqs. (3.61) and (3.67), the equations of motion [Eqs.
(3.31)] show that oscillations are excited only in the xc , β coupled mode. Solving for
the resulting displacements,

xc 0
� 	2

M0 /4kxρy

=

� 	4
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+ � 	2� 	2
+ � 	2

(3.68)
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FIGURE 3.28 Response curves for the system shown in Fig. 3.27 when excited by a rotating force
F0 acting about the Y axis. The parameters of the system are kx /kz = 1.16, ax /ρy = ±1.32, az /ρy = −1.62.
Only xc , zc , β displacements of the body are excited [see Eqs. (3.63)].The displacements are expressed
dimensionlessly by employing the displacements at zero frequency [see Eqs. (3.66)].



The amplitude of the oscillating force Ftx in the X direction and the amplitude of
the oscillating moment Mty about the Y axis transmitted to the foundation by the
combination of resilient supports are

Ftx = 4kx(xc 0 − azβ0)

Mty = 4kzax
2β0

(3.69)

where Ftx and Mty have the same meaning as in Eqs. (3.65). Low vibration transmis-
sion of force and moment to the foundation is decreased at the higher frequencies in
a manner similar to that shown in Fig. 3.29.

FOUNDATION-INDUCED VELOCITY SHOCK

Discussions of and data for foundation-induced velocity shock may be obtained
from Chap. 3 in the first through the fifth editions of this handbook.
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CHAPTER 4
NONLINEAR VIBRATION

C. Nataraj

Fredric Ehrich

INTRODUCTION

A vast body of scientific knowledge has been developed over a long period of time
devoted to a description of natural phenomena. In the field of mechanics, rapid
progress in the past two centuries has occurred, due in large measure to the ability
of investigators to represent physical laws in terms of rather simple equations. In
many cases the governing equations were not so simple; therefore, certain assump-
tions, more or less consistent with the physical situation, were employed to reduce
the equations to types more easily soluble. Thus, the process of linearization has
become an intrinsic part of the rational analysis of physical problems. An analysis
based on linearized equations, then, may be thought of as an analysis of a corre-
sponding but idealized problem.

In many instances the linear analysis is insufficient to describe the behavior of
the physical system adequately. In fact, one of the most fascinating features of a
study of nonlinear problems is the occurrence of new and totally unsuspected phe-
nomena; i.e., new in the sense that the phenomena are not predicted, or even hinted
at, by the linear theory. On the other hand, certain phenomena observed physically
are unexplainable except by giving due consideration to nonlinearities present in
the system.

The branch of mechanics that has been subjected to the most intensive attack
from the nonlinear viewpoint is the theory of vibration of mechanical and electrical
systems. Other branches of mechanics, such as incompressible and compressible
fluid flow, elasticity, plasticity, and wave propagation also have been studied as non-
linear problems, but the greatest progress has been made in treating vibration of
nonlinear systems.The systems treated in this chapter are systems with a finite num-
ber of degrees of freedom which can be defined by a finite number of simultaneous
ordinary differential equations; on the other hand, the mechanics of continua
involves partial differential equations. Nonlinear ordinary differential equations are
easier to handle than nonlinear partial differential equations. An interesting survey
of the entire realm of nonlinear mechanics is given in Ref. 1.

This chapter provides information concerning features of nonlinear vibration
theory likely to be encountered in practice and methods of nonlinear vibration
analysis which find ready application.

4.1



EXAMPLES OF SYSTEMS POSSESSING

NONLINEAR CHARACTERISTICS

SIMPLE PENDULUM

As a first example of a system possessing nonlinear characteristics, consider a simple
pendulum of length l having a bob of mass m, as shown in Fig. 4.1. The well-known
differential equation governing free vibration is

ml2θ̈ + mglθ = 0 (4.1)

This equation holds only for small oscillations about the position of equilibrium since
the actual restoring moment is characterized by the quantity sin θ. Equation (4.1) thus
employs the assumption sin θ � θ.The exact, but nonlinear, equation of motion is

ml2θ̈ + mgl sin θ = 0 (4.2)

SIMPLE SPRING-MASS SYSTEM

A simple spring-mass system, as shown in Fig. 4.2, is characterized by the equation

mẍ + kx = 0

This equation is based on the assumption that the elastic spring obeys Hooke’s law;
i.e., the characteristic curve of restoring force versus displacement is a straight line.
However, many materials do not exhibit such a linear characteristic. Further, in the
case of a simple coil spring, a deviation from linearity occurs at large compression as
the coils begin to close up, or conversely, when the extension becomes so great that
the coils begin to lose their individual identity. In either case, the spring exhibits a
characteristic such that the restoring force increases more rapidly than the displace-
ment. Such a characteristic is called hardening. In a similar manner, certain systems
(e.g., a simple pendulum) exhibit a softening characteristic. Both types of character-
istic are shown in Fig. 4.3.A simple system with either softening or hardening restor-
ing force may be described approximately by an equation of the form

mẍ + k(x ± μ2x3) = 0

where the upper sign refers to the hardening characteristic and the lower to the soft-
ening characteristic.
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FIGURE 4.1 Simple pendulum. FIGURE 4.2 Simple spring-mass system.



It is possible for a system with only
linear components to exhibit nonlinear
characteristics, by snubber action for
example, as shown in Fig. 4.4. A system
undergoing vibration of small amplitude
also may exhibit nonlinear characteris-
tics; for example, in the pendulum shown
in Fig. 4.5, the length depends on the
amplitude.

STRETCHED STRING WITH

CONCENTRATED MASS

The large-amplitude vibration of a
stretched string with a concentrated
mass, as shown in Fig. 4.6, offers another

example of a nonlinear system. The governing nonlinear differential equation is,
approximately,
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FIGURE 4.3 Restoring force characteristic
curves for linear, hardening, and softening vibra-
tion systems.

FIGURE 4.4 Nonlinear mechanical system with snubber
action showing piecewise linear restoring force characteristic
curve.

FIGURE 4.5 Pendulum with nonlinear char-
acteristic resulting from dependence of length
on vibration amplitude.

FIGURE 4.6 Vibration of a weighted string as
an example of a nonlinear system.



mẅ + F0 � 	 w + (SE − F0) � 	 w3 = 0

where F0 is the initial tension, S is the cross-sectional area, and E is the elastic mod-
ulus of the string. Consider now the special case of a = b and denote the unstretched
length of the half string by l0. Then the initial tension and the restoring force
become

F0 = SE � 	
Fr � SE �2� − 1	� 	 + �2 − 	� 	3

An interesting feature of this system is that it exhibits a wide variety of either harden-
ing or softening characteristics, depending upon the value of a/l0, as shown in Fig. 4.7.

SYSTEM WITH VISCOUS

DAMPING

The foregoing examples all involve non-
linearities in the elastic components,
either as a result of appreciable ampli-
tudes of vibration or as a result of pecu-
liarities of the elastic element. Consider
a simple spring-mass system which also
includes a dashpot. The usual assump-
tions pertaining to this system are that
the spring is linear and that the motion is
sufficiently slow that the viscous resis-
tance provided by the dashpot is pro-
portional to the velocity; therefore, the
governing equation of motion is linear.
Frequently, the dashpot resistance is

more correctly expressed by a term proportional to the square of the velocity. Fur-
ther, the resistance is always such as to oppose the motion; therefore, the nonlinear
equation of motion may be written

mẍ + c|ẋ|ẋ + kx = 0

BELT FRICTION SYSTEM

The system shown in Fig. 4.8A involves a nonlinearity depending upon the dry fric-
tion between the mass and the moving belt.The belt has a constant speed v0, and the
applicable equation of motion is

mẍ + F(ẋ) + kx = 0

where the friction force F(ẋ) is shown in Fig. 4.8B. For large values of displacement,
the damping term is positive, has positive slope, and removes energy from the sys-
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FIGURE 4.7 Restoring force characteristics
for the weighted string shown in Fig. 4.6.



tem; for small values of displacement, the damping term is negative, has negative
slope, and actually puts energy into the system. Even though there is no external
stimulus, the system can have an oscillatory solution, and thus corresponds to a non-
linear self-excited system. (See Chap. 5.)

SYSTEMS WITH ASYMMETRIC STIFFNESS

The aforementioned examples of nonlinear stiffness, typified by the stiffness varia-
tions in Figs. 4.3, 4.4, and 4.7, all may be characterized as symmetric.That is, the vari-
ation in the absolute value of the restoring force with displacement in the positive
direction is identical to the variation in the absolute value of the restoring force with
displacement in the negative direction.As will be seen in the following sections, sym-
metric stiffness distributions result in changes in the shape of the resonant peak of
the response curve and slight distortion in the waveform of the dynamic motion
without changing the basic synchronism between forcing function and response. But
many more diverse phenomena and much more profound changes are encountered
when dealing with asymmetric stiffness distributions.

A typical physical situation is encountered in the dynamics of rotating machinery
where a softly mounted rotor is located eccentrically within the small clearance of a
motion-limiting stiff stator as illustrated in Fig. 4.9A and C. When rotating with some
unbalance in the rotor, the vertical component of the unbalance force will cause
intermittent local contact with the stiff stator, resulting in a “bouncing” motion of
the rotor.The stiffness characteristic for the vertical motion is asymmetric. In its sim-
plest form, it may be represented as a bilinear relationship—very soft for vertical
motion in the upward direction and very stiff for vertical motion in the downward
direction, as illustrated in Fig. 4.9B. More explicitly,

k = K1 x > 0

k = K2 x < 0

Many other examples of nonlinear systems are given in the references of this
chapter.
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FIGURE 4.8A Belt friction system which ex-
hibits self-excited vibration.

FIGURE 4.8B Damping force characteristic
curve for the belt friction system shown in Fig.
4.8A.



DESCRIPTION OF NONLINEAR PHENOMENA

This section describes briefly, largely in nonmathematical terms, certain of the more
important features of nonlinear vibration. Further details and methods of analysis
are given later.

FREE VIBRATION

Insofar as the free vibration of a system is concerned for systems with symmetric stiff-
ness distributions, one distinguishing feature between linear and nonlinear behavior is
the dependence of the period of the motion in nonlinear vibration on the amplitude.
For example, the simple pendulum of Fig. 4.1 may be analyzed on the basis of the lin-
earized equation of motion, Eq. (4.1), from which it is found that the period of the
vibration is given by the constant value τo = 2π/ωn.An analysis on the basis of the non-
linear equation of motion, Eq. (4.2), leads to an expression for the period of the form

= 1 + 1⁄4(U)2 + 9⁄64(U)4 + 25⁄256(U)6 + . . . (4.3)

where U is related to the amplitude of the vibration Θ by the relation U = sin (Θ/2).
The linear solution thus corresponds to the first term of Eq. (4.3).The dependence of
the period of vibration on amplitude is shown in Fig. 4.10. Systems in which the period
of vibration is independent of the amplitude are called isochronous, while those in
which the period τ is dependent on the amplitude are called nonisochronous.

The dependence of period on amplitude also may be seen from the vibration
trace shown in Fig. 4.11, which corresponds to a solution of the equation

mẍ + c ẋ + k(x + μ2x3) = 0

For systems with asymmetric stiffness distributions, free undamped vibration
will display significant distortion of the natural waveform. The simple bilinear stiff-
ness distribution of Fig. 4.9B will result in the system having a simple harmonic half

τ
�
τo
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FIGURE 4.9 Nonlinear spring characteristic of a rotor operating with local intermittent con-
tact in a clearance.



cycle at relatively low frequency for upward motion and a simple harmonic half
cycle at relatively high frequency for downward motion. The overall waveform is
then a combination of these two disparate half cycles as represented in Fig. 4.9D
and suggests a bouncing motion.

RESPONSE CURVES FOR FORCED VIBRATION OF SYSTEMS 

WITH SYMMETRIC STIFFNESS

Representations of vibration behavior in the form of curves of response amplitude
versus exciting frequency are called response curves. The response curves for an
undamped linear system acted on by a harmonic exciting force of amplitude p and
frequency ω may be derived from the equation of motion

ẍ + ωn
2x = cos ωt (4.4)

The solution has the form shown in Fig. 4.12. The vertical line at ω = ωn corresponds
not only to resonance but also to free vibration (with p = 0); the amplitude in this
instance is determined by the initial conditions of the motion. In a nonlinear system
the character of the motion is dependent upon the amplitude. This requires that the
natural frequency likewise be amplitude-dependent; hence, it follows that the free
vibration curve p = 0 for nonlinear systems cannot be a straight line. Figure 4.13
shows free vibration curves (i.e., natural frequency as a function of amplitude) for
hardening and softening systems.

Figures 4.12 and 4.13 suggest that the forced vibration response curves for systems
with nonlinear restoring forces have the general form of those of a linear system but
are “swept over” to the right or left, depending on whether the system is hardening
or softening. These are shown in Fig. 4.14. The principal effect of damping in forced
vibration of a nonlinear system is to limit the amplitude at resonance, as shown in
Fig. 4.15.

These rightward- and leftward-leaning resonant response peaks have special
meaning to the dynamic response of the system. Consider a hardening system whose

p
�
m
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FIGURE 4.10 Period of free vibration of a
simple pendulum according to Eq. (4.3) and
showing the effect of nonlinear terms.

FIGURE 4.11 Deflection time history for free
damped vibration of Duffing’s equation [Eq. (4.21)].
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FIGURE 4.12 Family of response curves for
the undamped linear system defined by Eq. (4.4).

FIGURE 4.13 Free vibration curves (natural
frequency as a function of amplitude) in the
response diagram for linear, hardening, and soft-
ening vibration systems [see Eq. (4.49)].

FIGURE 4.14 Response curves for undamped nonlinear systems with hardening and softening
restoring force characteristics [see Eq. (4.50)].

FIGURE 4.15 Response curves for damped nonlinear systems with hardening and softening restor-
ing force characteristics [see Eq. (4.52)].



response curve is shown in Fig. 4.15. Suppose that the exciting frequency starts at a
low value and increases continuously at a slow rate. The amplitude of the vibration
also increases, but only up to a point. In particular, at the point of vertical tangency
of the response curve, a slight increase in frequency requires that the system perform
in an unusual manner; i.e., that it “jump” down in amplitude to the lower branch of
the response curve. This experiment may be repeated by starting with a large value
of exciting frequency but requiring that the forcing frequency be continuously
reduced. A similar situation is encountered; the system must jump up in amplitude
in order to meet the conditions of the experiment. This jump phenomenon is shown
in Fig. 4.16 for both the hardening and softening systems.2 The jump is not instanta-
neous in time but requires a few cycles of vibration to establish a steady-state vibra-
tion at the new amplitude.

There is a portion of the response curve which is “unattainable”; it is not possible to
obtain that particular amplitude by a suitable choice of forcing frequency.Thus, for cer-
tain values of ω there appear to be three possible amplitudes of vibration but only the
upper and lower can actually exist. If by some means it were possible to initiate a
steady-state vibration with just the proper amplitude and frequency to correspond to
the middle branch, the condition would be unstable; at the slightest disturbance the
motion would jump to either of the other two states of motion. The direction of the
jump depends on the direction of the disturbance. Thus, of the three possible states of
motion, one in phase and two out of phase with the exciting force, the one having the
larger amplitude of the two out-of-phase motions is unstable.This region of instability
in the response diagram is defined by the loci of vertical tangents to the response
curves.

RESPONSE CURVES FOR FORCED VIBRATION OF SYSTEMS WITH

ASYMMETRIC STIFFNESS

The system pictured in Fig. 4.9 is typical of systems with asymmetric stiffness char-
acteristics, and its response3,4 includes a variety of phenomena, including regions of
chaotic response,1 not observed in systems with symmetric stiffness characteristics.

The equations of motion in the plane normal to the plane of contact, with a stiff-
ness of k1 when the rotor is deflected from its rest position in the soft direction and
a stiffness k2 when the rotor is deflected from its rest position in the hard direction,

NONLINEAR VIBRATION 4.9

FIGURE 4.16 Jump phenomenon in hardening and softening systems.



may be integrated numerically using a simple trapezoidal integration procedure.The
rest position of the rotor is taken at the contact point, so the break point of the bilin-
ear elastic characteristic is at zero deflection. The system is then simply character-
ized by only two parameters—the ratio of the stiffnesses β = k1/k2 and z1, the linear
damping ratio of the system referred to critical damping of the soft system—when
operated at a given rotational speed s, which is taken in normalized format as the
ratio of rotational frequency to the system natural frequency.

For typical values and z1 and β at any speed s, the numerical model may be used
to compute the orbit of the rotor mass point as the orthogonal coordinates of the
motion X and Y, where each of the coordinates is normalized as the ratio of the
deflection from the rest position to the unbalance mass eccentricity. In considering
the response over a large range of rotational speed, the motion may be simply char-
acterized at any particular speed as Yp, the local peak value(s) of the normalized
amplitude in the direction of the nonlinear stiffness. As shown in Fig. 4.17A in com-
parison with the response of an equivalent system with a linear spring support stiff-
ness, a plot of this parameter over a range of speeds is quite effective in detecting
and identifying various different response phenomena.

Superharmonic Response.5,6 Fig. 4.17B characterizes superharmonic response
at subcritical speed. Shown here at approximately one-half critical speed, the rotor
is bouncing at approximately its natural frequency against the hard surface of the
contact point, energized at every other bounce by the component of the unbalance
centrifugal force as suggested in Fig. 4.18.The dominant frequency of the response is
then precisely 2 times operating speed. Such a pseudo-critical speed is possible for
any integer order M at approximately 1/M times critical speed and with a significant
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FIGURE 4.17A Identification of various classes of nonlinear behavior in the
peak amplitude response curve—typical subcritical/critical/supercritical regime
(z1 = 0.200; β = 0.002).
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FIGURE 4.17B Identification of various classes of nonlinear behavior in the
peak amplitude response curve—detail of superharmonic pseudo-critical peak and
interorder transition zone (z1 = 0.05; β = 0.005).

FIGURE 4.17C Identification of various classes of nonlinear behavior in the peak
amplitude response curve—detail of transcritical ultra-subharmonic response (z1 =
0.002; β = 0.002).



frequency component of precisely M times operating speed or approximately equal
to the natural frequency.

Transition Between Successive Superharmonic Orders.6 Between the succes-
sive superharmonic response zones [i.e., between the Mth and (M − 1)th order
superharmonic responses] there may occur a regime of irregular response. Most
commonly, the response may be chaotic, as identified as Zone II in Fig. 4.17B and
shown in Fig. 4.19A. For such chaotic motion, the Poincaré section, which is a stro-
boscopic view of the phase-plane plot of velocity versus displacement at a reference
angle of shaft rotation, is effectively a slice of the system’s attractor as shown in Fig.
4.19B. The chaotic motion may be preceded on one side by a cascade of period-
doubling bifurcations in the trace of peak amplitude Yp, as suggested in Zone I of
Fig. 4.17B. Another pattern of transition response is periodic in waveform.As shown
in Zone III of Fig. 4.17B, instead of having an unending series of local peaks with no
identifiable periodicity of repetitions as would be the case in truly chaotic motion,
the response appears to have clusters of K bounces that actually repeat every L rota-
tions to give a major periodicity of K/L times s. In both the chaotic and periodic
transition zones, the response has a significant component at or near the system’s
natural frequency.

Ultra-Subharmonic Response in Transcritical Response (Subcritical).7, 8 A
unique response has been identified which appears in very lightly damped, highly non-
linear systems operating in the transcritical range, as shown in Fig. 4.17C. It has been
observed that one of the dominant sidebands occurs at approximately critical fre-
quency, and the sideband separation is generally a whole-number fraction |1/(J + 1)| of
the operating speed and, in the Jth order manifestation (that is, J = −1, −2, −3, . . .) of
subcritical spontaneous sidebanding when the speed is approximately (J + 1)/J times
the natural frequency, the dominant frequency is precisely J/(J + 1) times the rota-
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FIGURE 4.18 Subcritical superharmonic response—waveform (z1 = 0.050; β =
0.005; s = 0.525; M = 2).



tive speed or approximately equal to the natural frequency. The waveform, shown in
Fig. 4.20, is periodic in nature. There appear to be transition zones between succes-
sive orders of J when the response has a dominant frequency approximately equal to
the system’s natural frequency and the waveform may be chaotic. The general phe-
nomenon has been referred to as ultra-subharmonic response. In a more general
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FIGURE 4.19A Subcritical chaotic transition between successive superhar-
monic orders—waveform (z1 = 0.050; β = 0.005; s = 0.560; 2 < M < 1).

FIGURE 4.19B Subcritical chaotic transition between successive superharmonic
orders—Poincaré section (z1 = 0.050; β = 0.005; s = 0.560; 2 < M < 1).



formulation,9 it has been noted that such ultra-subharmonic response can be found
in a speed range just below the Mth-order subharmonic peak at a rotational speed
which is approximately (MJ + 1)/J times the natural frequency (where J = −1, −2,
−3, . . .) with a dominant response frequency precisely equal to J/(MJ + 1) times the
rotational speed.

Synchronous Resonant Response. Synchronous critical response in the nonlin-
ear system, shown in Fig. 4.17A, is very similar to that of the linear system except for
the distortion of the waveform reflecting the bouncing nature of the motion illus-
trated in Fig. 4.21. Although the dominant frequency component is that of the forc-
ing frequency or operating speed which is close to the natural frequency of the
system, the bouncing waveform produces significant spectral content at whole-
number multiples of the operating speed.

Ultra-Subharmonic Response in Transcritical Response (Supercritical).8 As
shown in Fig. 4.17C, ultra-subharmonic response or spontaneous sidebanding can
occur at speeds slightly higher than critical speed, very similar in nature to the
response already noted, which occurs at slightly subcritical speeds. Again, the
waveform is periodic in nature. In the Jth-order manifestation (that is, J = 1, 2, 3, . . .)
of supercritical spontaneous sidebanding, when the rotative speed is approximately
(J + 1)/J times the natural frequency, the dominant frequency is precisely J/(J + 1)
times the rotative speed, or approximately equal to the natural frequency. Once
again, there appears to be transition zones between successive orders of J when the
response has a dominant frequency approximately equal to the natural frequency
and the waveform may be chaotic. Analogous to the general finding for subcritical
ultra-subharmonic response, it has been noted9 that such ultra-subharmonic
response can be found in a speed range just above the Mth-order subharmonic
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FIGURE 4.20 Transcritical ultra-subharmonic response (z1 = 0.001; β = 0; s =
0.900; J = −10).



peak at a rotational speed which is approximately (MJ + 1)/J times the natural fre-
quency (where J = 1, 2, 3, . . .) with a dominant response frequency precisely equal
to J/(MJ + 1) times the rotational speed.

Subharmonic Response.10–14 The pseudo-critical peak at 2 times critical speeds
shown in Fig. 4.17A exemplifies subharmonic response at supercritical speed.With a
peak amplitude of the same order of magnitude as critical response, the rotor is
bouncing at its natural frequency against the hard surface of the contact point, as
depicted in Fig. 4.22, and is subjected to the periodic component of the unbalance
centrifugal force twice every bounce. Only one of the two pulses of unbalance force
is effective in energizing the bouncing motion in the course of each bounce, so the
dominant frequency of the response is then precisely one-half the operating speed.
Such a pseudo-critical is possible for any integer order N at a rotational speed
approximately N times critical speed and with a dominant frequency of precisely 1/N
times operating speed or approximately the system natural frequency.

Transition Between Successive Subharmonic Orders. The transition response
between successive subharmonic orders is quite analogous to the transition response
between successive superharmonic orders previously noted. Between the successive
subharmonic response zones (i.e., between the Nth- and (N + 1)th-order subhar-
monic responses) there may occur a regime of irregular response. The response has
been noted by many researchers to be chaotic,1,15–22 as identified as Zone II in Fig.
4.17A and illustrated in Fig. 4.23A. The chaotic motion may be preceded on one side
by a cascade of period-doubling bifurcations in the trace of peak amplitude Yp, as
suggested in Zone I of Fig. 4.17A. Another pattern of transition response is periodic
in waveform.As shown in Zone III of Fig. 4.17A, instead of having an unending series
of local peaks with no identifiable periodicity of repetitions as would be the case in
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FIGURE 4.21 Critical synchronous resonant response—waveform (z1 = 0.200; β =
0.005; s = 1.050).
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FIGURE 4.22 Supercritical subharmonic response—waveform (z1 = 0.200; β =
0.005; s = 2.150; N = 2).

FIGURE 4.23A Supercritical chaotic transition between successive subharmonic
orders—waveform (z1 = 0.200; β = 0.005; s = 1.600; 1 < N < 2).



truly chaotic motion, the response appears to have clusters of K bounces that actually
repeat every L rotations to give a major periodicity of K/L times s. In both the chaotic
and the periodic transition zones, the response has a significant component at or near
the system’s natural frequency. As with subcritical chaotic transition zones, a Poincaré
section of chaotic motion in a supercritical chaotic transition zone is effectively a slice
of the system’s attractor, as shown in Fig. 4.23B.

OTHER PHENOMENA

Self-Excited Vibration. A general treatment of self-excited vibration, including
reference to bistable vibration (and the Van der Pol and relaxation oscillators) is
given in Chap. 5.

Asynchronous Excitation and Quenching. In linear systems, the principle of
superposition is valid, and there is no interaction between different oscillations.
Moreover, the mathematical existence of a periodic solution always indicates the
existence of a periodic phenomenon. In nonlinear systems, there is an interaction
between oscillations; the mathematical existence of a periodic solution is only a nec-
essary condition for the existence of corresponding physical phenomena.When sup-
plemented by the condition of stability, the conditions become both necessary and
sufficient for the appearance of the physical oscillation. Therefore, it is conceivable
that under these conditions the appearance of one oscillation may either create or
destroy the stability condition for another oscillation. In the first case, the other
oscillation appears (asynchronous excitation), and in the second case, disappears
(asynchronous quenching). The term asynchronous is used to indicate that there is
no relation between the frequencies of these two oscillations.
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FIGURE 4.23B Supercritical chaotic transition between successive subharmonic
orders—Poincaré section (z1 = 0.200; β = 0.005; s = 1.600; 1 < N < 2).



Entrainment of Frequency. According to linear theory, if two frequencies ω1 and
ω2 are caused to beat in a system, the period of beating increases indefinitely as ω2

approaches ω1. In nonlinear systems, the beats disappear as ω2 reaches certain val-
ues. Thus, the frequency ω 1 falls in synchronism with, or is entrained by, the fre-
quency ω2 within a certain range of values. This is called entrainment of frequency,
and the band of frequencies in which entrainment occurs is called the zone of
entrainment or the interval of synchronization. In this region, the frequencies ω 1 and
ω2 combine and only vibration at a single frequency ensues.

OVERVIEW OF NONLINEAR ANALYSIS

As must be clear from the examples presented so far, there are a number of nonlin-
ear relationships that occur in practically every vibrating system. Stiffness, damping,
and rigid-body motions can all lead to nonlinear expressions in addition to geomet-
ric nonlinearities. For systems where the relationships dominating the dynamic
behavior are weakly nonlinear or when the range of realistic operating conditions is
narrow, the dynamic behavior outlined in this presentation may not be present. This
situation is indeed the case for many operating mechanical systems. However, there
are a number of systems where steady-state multiplicity and limit cycle behavior do
occur under practical operating conditions.

The techniques outlined in this section allow one to characterize the local and
global dynamic behavior associated with the existence of a single, unique, steady-
state equilibrium point or a multiplicity of steady-state operating points over some
range of process parameters. In this section, we provide a brief introduction to the
nonlinear dynamic behavior of a generic second-order system. A simple oscillator
with nonlinear stiffness or damping is of this kind. A discussion of the vocabulary
and phenomena characteristic of nonlinear systems is also provided. A more rigor-
ous mathematical presentation of nonlinear dynamic analysis is available from many
excellent applied mathematical texts.23–25 It should be noted that multiple-degree-of-
freedom systems are significantly more complicated and can reveal more complex
phenomena than illustrated here. Quantitative techniques have been developed26

using substructuring techniques integrated with the method of weighted residuals to
render the solutions somewhat tractable for practical vibration problems.

Consider the free vibration of a one-degree-of-freedom system with nonlineari-
ties; it can be written as the following set of coupled, nonlinear, first-order ordinary
differential equations:

ẋ1 = P(x1, x2) ẋ2 = Q(x1, x2) (4.5)

where x1 and x2 are the two states of the system. For example, x1 could be the dis-
placement and x2 could be the velocity. Here, time does not appear explicitly in these
state equations. Such systems are referred to as autonomous systems and are the
kind that we consider in this introduction. Nonlinear dynamic analysis of this system
normally follows these steps.

• Determine the fixed points of the system. Fixed points are what are normally
termed “equilibrium points” in vibrations.

• Determine the local dynamic character of the system in the immediate neighbor-
hood of the fixed points from a linear analysis.

• Determine the global topological character of the nonlinear dynamic behavior
from a nonlinear analysis.

4.18 CHAPTER FOUR



Each of these determinations would be carried out as a function of the physical
parameters of interest in the model, such as mass, stiffness, and damping parameters,
or suitably defined nondimensional parameters, in order to determine the full spec-
trum of the predicted behavior of the system under study.

FIXED POINTS

The first step is the determination of the fixed points, which are always obtained
from the solution to the nonlinear system of algebraic equations that result from set-
ting the time derivatives to zero in Eq. (4.5).

P(x1, x2) = 0 Q(x1, x2) = 0 (4.6)

The solutions to these equations are also referred to as equilibrium points or singu-
lar points of the system. Multiple solutions to Eq. (4.6) are possible which would
then result in multiple fixed points of the nonlinear dynamic system.

LINEAR OR LOCAL ANALYSIS

The second step in the analysis of a nonlinear system is a linearized analysis in the
neighborhood of each equilibrium point and is often called local analysis. Linear
analysis is performed by linearizing the original nonlinear system in Eq. (4.5) about
the fixed points. A first-order Taylor series is used to obtain a linear dynamic system
of the form

�
d
d
t

�(x1 − x̄1) = �
∂
∂
x
P

1
�⏐x̄1, x̄2

(x1 − x̄1) + �
∂
∂
x
P
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�⏐x̄1, x̄2

(x2 − x̄2)
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d
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�(x2 − x̄2) = �
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∂
Q
x1
�⏐x̄1, x̄2

(x1 − x̄1) + �
∂
∂
Q
x2
�⏐x̄1, x̄2

(x2 − x̄2)
(4.7)

or

δẋ1 = aδx1 + bδx2

δẋ2 = cδx1 + dδx2

(4.8)

where x̄1 and x̄2 represent the fixed point, δx1 and δx2 are the deviations from the
fixed point, and the constant coefficients (a, b, c, d) are the corresponding first par-
tial derivatives evaluated at the fixed point. The origin of the resulting linear system
in the transformed variables represents the fixed point of the original system (with-
out any loss of generality). The resulting linear system of equations can also be rep-
resented in matrix form, where the matrix A is referred to as the jacobian matrix of
the nonlinear system model in Eq. (4.5).

δẋ = Aδx A = (4.9)

The solution to the linearized system in Eq. (4.7), or equivalently in Eq. (4.9), is of
the form

δx = r1eλ1t + r2eλ1t λ2 − (a + d)λ + (ad − bc) = 0 (4.10)

�a bc d
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where the quadratic equation in λ is referred to as the characteristic equation of the
linear system and λ i are the roots of this characteristic equation, which are also the
eigenvalues of the jacobian matrix. It is not necessary to solve this linear system in
order to determine the interesting qualitative aspects of the solution. Insight into the
local dynamic behavior of the original nonlinear system, including stability, can be
determined from the value of the roots of the characteristic equation as determined
by the parameters p and q, defined by the following relationships:

p = (a + d) q = (ad − bc) (4.11)

The character of each of the possible solutions is discussed in this section, with the
results being displayed in the phase plane. A phase plane plot is constructed by tak-
ing time as the parameter and examining the solution with the two states plotted on
the two axes. Note that this procedure is a local analysis in that it provides informa-
tion on the dynamic behavior of the original nonlinear system (and not just the
approximate linearized system) in the immediate neighborhood of the fixed point.

Center. A center occurs when p = 0 and q > 0. In this case, the phase plane plot
results in closed orbits about the fixed point (origin), as shown in Fig. 4.24. An
undamped mass-spring system is an example of the center in which the response
oscillates forever without dying or increasing.

Focus. A focus occurs when p2 − 4q < 0 and q > 0. For a stable focus, p < 0 and all
orbits tend to converge to the fixed point (origin) without a limiting direction, as
shown in Fig. 4.25. For an unstable focus, p > 0 and all orbits tend to diverge from the
fixed point (origin) without a limiting direction, as shown in Fig. 4.26. An under-
damped linear mass-spring oscillator behaves as a stable focus.

Node. A node occurs when p2 − 4q > 0 and q > 0. For a stable node, p < 0 and all
orbits converge to the fixed point (origin) with a limiting direction. For an unstable
node, p > 0 and all orbits diverge from the fixed point (origin), as illustrated in Fig.
4.27. The phase plane plot of a stable node is similar to Fig. 4.27 except that the
arrows would point into the origin. This is the behavior of an overdamped mass-
spring system, where the response dies out without oscillations.

Saddle Point. A saddle point occurs when q < 0. Only four orbits connect with the
fixed point (origin), as shown in Fig. 4.28. An orbit that converges to the saddle point
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FIGURE 4.24 Phase plane orbits for a
center.

FIGURE 4.25 Phase plane orbits for a stable focus.



is called an incoming separatrix,
and an orbit that diverges is called
an outgoing separatrix. An exam-
ple of a saddle point is the upright
equilibrium point of a pendulum;
a practical example would be the
vertical position of a crane or the
torso of a human being, both of
which are inherently unstable and
need a stabilizing system (such as
a hydraulic actuator).

These results for the local
dynamic behavior can be sum-
marized on the parameter plane
(p, q), as shown in Fig. 4.29. The
lines dividing the regions of topo-
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FIGURE 4.26 Phase plane orbits for
an unstable focus.

FIGURE 4.27 Phase plane orbits for an unstable node.

FIGURE 4.28 Phase plane orbits for a saddle point.

FIGURE 4.29 Summary of solutions in the parameter plane.



logically different orbits are called bifurcation lines in the parameter space. When a
parameter changes in such a way that a bifurcation line is crossed, the qualitative
nature of the dynamic response changes, and the system is said to go through a
dynamic phase transition.

GLOBAL ANALYSIS

The preceding discussion on local analysis dealt with the local behavior of the sys-
tem in a neighborhood around each fixed point. In order to obtain a complete
understanding of the dynamic behavior of the system, a global analysis is necessary.
This analysis is not always easy to perform—or even possible.A systematic approach
begins with the equation

= (4.12)

which determines the tangent of the orbit or state trajectory at any point in the state
space. The determination of the local slope of the orbits at a variety of points, com-
bined with the fixed-point information gained from a local linear analysis, can lead
to an estimate of the global phase portrait. Numerical integration techniques are
typically used to determine these global state trajectories. This investigation is typi-
cally carried out only in regions of the state space of interest, resulting in substantial
savings in time and computational effort.

LIMIT CYCLE

One important example of nonlinear dynamic behavior determined from a global
analysis is the limit cycle. A limit cycle is a closed, periodic state trajectory or orbit. If
the limit cycle is stable, neighboring orbits tend toward it as t → �, resulting in sus-
tained periodic or cyclic oscillations in the dynamic response of the system. If the limit

P(x1,x2)
�
Q(x1,x2)

dx1
�
dx2
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FIGURE 4.30 A limit cycle.



cycle is unstable, neighboring orbits tend away from it. Because neighboring orbits
tend away from an unstable limit cycle, it would not be observed as cyclic oscillations
in the physical system. However, it is still important to know whether this behavior
exists in regions of the parameter space.An example of an unstable fixed point at (0,0),
along with a stable limit cycle to which trajectories from both the inside and the out-
side converge, is shown in Fig. 4.30. Note that a local linear analysis would predict the
unstable fixed point but would not be able to predict the limit cycle that would, nev-
ertheless, be observed in practice. Limit cycles are an important phenomenon in the
full panoply of nonlinear dynamics.There are a number of practical examples of limit
cycles in vibrating systems such as flutter of aircraft wings, hammering of water pipes,
chattering in machining operations, and brake disc vibration. In the larger context,
stable nodes, foci, and limit cycles represent the simplest forms of attractors.When all
state trajectories that start within a neighborhood of an equilibrium point or periodic
solution converge to that solution, it is referred to as an attractor.

BIFURCATIONS

A bifurcation refers to a qualitative change in the nature of the system dynamics as
one or more model parameters are changed. The term bifurcation is applied to the
following two distinct situations as a model parameter is changed: (1) a change in the
number or type of fixed points (equilibrium points) and (2) a change in the global
phase portrait or global dynamic behavior. Of particular interest in the nonlinear
dynamic analysis of a system is the occurrence of a change in the stability of a fixed
point and the occurrence of a limit cycle in the phase plane trajectories as a model
parameter is varied.

In this brief introduction, a very simple single-degree-of-freedom vibrating sys-
tem with a parameter c is used to illustrate the concepts.

ẍ = F(x,c) = (x − 1)2 − c − 2 (4.13)

The fixed points, or equilibrium states, of this simple autonomous system are deter-
mined from the following equation

ẋ = 0 F(x,c) = 0 for x = xs(c) (4.14)

where c is the control parameter and the fixed points xs(c) are a function of the value
of the control parameter. If the number of fixed points changes as c is varied, the sys-
tem goes through a bifurcation as shown in the control-phase space in Fig. 4.31.
When c < −2, there are no fixed points. When c = c0 = −2, two fixed points come into
existence and the point c0 is called a bifurcation point of the system model. A bifur-
cation point occurs when there are two or more distinct steady-state solutions
F(x1,c) = 0 and F(x2,c) = 0 in a neighborhood of the fixed point F(xs(c0),c0) = 0.When
�
∂
∂
F
x
� ≠ 0 for any xs such that F(xs(c),c) = 0, this value of c does not represent a bifurca-

tion point. This necessary condition for a bifurcation point is a result of the implicit
function theorem.24

Example 4.1. An interesting example of a pitchfork bifurcation in a vibration
system is a uniform rotating rigid rod hinged at one end (O), as shown in Fig. 4.32.
The equation of motion can be shown to be

θ̈ + sinθ − Ω2 cosθ sinθ = 0 (4.15)
3g
�
2�
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Application of the analysis procedures
already discussed leads to the following
results, as illustrated in Fig. 4.33. For
low speeds, the vertically hanging posi-
tion (θ0 = 0) is a stable equilibrium posi-
tion; hence, small deviations will return
the rod to that equilibrium. As the
speed is increased, at a critical speed
given by Ωc = �3g/2��, a supercritical
pitchfork bifurcation occurs, giving rise
to two new stable equilibrium positions.
At the same time, the zero (vertically
hanging) position becomes unstable.
The new equilibrium positions are
dependent on the speed and are given
by θ0 = ±cos−1(3g/2�Ω2).This means that
for speeds above the critical speed,
after being perturbed, the spinning rod
moves away from its hanging position
and settles in one of these two nonzero
equilibrium positions.

Andronov-Hopf Bifurcation. A bi-
furcation that involves the change in
the stability of a focus, along with the
birth of a limit cycle as a control param-
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FIGURE 4.31 Bifurcation example.

FIGURE 4.32 Rotating rigid rod.



eter is varied, is called an Andronov-Hopf bifurcation, or simply a Hopf bifurcation.
This bifurcation can be visualized using a three-dimensional perspective, with the
control parameter axis being added to the phase plane. In this space, there is a sur-
face that contains only periodic solutions of the nonlinear equations, referred to as a
center manifold, in the control-phase space. These periodic solutions exist a finite
distance from the fixed point independent of the initial conditions leading to the
limit cycle, unlike a center where the distance from the fixed point is determined by
the initial condition.

The periodic solutions arising from a Hopf bifurcation are either stable or unsta-
ble limit cycles. If the surface consists of stable limit cycles, the bifurcations are said
to be supercritical, or soft, as shown in Fig. 4.34. If the center manifold consists of
unstable limit cycles, the bifurcation point is called subcritical, or hard, as illustrated
in Fig. 4.35. In this case, even if the fixed point is stable, a small finite perturbation
can take the solution well outside the unstable limit cycle and into a solution space
far away from the fixed point, hence, the word hard. This type of instability, which
cannot be detected by a linear analysis, is especially important because it can pro-
duce drastic effects, even for small perturbations, that can have profound practical
implications. In fluid mechanics, the transition from laminar to turbulent flow is an
example of this phenomenon. The Hopf bifurcation concerns the creation of a limit
cycle around a fixed point and is a localized phenomenon.A global method of deter-
mining the existence of periodic solutions is given by a mathematical result called
the Poincaré-Bendixson theorem.25

Global Bifurcations. The topological character of the phase portraits of a system
can change when the control parameter is varied (leading to a bifurcation) without
changing the type or stability of any of the fixed points of the system. In such
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FIGURE 4.33 Bifurcation diagram for the rotating rigid rod; S—stable, U—unstable.
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FIGURE 4.34 Supercritical bifurcation.

FIGURE 4.35 Subcritical bifurcation.



instances, the change in the phase portraits is not observable in the immediate neigh-
borhood of any fixed point, but can only be discerned on a global scale. Such occur-
rences are global bifurcations and are very difficult to determine because they
cannot be detected using the elementary theories outlined here. A judicious use of
computer solutions, along with some analytical tools, is then necessary.

As an illustration of the complexities of global bifurcations, consider the follow-
ing nonlinear vibrating system example.27

ẍ = c1 + c2x + x2 + xẋ (4.16)

The fixed points of this system are

x0 = − c2 ± �c2
2 − 4c�1� (4.17)

when c2
2 > 4c1. Along the curve c2

2 = 4c1 in the control space, the fixed points are
degenerate. If the parameter values cross this curve, there is a localized change in the
phase portrait: the two fixed points come together and vanish. It can be shown that
these two simple singularities must be a saddle point and a node or a focus. Such a
birth of a saddle point and a node is called a saddle-node bifurcation.

In addition, there is a curve associated with an Andronov-Hopf bifurcation and a
curve associated with a global bifurcation, as shown in Fig. 4.36.The bifurcation lines
are labeled SN−, SN+, AH, and SC, which divide the control space region into the
regions A, B, C, and D. The local saddle-node and Hopf bifurcations occur across the
lines SN± and AH, respectively, whereas the global bifurcation called a saddle con-
nection occurs across the curve SC. Starting with region A, where 4c1 > c2

2, and mov-
ing clockwise around the origin, the first fixed points occur upon crossing SN+. This
crossing gives birth to a saddle point and an unstable node. Moving from B1 to B2,
the spiral on the node tightens and a Hopf bifurcation occurs on AH. The result is a

1
�
2

1
�
2
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limit cycle in region C in addition to a stable node and a saddle point. The saddle
connection occurs along SC. Crossing into region D, there is no longer a limit cycle
and one branch of the saddle point flows into the second fixed point. Crossing the
curve SC does not change the saddle point and the stable node.

CHAOS

When a nonlinear system is driven by a periodic forcing function, such as can occur
with harmonic excitation, chaotic dynamic behavior is possible depending on the
nature of the nonlinear system and the frequency and amplitude of the driving force.
Attractors in the form of points or limit cycles in the phase plane are associated
with stable steady-state dynamics and periodic oscillations. Strange attractors are
associated with chaotic dynamic behavior. This behavior arises from the conver-
gence of trajectories originating from the exterior of a strange attractor to its inte-
rior and the divergence of neighboring trajectories within the interior of a strange
attractor away from each other. A strange attractor is therefore stable, but the
motion within the attractor is unstable. The result of the divergence of neighboring
trajectories is an extremely sensitive dependence on the initial conditions of the dy-
namic system.

Chaotic dynamic systems are often classified into categories such as self-excited
and polynomial oscillators. Self-excited systems are systems that are capable of sus-
taining limit cycles without any external excitation (such as the van der Pol equa-
tion); polynomial oscillators are oscillators with polynomial terms added to them
(like Duffing’s equation and the simple pendulum). There are indeed mathematical
theorems that can be used to establish the existence of chaos under certain specific
conditions. Although such a systematic understanding is not available at present to
apply to all cases, the following general forms describe the resulting chaotic dynamic
behavior.

1. Periodic oscillations with harmonics, subharmonics, and ultraharmonics
2. Almost periodic oscillations representable by Fourier series with incommensu-

rable frequencies (when the frequencies are not related by integers)
3. Coexisting (multistable) periodic oscillations and nonperiodic and unstable solu-

tions

Note that individual solutions, or trajectories, are deterministic and smooth, but a
family of solutions can be called “chaotic.” The transition of solutions from the first
or the second category to the third is quite interesting and is the subject of much cur-
rent research. The most concise definition of a chaotic solution is a family of solu-
tions with nearly the same initial conditions that can produce dynamic behaviors
that are very dissimilar; an intuitive practical example is the infinite sequence of coin
tosses.The fact that slightly differing initial conditions can evolve into very different
states is indeed a dramatic result that upsets the traditional view of dynamic systems.
Fig. 4.37 shows the divergent response for the famous Lorenz attractor (modeling
convection rolls), where the solid and dotted lines start from nonidentical, but very
close, initial conditions.25

Chaotic vibrations are characterized by an irregular or ragged waveform, such as
illustrated in Figs. 4.19A and 4.23A. Although there may be recurrent patterns in the
waveform, they are not precisely alike, and they repeat at irregular intervals, so the
motion is truly nonperiodic, as is implied in Zone II of Figs. 4.17A and 4.17B. Indeed,
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care must be taken in characterizing vibrations as chaotic since there are irregular
motions which mimic chaotic response but in which there are recurrent patterns
which repeat at regular intervals, such as are implied in Zone III of Figs. 4.17A and
4.17B.

For all its irregularity, there is a certain basic structure and patternation implicit
in chaotic vibration. As one can infer from the response curves of local peak ampli-
tude for chaotic vibration shown in Zone II of Figs. 4.17A and 4.17B, the maximum
amplitude is bounded.

A remarkable response behavior associated with chaotic vibration is the cascade
of period-doubling bifurcations or tree-like structure in the peak amplitude re-
sponse curve (illustrated in Zone I of Figs. 4.17A and B) that may take place in tran-
sition from simple periodic response to chaotic response.

But the most remarkable property of chaotic vibrations is evident in the Poincaré
section of the motion shown typically in Figs. 4.19B and 4.23B. The Poincaré section
contains a large number of discrete points of velocity plotted as a function of the dis-
placement of the chaotic motion, where the points are sampled stroboscopically with
reference to a particular phase angle of the forcing periodic function. Rather than a
random scatter of points, the Poincaré section generally reveals striking patterns.
The Poincaré section is sometimes referred to as an attractor.

Chaotic vibration also differs from random motion in that the power frequency
spectrum (see Chap. 19 of this handbook) generally has distinct peaks rather than
consisting of random motion with a broadband spectrum. There will often be not
only synchronous response peaks at the forcing function frequency as in the
response of linear systems, but also significant asynchronous response peak (or
peaks) at the system’s natural frequency (or frequencies).

Chaotic vibration has been observed and numerically predicted in many practi-
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FIGURE 4.37 Lorenz attractor: response for slightly different initial conditions.



cal machine components such as bearings.28 More details on this fascinating topic
can be found in general texts on chaotic dynamics.20,24

EXACT SOLUTIONS

It is possible to obtain exact solutions for only a relatively few second-order nonlin-
ear differential equations. In this section, some of the more important of these exact
solutions are listed. They are exact in the sense that the solution is given either in
closed form or in an expression that can be evaluated numerically to any desired
degree of accuracy. Some general examples follow.

FREE VIBRATION

Consider the free vibration of an undamped system with a general restoring force
f(x) as governed by the differential equation

ẍ + κ 2f(x) = 0

This can be rewritten as

+ 2κ 2f(x) = 0 (4.18)

and integrated to yield

ẋ2 = 2κ 2 �Χ
x

f(	) d	

where 	 is an integration variable and X is the value of the displacement when ẋ = 0.
Thus

|ẋ| = κ�2���X

x
f(	) d	

This may be integrated again to yield

1 dζ
t − t0 = κ�2� �x

0 ��Χ
ζ

f(	) d	

(4.19)

where ζ is an integration variable and t0 corresponds to the time when x = 0. The
displacement-time relation may be obtained by inverting this result. Considering the
restoring force term to be an odd function, i.e.,

f(−x) = −f(x)

and considering Eq. (4.19) to apply to the time from zero displacement to maximum
displacement, the period τ of the vibration is

4 dζ
τ =

κ�2� �X

0 ��Χ
ζ

f(	) d	

(4.20)

d( ẋ2)
�

dx
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Exact solutions can be obtained in all cases where the integrals in Eq. (4.20) can be
expressed explicitly in terms of X.

NUMERICAL METHODS

Although exact solutions and asymptotic methods can provide highly satisfying
broad-spectrum results that are valid over large parameter ranges, they are usually
valid for restrictive conditions (such as small nonlinearities); moreover, they can
only reveal certain limited aspects of nonlinear behavior. Certain intrinsically non-
linear phenomena such as bifurcations and chaos can be predicted and verified only
by numerical methods.

For obtaining steady-state or equilibrium solutions, one should be cognizant of the
fact that the convergence to a particular solution depends on the initial conditions
(based on the domain of attraction of the fixed point). The difficult aspect of deter-
mining the integration step size (to trade off computation time and accuracy) has
been mitigated significantly in recent years by the development of highly efficient
adaptive solution algorithms and powerful desktop computers. Still, numerical algo-
rithms should never be used blindly with the faith that they are automatic systems
that will always provide correct solutions with no active involvement of the user. On
the other hand, knowledge of the nonlinear phenomena such as those presented in
this chapter should be used as a guide in the employment of numerical techniques.

Straightforward numerical integration can often fail near singularities and bifur-
cation points. Normal form theory is then often employed to derive polynomial rep-
resentations to describe the dynamics near singularities of certain simplified
nonlinear models. For these simpler models, direct analytical solution of the nonlin-
ear steady-state equations for bifurcation analysis is often possible. For more com-
plex and higher dimensional system models, alternate numerical solution techniques
must be employed.

Most root-finding numerical algorithms for nonlinear systems of equations are
not useful for bifurcation analysis of the steady-state equations. These algorithms
find only a single solution that is a function of the initial estimate, making it difficult
to ensure that all solutions have been found. In order to reliably find all solutions
and bifurcation points (such as the illustrations in the preceding section), analytic
continuation methods are typically employed to compute bifurcation diagrams.
Some specialized public domain software packages (AUTO29 is an example) have
been developed recently.

When numerical simulation is employed to determine and characterize chaotic
vibrations, care must be taken to ensure that modern adaptive schemes with ade-
quate numerical precision are used, since the solution obtained can be sensitive to
this choice.

APPROXIMATE ANALYTICAL METHODS

A large number of approximate analytical methods of nonlinear vibration analysis
exist, each of which may or may not possess advantages for certain classes of prob-
lems. Some of these are restricted techniques which may work well with some types
of equations but not with others. The methods which are outlined below are among
the better known and possess certain advantages as to ranges of applicability.

NONLINEAR VIBRATION 4.31



Approximate analytical methods, while useful for yielding insights into basic mech-
anisms and relative influence of independent variables, have been largely displaced by
numerical methods which are capable of giving very precise results for very much
more complex models by exploiting the enormous power of modern computers.

DUFFING’S METHOD

Consider the nonlinear differential equation (known as Duffing’s equation)

ẍ + κ 2(x ± μ2x3) = p cos ωt (4.21)

where the ± sign indicates either a hardening or softening system. As a first approx-
imation to a harmonic solution, assume that

x1 = A cos ωt (4.22)

and rewrite Eq. (4.21) to obtain an equation for the second approximation:

ẍ2 = −(κ 2A ± 3⁄4κ 2μ2A3 − p) cos ωt − 1⁄4κ 2μ2A3 cos ωt

This equation may now be integrated to yield

x2 = (κ 2A ± 3⁄4κ 2μ2A3 − p) cos ωt + 1⁄36κ 2μ2A3 cos 3ωt (4.23)

where the constants of integration have been taken as zero to ensure periodicity of
the solution.

This may be regarded as an iteration procedure by reinserting each successive
approximation into Eq. (4.21) and obtaining a new approximation. For this iteration
procedure to be convergent, the nonlinearity must be small; i.e., κ2, μ2, A, and p must
be small quantities. This restricts the study to motions in the neighborhood of linear
vibration (but not near ω = κ, since A would then be large); thus, Eq. (4.22) must rep-
resent a reasonable first approximation. It follows that the coefficient of the cos ωt
term in Eq. (4.23) must be a good second approximation and should not be far dif-
ferent from the first approximation.30 Since this procedure furnishes the exact result
in the linear case, it might be expected to yield good results for the “slightly nonlin-
ear” case.Thus, a relation between frequency and amplitude is found by equating the
coefficients of the first and second approximations:

ω2 = κ 2(1 ± 3⁄4μ2A2) − (4.24)

This relation describes the response curves, as shown in Fig. 4.14.
This method applies equally well when linear velocity damping is included.

THE PERTURBATION METHOD

In one of the most common methods of nonlinear vibration analysis, the desired
quantities are developed in powers of some parameter which is considered small;
then the coefficients of the resulting power series are determined in a stepwise man-
ner. The method is straightforward, although it becomes cumbersome for actual

p
�
A

1
�
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computations if many terms in the perturbation series are required to achieve a
desired degree of accuracy.

Consider Duffing’s equation, Eq. (4.21), in the form

ω2x″ + κ 2(x + μ2x3) − p cos φ = 0 (4.25)

where φ = ωt and primes denote differentiation with respect to φ. The conditions at
time t = 0 are x(0) = A and x′(0) = 0, corresponding to harmonic solutions of period
2π/ω.Assume that μ2 and p are small quantities, and define κ2μ2 � ε, p � εp0.The dis-
placement x(φ) and the frequency ω may now be expanded in terms of the small
quantity ε:

x(φ) = x0(φ) + εx1(φ) + ε2x2(φ) + . . .
(4.26)

ω = ω 0 + εω1 + ε2ω2 + . . .

The initial conditions are taken as xi(0) = xi′(0) = 0 [i = 1,2, . . . ].
Introducing Eq. (4.26) into Eq. (4.25) and collecting terms of zero order in ε gives

the linear differential equation

ω 0
2x0″ + κ 2x0 = 0

Introducing the initial conditions into the solution of this linear equation gives
x0 = A cos ωt and ω 0 = κ. Collecting terms of the first order in ε,

ω 0
2x1″ + κ 2x1 − (2ω 0ω1A − 3⁄4A3 + p0) cos φ + 1⁄3A3 cos 3φ = 0 (4.27)

The solution of this differential equation has a nonharmonic term of the form φ cos φ,
but since only harmonic solutions are desired, the coefficient of this term is made to
vanish so that

ω1 = �3⁄4A2 − 	
Using this result and the appropriate initial conditions, the solution of Eq. (4.27) is

x1 = (cos 3φ − cos φ)

To the first order in ε, the solution of Duffing’s equation, Eq. (4.25), is

x = A cos ωt + ε (cos 3ωt − cos ωt)

ω = κ + �3⁄4A2 − 	
This agrees with the results obtained previously [Eqs. (4.23) and (4.24)]. The analy-
sis may be carried beyond this point, if desired, by application of the same general
procedures.

As a further example of the perturbation method, consider the self-excited sys-
tem described by Van der Pol’s equation

ẍ − ε(1 − x2)ẋ + κ2x = 0 (4.28)

p0�
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where the initial conditions are x(0) = 0, ẋ(0) = Aκ0. Assume that

x = x0 + εx1 + ε2x2 + . . .

κ2 = κ0
2 + εκ1

2 + ε2κ2
2 + . . .

Inserting these series into Eq. (4.28) and equating coefficients of like terms, the
result to the order ε2 is

x = �2 − 	 sin κ0t + cos κ0t + � sin 3κ0t − cos 3κ0t	 − sin 5κ0t

(4.29)

THE METHOD OF KRYLOFF AND BOGOLIUBOFF31

Consider the general autonomous differential equation

ẍ + F(x, ẋ) = 0

which can be rewritten in the form

ẍ + κ 2x + εf(x, ẋ) = 0 [ε << 1] (4.30)

For the corresponding linear problem (ε � 0), the solution is

x = A sin (κt + θ) (4.31)

where A and θ are constants.
The procedure employed often is used in the theory of ordinary linear differen-

tial equations and is known variously as the method of variation of parameters or
the method of Lagrange. In the application of this procedure to a nonlinear equation
of the form of Eq. (4.30), assume the solution to be of the form of Eq. (4.31) but with
A and θ as time-dependent functions rather than constants. This procedure, how-
ever, introduces an excessive variability into the solution; consequently, an addi-
tional restriction may be introduced.The assumed solution, of the form of Eq. (4.30),
is differentiated once considering A and θ as time-dependent functions; this is made
equal to the corresponding relation from the linear theory (A and θ constant) so that
the additional restriction

Ȧ(t) sin [κt + θ(t)] + θ̇(t)A(t) cos [κt + θ(t)] = 0 (4.32)

is placed on the solution. The second derivative of the assumed solution is now
formed and these relations are introduced into the differential equation, Eq. (4.30).
Combining this result with Eq. (4.32),

Ȧ(t) = −� 	 f [A(t) sin Φ, A(t)κ cos Φ] cos Φ

θ̇(t) = f [A(t) sin Φ, A(t)κ cos Φ] sin Φ

where Φ = κt + θ(t)

Thus, the second-order differential equation, Eq. (4.30), has been transformed into
two first-order differential equations for A(t) and θ(t).
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The expressions for Ȧ(t) and θ̇(t) may now be expanded in Fourier series:

Ȧ(t) = − � 	 �Κ0(A) + �
r

n = 1
[Κn(A) cos nΦ + Ln(A) sin nΦ]�

(4.33)

θ̇(t) = �P0(A) + �
r

n = 1
[Pn(A) cos nΦ + Qn(A) sin nΦ]�

where

Κ0(A) = �2π

0
f [A sin Φ, Aκ cos Φ] cos Φ dΦ

P0(A) = �2π

0
f [A sin Φ, Aκ cos Φ] sin Φ dΦ

It is apparent that A and θ are periodic functions of time of period 2π/κ; therefore,
during one cycle, the variation of Ȧ and θ̇ is small because of the presence of the
small parameter ε in Eqs. (4.33). Hence, the average values of Ȧ and θ̇ are consid-
ered. Since the motion is over a single cycle, and since the terms under the summa-
tion signs are of the same period and consequently vanish, then approximately:

Ȧ � − � 	 K0(A)

θ̇ � P0(A)

Φ̇ � κ + P0(A)

For example, consider Rayleigh’s equation

ẍ − (α − β ẋ2)ẋ + κ 2x = 0 (4.34)

By application of the above procedures:

Ȧ = − � 	 Κ0(A) = − � �2π

0
(−α + βA2κ 2 cos2 Φ)Aκ cos2 Φ dΦ

= (α − 3⁄4βA2κ 2) (4.35)

Equation (4.35) may be integrated directly:

t = 2 �A

A0

= ln

Solving for A,

1A = �1 + � − 1	e−αt
1/2

(4.36)

where γ = 3⁄4β2κ 2 (4.37)
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The application of the method to Van der Pol’s equation, Eq. (4.28), is easily
accomplished and leads to a solution in the first approximation of the form similar
to that of the perturbation solution given by Eq. (4.24).

THE RITZ METHOD

In addition to methods of nonlinear vibration analysis stemming from the idea of
small nonlinearities and from extensions of methods applicable to linear equations,
other methods are based on such ideas as satisfying the equation at certain points of
the motion or satisfying the equation in the average. The Ritz method is an example
of the latter method and is quite powerful for general studies.

One method of determining such “average” solutions is to multiply the differential
equation by some “weight function” ψn(t) and then integrate the product over a period
of the motion. If the differential equation is denoted by E, this procedure leads to

�2π

0
E⋅ψn(t) dt = 0 (4.38)

A second method of obtaining such average solutions can be derived from the
calculus of variations by seeking functions that minimize a certain integral:

I = �t1

t0

F( ẋ,x,t) dt = minimum

Consider a function of the form

x̃(t) = a1ψ1(t) + a2ψ2(t) + . . . + anψn(t)

where the ψk(t) are prescribed functions. If x̃ is now introduced for x, then

I = I(a1, a2, . . . , an)

and a necessary condition for I to be a minimum is

= 0, = 0, . . . , = 0 (4.39)

This gives n equations of the form

= �t1

t0

� ψk + ψ̇k	 dt = 0 (4.40)

for determining the n unknown coefficients. Integrating Eq. (4.40),

= � ψk
t1

t0

+ �t1

t0

� − � 	ψk dt = 0

The first term is zero because ψk must satisfy the boundary conditions; the expres-
sion in brackets under the integral in the second term is Euler’s equation. The con-
ditions given in Eqs. (4.39) then reduce to

�t

t0

E(x̃)ψk dt = 0 [k = 1, 2, . . . , n] (4.41)
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This is the same as Eq. (4.38); thus, it is not necessary to “know” the variational prob-
lem, but only the differential equation.The conditions given in Eqs. (4.41) then yield
average solutions based on variational concepts.

Examples. As a first example of the application of the Ritz method, consider the
equation

ẍ + κ 2xn = 0

Assume a single-term solution of the form

x̃ = A cos ωt

The Ritz procedure, defined by Eq. (4.41), gives

�2π

0
(−ω2A cos2 ωt + κ 2An cosn + 1 ωt) d(ωt) = 0

from which

= An − 1�π/2

0
cosn + 1 ωt d(ωt) = An − 1ϕ(n) (4.42)

The comparable exact solution is

= �  Xn − 1 = Φ(n)Xn − 1 (4.43)

Values of ϕ(n) from the approximate analysis and Φ(n) from the exact analysis are
compared directly in Table 4.1, affording an appraisal of the accuracy of the method.

TABLE 4.1 Values of the Functions ψ(n), Φ(n), ϕ(n)*

n ψ(n) Φ(n) ϕ(n)

0 1.4142 1.2337 1.2732
1 1.5708 1.0000 1.0000
2 1.7157 0.8373 0.8488
3 1.8541 0.7185 0.7500
4 1.9818 0.6282 0.6791
5 2.1035 0.5577 0.6250
6 2.2186 0.5013 0.5820
7 2.3282 0.4552 0.5469

* The mathematical expressions for ψ(n), Φ(n), and ϕ(n)
and the equations to which they refer are:

duψ(n) = � �1

0 �1� −� u�n�+�1�

Φ(n) = [Eq. (4.43)]

ϕ(n) = �π/2

0
cosn + 1 σ dσ [Eq. (4.42)]
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Consider now the nonautonomous system described by Duffing’s equation

E � ẍ + κ 2(x + μ2x3) − p cos ωt = 0

Assuming

x̃ = A cos φ, φ = ωt

the Ritz condition, Eq. (4.41), leads to

�2π

0
{[(1 − η2)A − s] cos φ + μ2A3 cos3 φ} cos φ dφ

from which the amplitude-frequency relation is

(1 − η2)A + 3⁄4μ2A3 = ± s (4.44)

where s = η2 =

The upper sign indicates vibration in phase with the exciting force. Equation (4.44)
describes the response curves shown in Fig. 4.14 and corresponds to Eq. (4.24)
obtained by Duffing’s method.

Application of the Ritz method to Van der Pol’s equation, Eq. (4.28), leads to the
identical result given by Eq. (4.37).

GENERAL EQUATIONS FOR RESPONSE CURVES

The Ritz method has been applied extensively in studies of nonlinear differential
equations. Some of the general equations for response curves thereby obtained are
given here, both as a further example of the application of the method and as a col-
lection of useful relations.

SYSTEM WITH LINEAR DAMPING AND GENERAL 

RESTORING FORCES

Consider a system with general elastic restoring force (an odd function) and
described by the equation of motion

aẍ + bẋ + cf(x) − P cos ωt = 0

A solution may be assumed in the form

x̃ = A cos (ωt − θ) = B cos φ + C sin φ (4.45)

where φ = ωt, B = A cos θ, C = A sin θ. Introducing Eq. (4.45) according to the Ritz
conditions, and recalling that f(x) is to be an odd function,

−aω2A cos θ + bωA sin θ + cAF(A) cos θ = P
(4.46)

−aω2A sin θ − bωA cos θ + cAF(A) sin θ = 0

ω2

�
κ 2

p
�
κ 2
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where F(A) = �2π

0
f(A cos σ) cos σ dσ

and σ is simply an integration variable.
Some algebraic manipulations with Eqs. (4.46) give independent equations for

the two unknowns A and θ:

[F(A) − η2]2 + 4D2η2 = � 	2
(4.47)

tan θ = (4.48)

where η2 and s are defined according to Eq. (4.44) and

κ 2 = p = D =

Equation (4.47) describes response curves of the form shown in Fig. 4.15, and Eq.
(4.48) gives the corresponding phase angle relationships. These two equations also
yield other special relations which describe various curves in the response diagram:

Undamped free vibration curve (Fig. 4.13),

η2 = F(A) (4.49)

Undamped response curves (Fig. 4.14),

η2 = F(A) � (4.50)

Locus of vertical tangents of undamped response curves (Fig. 4.17),

η2 = F(A) + A (4.51)

Damped response curves (Fig. 4.15),

η2 = [F(A) − 2D2] � �� 	2
− 4D2[F(A) − D2] (4.52)

Locus of vertical tangents of damped response curves (Fig. 4.17),

[F(A) − η2] �F(A) + A − η2 = −4D2η2 (4.53)

The maximum amplitude of vibration is of interest.The amplitude at the point at
which a response curve crosses the free vibration curve is termed the resonance
amplitude, and is determined in the nonlinear case by solving Eqs. (4.49) and (4.52)
simultaneously. This leads to

2Dη = θ = (4.54)

The first of these two equations defines a hyperbola in the response diagram,
describing the locus of crossing points, as shown in Fig. 4.38; hence, the intersection
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of this curve with the free vibration
curve gives the resonance amplitude.
The phase angle at resonance has the
value π/2, as in the linear case.This result
is of great help in computing response
curves since the effect of damping
(except for very large values) is negligi-
ble except in the neighborhood of reso-
nance.Therefore, one may compute only
the undamped curves (which is not diffi-
cult) and the hyperbola (which does not
contain the nonlinearity); then, the
effect of damping may be sketched in
from knowledge of the crossing point.

SYSTEM WITH GENERAL DAMPING AND 

GENERAL RESTORING FORCES

The preceding analysis may be extended to include the more general differential
equation

E � ẍ + 2Dκg(ẋ) + κ 2f(x) − p cos ωt = 0

By procedures similar to those employed above:

[F(A) − η2]2 + 4D2S2(A) = � 	2
(4.55)

tan θ = (4.56)

where S(A) = �2π

0
g(ωA sin σ) sin σ dσ

In the case of linear velocity damping, S(A) = η, and Eqs. (4.55) and (4.56) reduce
to Eqs. (4.47) and (4.48). The results for various types of damping forces are:

Coulomb damping: g(ẋ) = ±υ0 S(A) =

Linear velocity damping: g(ẋ) = υ1ẋ S(A) = υ1η

Velocity squared damping: g(ẋ) = υ2 ẋ|ẋ| S(A) = υ2η(Aω)

nth-power velocity damping: g(ẋ) = υnẋ|ẋ|n − 1 S(A) = υnη(Aω)n − 1ϕ(n)

where ϕ(n) is defined in Eq. (4.42) and values are given in Table 4.1.
The locus of resonance amplitudes or crossing points is now given by
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STABILITY OF PERIODIC NONLINEAR VIBRATION

Certain systems having nonlinear restoring forces and undergoing forced vibration
exhibit unstable characteristics for certain combinations of amplitude and exciting
frequency. The existence of such an instability leads to the “jump phenomenon”
shown in Fig. 4.16. To investigate the stability characteristics of the response curves,
consider Duffing’s equation

ẍ + κ 2(x + μ2x3) = p cos ωt (4.57)

Assume that two solutions of this equation exist and have slightly different initial
conditions:

x1 = x0

x2 = x0 + δ [δ << x0]

Introducing the second of these into Eq. (4.57) and employing the condition that x0

is also a solution,

δ̈ + κ 2(1 + 3μ2x0
2)δ = 0 (4.58)

Now an expression for x0 must be obtained; assuming a one-term approximation of
the form x0 = A cos ωt, Eq. (4.58) becomes

+ (λ + γ cos ϕ)δ = 0 (4.59)

where κ 2(1 + 3⁄2μ2A2) = 4ω2λ
(4.60)

and 3⁄2κ 2μ2A2 = 4ω2γ 2ωt = ϕ

Equation (4.59) is known as Mathieu’s equation.
Mathieu’s equation has appeared in this analysis as a variational equation char-

acterizing small deviations from the given periodic motion whose stability is to be
investigated; thus, the stability of the solutions of Mathieu’s equation must be stud-
ied.A given periodic motion is stable if all solutions of the variational equation asso-
ciated with it tend toward zero for all positive time and unstable if there is at least
one solution which does not tend toward zero. The stability characteristics of Eq.
(4.59) often are represented in a chart as shown in Fig. 4.39.

From the response diagram of Duffing’s equation, the out-of-phase motion hav-
ing the larger amplitude appears to be unstable. This portion of the response dia-
gram (Fig. 4.16) corresponds to unstable motion in the Mathieu stability chart (Fig.
4.39), and the locus of vertical tangents of the response curves (considering un-
damped vibration for simplicity) corresponds exactly to the boundaries between sta-
ble and unstable regions in the stability chart. Thus, the region of interest in the
response diagram is described by the free vibration

ω2 = κ 2(1 + 3⁄4μ2A2) (4.61)

and the locus of vertical tangents

3⁄2κ 2μ2A2 + = 0 (4.62)
p
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The corresponding curves in the stability chart are taken as those for small posi-
tive values of γ and λ which have the approximate equations

γ = 1⁄2 − 2λ (4.63)

γ = −1⁄2 + 2λ (4.64)

Now, if Eq. (4.61) is introduced into Eqs. (4.60), the resulting equations expanded
by the binomial theorem (assuming μ2 small), and Eq. (4.64) introduced, the result is
an identity.Therefore, the free vibration-response curve maps onto the curve of pos-
itive slope in the stability chart.The locus of vertical tangents to the response curves
maps into the curve of negative slope in the stability chart; this may be seen from the
identity obtained by introducing the equations obtained above by binomial expan-
sion into Eq. (4.63) and then employing Eq. (4.62).

In any given case, it can be determined whether a motion is stable or unstable on
the basis of the values of γ and λ, according to the location of the point in the stabil-
ity chart.

The question of stability of response also can be resolved by means of a “stability
criterion” developed from the Kryloff-Bogoliuboff procedures. The differential
equation of motion is considered in the form

ẍ + κ 2x + f(x,ẋ) = p cos ωt

Proceeding in the manner of the Kryloff-Bogoliuboff procedure described earlier,

Ȧ = f(x,ẋ) sin (κt + θ) − cos ωt sin (κt + θ)

θ̇ = f(x,ẋ) cos (κt + θ) − cos ωt cos (κt + θ)

Expanding the last terms of these equations, the result contains motions of fre-
quency κ, κ + ω, and κ − ω. The motion over a long interval of time is of interest, and
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the motions of frequencies κ + ω and κ − ω may be averaged out; this is accomplished
by integrating over the period 2π/ω:

Ȧ = S(A) − sin(Φ − ωt)

θ̇ = − cos(Φ − ωt)

where S(A) = �2π

0
f(A cos Φ, −Aκ sin Φ) sin Φ dΦ

C(A) = �2π

0
f(A cos Φ, −Aκ sin Φ) cos Φ dΦ

The steady-state solution may be determined by employing the conditions A =
A0, ψ = Φ − ωt = ψ0:

= S 2(A0) + [C(A0) + A0(κ − ω)]2

tan ψ0 =

This steady-state solution will now be perturbed and the stability of the ensuing
motion investigated. Let

A(t) = A0 + ξ(t) [ξ << A0]

ψ(t) = ψ0 + η(t) [η << ψ0]

By Taylor’s series expansion:

ξ̇ = ξS′(A0) − η cos ψ0

η̇ = [(κ − ω) + C′(A0)] + η sin ψ0

where primes indicate differentiation with respect to A. These two differential equa-
tions are satisfied by the solutions

ξ = Aezt η = Bezt

where A and B are arbitrary constants and

z = �[S(A0) + A0S′(A0)] ± �[S(A0) + A0S′(A0)]2 − 4A0p̄ �
and p̄ = p/2κ.

For stability, the real parts of z must be negative; hence, the following criteria can
be established:

[S(A0) + A0S′(A0)] < 0, > 0, ensures stability
d p̄
�
dA0
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�
dA0
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[S(A0) + A0S′(A0)] < 0, < 0, ensures instability

[S(A0) + A0S′(A0)] > 0, 
 0, ensures instability

[S(A0) + A0S′(A0)] = 0, > 0, ensures stability

These criteria can be interpreted in terms of response curves by reference to Fig.
4.14. For systems of this type, [S(A0) + A0S′(A0)] < 0; when dp̄/dA0 > 0, p̄ increases
as A0 also increases. This does not hold for the middle branch of the response
curves, thus confirming the earlier results, namely, that motion along this branch is
unstable.
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CHAPTER 5
SELF-EXCITED VIBRATION

Fredric Ehrich

INTRODUCTION

Self-excited systems begin to vibrate of their own accord spontaneously, the amplitude
increasing until some nonlinear effect limits any further increase. The energy supply-
ing these vibrations is obtained from a uniform source of power associated with the
system which, due to some mechanism inherent in the system, gives rise to oscillating
forces.The nature of self-excited vibration compared to forced vibration is:1

In self-excited vibration the alternating force that sustains the motion is created
or controlled by the motion itself; when the motion stops, the alternating force dis-
appears.

In a forced vibration the sustaining alternating force exists independent of the
motion and persists when the vibratory motion is stopped.

The occurrence of self-excited vibration in a physical system is intimately associ-
ated with the stability of equilibrium positions of the system. If the system is dis-
turbed from a position of equilibrium, forces generally appear which cause the
system to move either toward the equilibrium position or away from it. In the latter
case the equilibrium position is said to be unstable; then the system may either oscil-
late with increasing amplitude or monotonically recede from the equilibrium posi-
tion until nonlinear or limiting restraints appear. The equilibrium position is said to
be stable if the disturbed system approaches the equilibrium position either in a
damped oscillatory fashion or asymptotically.

The forces which appear as the system is displaced from its equilibrium position
may depend on the displacement or the velocity, or both. If displacement-dependent
forces appear and cause the system to move away from the equilibrium position, the
system is said to be statically unstable. For example, an inverted pendulum is stati-
cally unstable. Velocity-dependent forces which cause the system to recede from a
statically stable equilibrium position lead to dynamic instability.

Self-excited vibrations are characterized by the presence of a mechanism whereby
a system will vibrate at its own natural or critical frequency, essentially independent of
the frequency of any external stimulus. In mathematical terms, the motion is de-
scribed by the unstable homogeneous solution to the homogeneous equations of
motion. In contradistinction, in the case of “forced,” or “resonant,” vibrations, the fre-
quency of the oscillation is dependent on (equal to, or a whole number ratio of) the
frequency of a forcing function external to the vibrating system (e.g., shaft rotational
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speed in the case of rotating shafts). In mathematical terms, the forced vibration is the
particular solution to the nonhomogeneous equations of motion.

Self-excited vibrations pervade all areas of design and operations of physical sys-
tems where motion or time-variant parameters are involved—aeromechanical sys-
tems (flutter, aircraft flight dynamics), aerodynamics (separation, stall, musical wind
instruments, diffuser and inlet chugging), aerothermodynamics (flame instability,
combustor screech), mechanical systems (machine-tool chatter), and feedback net-
works (pneumatic, hydraulic, and electromechanical servomechanisms).

ROTATING MACHINERY

One of the more important manifestations of self-excited vibrations, and the one
that is the principal concern in this chapter, is that of rotating machinery, specifically,
the self-excitation of lateral, or flexural, vibration of rotating shafts (as distinct from
torsional, or longitudinal, vibration).

In addition to the description of a large number of such phenomena in standard
vibrations textbooks (most typically and prominently, Ref. 1), the field has been sub-
ject to several generalized surveys.2–4 The mechanisms of self-excitation which have
been identified can be categorized as follows:

Whirling or Whipping

Hysteretic whirl
Fluid trapped in the rotor
Dry friction whip
Fluid bearing whip
Seal and blade-tip-clearance effect in turbomachinery
Propeller and turbomachinery whirl

Parametric Instability

Asymmetric shafting
Pulsating torque
Pulsating longitudinal loading

Stick-Slip Rubs and Chatter

Instabilities in Forced Vibrations

Bistable vibration
Unstable imbalance

In each instance, the physical mechanism is described and aspects of its preven-
tion or its diagnosis and correction are given. Some exposition of its mathematical
analytic modeling is also included.

WHIRLING OR WHIPPING

ANALYTIC MODELING

In the most important subcategory of instabilities (generally termed whirling or
whipping), the unifying generality is the generation of a tangential force, normal to
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an arbitrary radial deflection of a rotating shaft, whose magnitude is proportional to
(or varies monotonically with) that deflection. At some “onset” rotational speed,
such a force system will overcome the stabilizing external damping forces which are
generally present and induce a whirling motion of ever-increasing amplitude, limited
only by nonlinearities which ultimately limit deflections.

A simple mathematical representation of a self-excited vibration in linear sys-
tems with constant coefficients, subject to plane vibration, may be found in the con-
cept of negative damping. Consider the differential equation for a damped, free
vibration:

mẍ + cẋ + kx = 0 (5.1)

This is generally solved by assuming a solution of the form

x = Cest

Substitution of this solution into Eq. (5.1) yields the characteristic (algebraic) equation

s2 + s + = 0 (5.2)

If c < 2�m�k�, the roots are complex:

s1,2 = − ± iq

where q = � − � 	2

The solution takes the form

x = e−ct/2m(A cos qt + B sin qt) (5.3)

This represents a decaying oscillation because the exponential factor is negative, as
illustrated in Fig. 5.1A. If c < 0, the exponential factor has a positive exponent and
the vibration appears as shown in Fig. 5.1B. The system, initially at rest, begins to
oscillate spontaneously with ever-increasing amplitude. Then, in any physical sys-
tem, some nonlinear effect enters and Eq. (5.1) fails to represent the system realisti-
cally. Equation (5.4) defines a nonlinear system with negative damping at small
amplitudes but with large positive damping at larger amplitudes, thereby limiting
the amplitude to finite values:

mẍ + (−c + ax2)ẋ + kx = 0 (5.4)

Thus, the fundamental criterion of stability in linear systems is that the roots of the
characteristic equation have negative real parts, thereby producing decaying amplitudes.

In the case of a whirling or whipping shaft, the equations of motion (for an ideal-
ized shaft with a single lumped mass m) are more appropriately written in polar
coordinates for the radial force balance,

−mω2r + mr̈ + cṙ + kr = 0 (5.5)

and for the tangential force balance,

2mωṙ + cωr − Fn = 0 (5.6)

where we presume a constant rate of whirl ω.

c
�
2m

k
�
m

c
�
2m

k
�
m

c
�
m
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In general, the whirling is predicated
on the existence of some physical phe-
nomenon which will induce a force Fn

that is normal to the radial deflection r
and is in the direction of the whirling
motion—i.e., in opposition to the damp-
ing force, which tends to inhibit the
whirling motion. Very often, this normal
force can be characterized or approxi-
mated as being proportional to the
radial deflection:

Fn = fnr (5.7)

The solution then takes the form

r = r0eat (5.8)

For the system to be stable, the coeffi-
cient of the exponent

a = (5.9)

must be negative, giving the require-
ment for stable operation as

fn < ωc (5.10)

As a rotating machine increases its rotational speed, the left-hand side of this
inequality (which is generally also a function of shaft rotation speed) may exceed the
right-hand side, indicative of the onset of instability. At this onset condition,

a = 0+ (5.11)

so that whirl speed at onset is found to be

ω = � 	1/2
(5.12)

That is, the whirling speed at onset of instability is the shaft’s natural or critical fre-
quency, irrespective of the shaft’s rotational speed (rpm).The direction of whirl may
be in the same rotational direction as the shaft rotation (forward whirl) or opposite
to the direction of shaft rotation (backward whirl), depending on whether the direc-
tion of the destabilizing force Fn is in the direction of rotation or counter to it.

When the system is unstable, the solution for the trajectory of the shaft’s mass is,
from Eq. (5.8), an exponential spiral as in Fig. 5.2.Any planar component of this two-
dimensional trajectory takes the same form as the unstable planar vibration shown
in Fig. 5.1B.

GENERAL DESCRIPTION

The most important examples of whirling and whipping instabilities are

Hysteretic whirl
Fluid trapped in the rotor

k
�
m

fn − cω
�

2mω
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FIGURE 5.1 (A) Illustration showing a decay-
ing vibration (stable) corresponding to negative
real parts of the complex roots. (B) Increasing
vibration corresponding to positive real parts of
the complex roots (unstable).



Dry friction whip
Fluid bearing whip
Seal and blade-tip-clearance effect in turbomachinery
Propeller and turbomachinery whirl

All these self-excitation systems involve friction or fluid energy mechanisms to gen-
erate the destabilizing force.

These phenomena are rarer than forced vibration due to unbalance or shaft mis-
alignment, and they are difficult to anticipate before the fact or diagnose after the
fact because of their subtlety. Also, self-excited vibrations are potentially more
destructive, since the asynchronous whirling of self-excited vibration induces alter-
nating stresses in the rotor and can lead to fatigue failures of rotating components.
Synchronous forced vibration typical of unbalance does not involve alternating
stresses in the rotor and will rarely involve rotating element failure. The general
attributes of these instabilities, insofar as they differ from forced excitations, are
summarized in Table 5.1 and Figs. 5.3A and 5.3B.

HYSTERETIC WHIRL

The mechanism of hysteretic whirl, as observed experimentally,5 defined analyti-
cally,6 or described in standard texts,7 may be understood from the schematic repre-
sentation of Fig. 5.4. With some nominal radial deflection of the shaft, the flexure of
the shaft would induce a neutral strain axis normal to the deflection direction. From
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FIGURE 5.2 Trajectory of rotor center of gravity in unstable
whirling or whipping.
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TABLE 5.1 Characterization of Two Categories of Vibration of Rotating Shafts

Forced or resonant vibration Whirling or whipping

Vibration frequency– Frequency is equal to (i.e., Frequency is nearly constant and
rpm relationship synchronous with) rpm or a relatively independent of rotor

whole number or rational rotational speed or any external
fraction of rpm, as in Fig. 5.3A. stimulus and is at or near one of

the shaft critical or natural
frequencies, as in Fig. 5.3B.

Vibration amplitude– Amplitude will peak in a narrow Amplitude will suddenly increase
rpm relationship band of rpm wherein the rotor’s at an onset rpm and continue

critical frequency is equal to the at high or increasing levels as
rpm or to a whole-number rpm is increased, as in Fig. 5.3B.
multiple or a rational fraction of
the rpm or an external stimulus,
as in Fig. 5.3A.

Influence of damping Addition of damping may reduce Addition of damping may defer
peak amplitude but not ma- onset to a higher rpm but not
terially affect rpm at which materially affect amplitude
peak amplitude occurs, as in after onset, as in Fig. 5.3B.
Fig. 5.3A.

System geometry Excitation level and hence ampli- Amplitudes are independent of
tude are dependent on some system axial symmetry. Given
lack of axial symmetry in the an infinitesimal deflection to an
rotor mass distribution or geom- otherwise symmetric system,
etry, or external forces ap- the amplitude will self-
plied to the rotor. Amplitudes propagate.
may be reduced by refining the
system to make it more per-
fectly axisymmetric (i.e.,
balancing).

Rotor fiber stress For synchronous vibration, the Rotor fibers are subject to oscil-
rotor vibrates in a frozen, de- latory stress at a frequency
flected state, without oscillatory equal to the difference between
fiber stress. rotor rpm and whirling speed.

Avoidance or 1. Tune the system’s critical 1. Restrict operating rpm to
elimination frequencies to be out of the below instability onset rpm.

rpm operating range.
2. Eliminate all deviations from 2. Defeat or eliminate the

axial symmetry in the system instability mechanism.
as built or as induced during
operation (e.g., balancing).

3. Introduce damping to limit 3. Introduce damping to raise
peak amplitudes at critical the instability onset speed to
speeds which must be traversed. above the operating speed

range.
4. Introduce stiffness anisotropy 

to the bearing support system.8



first-order considerations of elastic-beam theory, the neutral axis of stress would be
coincident with the neutral axis of strain.The net elastic restoring force would then be
perpendicular to the neutral stress axis, i.e., parallel to and opposing the deflection. In
actual fact, hysteresis, or internal friction, in the rotating shaft will cause a phase shift
in the development of stress as the shaft fibers rotate around through peak strain to
the neutral strain axis.The net effect is that the neutral stress axis is displaced in angle
orientation from the neutral strain axis, and the resultant force is not parallel to the
deflection. In particular, the resultant force has a tangential component normal to the
deflection, which is the fundamental precondition for whirl. This tangential force
component is in the direction of rotation and induces a forward whirling motion
which increases centrifugal force on the deflected rotor, thereby increasing its deflec-
tion. As a consequence, induced stresses are increased, thereby increasing the whirl-
inducing force component.
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FIGURE 5.3A Attributes of forced vibration or resonance in rotating machinery.



Several surveys and contributions to the understanding of the phenomenon have
been published in Refs. 9, 10, 11, and 12. It has generally been recognized that hys-
teretic whirl can occur only at rotational speeds above the first-shaft critical speed
(the lower the hysteretic effect, the higher the attainable whirl-free operating rpm).
It has been shown13 that once whirl has started, the critical whirl speed that will be
induced (from among the spectrum of criticals of any given shaft) will have a fre-
quency approximately half the onset rpm.

A straightforward method for hysteretic whirl avoidance is that of limiting shafts
to subcritical operation, but this is unnecessarily and undesirably restrictive.A more
effective avoidance measure is to limit the hysteretic characteristic of the rotor.
Most investigators (e.g., Ref. 5) have suggested that the essential hysteretic effect is

5.8 CHAPTER FIVE

FIGURE 5.3B Attributes of whirling or whipping in rotating machinery.



caused by working at the interfaces of joints in a rotor rather than within the mate-
rial of that rotor’s components. Success in avoiding hysteretic whirl has been
achieved by minimizing the number of separate elements, restricting the span of
concentric rabbets and shrunk fitted parts, and providing secure lockup of assem-
bled elements held together by tie bolts and other compression elements. Bearing-
foundation characteristics also play a role in suppression of hysteretic whirl.9

WHIRL DUE TO FLUID TRAPPED IN ROTOR

There has always been a general awareness that high-speed centrifuges are subject
to a special form of instability. It is now appreciated that the same self-excitation
may be experienced more generally in high-speed rotating machinery where liquids
(e.g., oil from bearing sumps, steam condensate, etc.) may be inadvertently trapped
in the internal cavity of hollow rotors. The mechanism of instability is shown
schematically in Fig. 5.5. For some nominal deflection of the rotor, the fluid is flung
out radially in the direction of deflection. But the fluid does not remain in simple
radial orientation.The spinning surface of the cavity drags the fluid (which has some
finite viscosity) in the direction of rotation. This angle of advance results in the cen-
trifugal force on the fluid having a component in the tangential direction in the
direction of rotation. This force then is the basis of instability, since it induces for-
ward whirl which increases the centrifugal force on the fluid and thereby increases
the whirl-inducing force.
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FIGURE 5.4 Hysteretic whirl.



Contributions to the understanding of the phenomenon as well as a complete his-
tory of the phenomenon’s study are available in Ref. 14. It has been shown15 that
onset speed for instability is always above critical rpm and below twice-critical rpm.
Since the whirl is at the shaft’s critical frequency, the ratio of whirl frequency to rpm
will be in the range of 0.5 to 1.0. More recently, extensive experimental surveys of
the phenomenon and considerable detail on its manifestations have been reported.16

Avoidance of this self-excitation can be accomplished by running shafting sub-
critically, although this is generally undesirable in centrifuge-type applications when
further consideration is made of the role of trapped fluids as unbalance in forced
vibration of rotating shafts (as described in Ref. 15). Where the trapped fluid is not
fundamental to the machine’s function, the appropriate avoidance measure, if the
particular application permits, is to provide drain holes at the outermost radius of all
hollow cavities where fluid might otherwise be trapped.
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DRY FRICTION WHIP

As described in standard vibration texts (e.g., Ref. 7), dry friction whip is experi-
enced when the surface of a rotating shaft comes in contact with an unlubricated sta-
tionary guide or shroud or stator system. This can occur in an unlubricated journal
bearing; or with loss of clearance in a hydrodynamic bearing; or inadvertent closure
and contact in the radial clearance of labyrinth seals or turbomachinery blading; or
in power screws.17

The phenomenon may be understood with reference to Fig. 5.6.When radial con-
tact is made between the surface of the rotating shaft and a static part, coulomb 
friction will induce a tangential force on the rotor. Since the friction force is approx-
imately proportional to the radial component of the contact force, we have the pre-
conditions for instability. The tangential force induces a whirling motion which
induces larger centrifugal force on the rotor, which in turn induces a large radial con-
tact and hence larger whirl-inducing friction force.

It is interesting to note that this whirl system is one of the few phenomena in
which the destabilizing force is counter to the shaft rotation direction (i.e., backward
whirl). One may envision the whirling system as the rolling (accompanied by appre-
ciable slipping) of the shaft in the stator system.
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FIGURE 5.6 Dry friction whip.



The same situation can be produced by a thrust bearing where angular deflection
is combined with lateral deflection.18 If contact occurs on the same side of the disc as
the virtual pivot point of the deflected disc, then backward whirl will result. Con-
versely, if contact occurs on the side of the disc opposite to the side where the virtual
pivot point of the disc is located, then forward whirl will result.

It has been suggested (but not concluded)19 that the whirling frequency is gener-
ally less than the critical speed.

The vibration is subject to various types of control. If contact between rotor and
stator can be avoided or the contact area can be kept well lubricated, no whipping
will occur. Where contact must be accommodated, and lubrication is not feasible,
whipping may be avoided by providing abradability of the rotor or stator element to
allow disengagement before whirl. When dry friction is considered in the context of
the dynamics of the stator system in combination with that of the rotor system,20 it is
found that whirl can be inhibited if the independent natural frequencies of the rotor
and stator are kept dissimilar, that is, a very stiff rotor should be designed with a very
soft mounted stator element that may be subject to rubs. No first-order interde-
pendence of whirl speed with rotational speed has been established.

FLUID BEARING WHIP

As described in experimental and analytic literature,21 and in standard texts (e.g.,
Ref. 22), fluid bearing whip can be understood by referring to Fig. 5.7. Consider
some nominal radial deflection of a shaft rotating in a fluid (gas- or liquid-) filled
clearance. The entrained, viscous fluid will circulate with an average velocity of
about half the shaft’s surface speed.The bearing pressures developed in the fluid will
not be symmetric about the radial deflection line. Because of viscous losses of the
bearing fluid circulating through the close clearance, the pressure on the upstream
side of the close clearance will be higher than that on the downstream side.Thus, the
resultant bearing force will include a tangential force component in the direction of
rotation which tends to induce forward whirl in the rotor. The tendency to instabil-
ity is evident when this tangential force exceeds inherent stabilizing damping forces.
When this happens, any induced whirl results in increased centrifugal forces; this, in
turn, closes the clearance further and results in ever-increasing destabilizing tangen-
tial force. Detailed reviews of the phenomenon are available in Refs. 23 and 24.

These and other investigators have shown that to be unstable, shafting must
rotate at an rpm equal to or greater than approximately twice the critical speed, so
that one would expect the ratio of frequency to rpm to be equal to less than approx-
imately 0.5.

The most obvious measure for avoiding fluid bearing whip is to restrict rotor
maximum rpm to less than twice its lowest critical speed. Detailed geometric varia-
tions in the bearing runner design, such as grooving and tilt-pad configurations, have
also been found effective in inhibiting instability. In extreme cases, use of rolling
contact bearings instead of fluid film bearings may be advisable.

Various investigators (e.g., Ref. 25) have noted that fluid seals as well as fluid
bearings are subject to this type of instability.

SEAL AND BLADE-TIP-CLEARANCE EFFECT IN TURBOMACHINERY

Axial-flow turbomachinery may be subject to an additional whirl-inducing effect
by virtue of the influence of tip clearance on turbopump or compressor or turbine
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efficiency.26 As shown schematically in Fig. 5.8, some nominal radial deflection will
close the radial clearance on one side of the turbomachinery component and open
the clearance 180° away on the opposite side. We would expect the closer clearance
zone to operate more efficiently than the open clearance zone. For a turbine, a
greater work extraction and blade force level is achieved in the more efficient
region for a given average pressure drop so that a resultant net tangential force is
generated to induce whirl in the direction of rotor rotation (i.e., forward whirl). For
an axial compressor, it has been found27 that the magnitude and direction of the
destabilizing forces are a very strong function of the operating point’s proximity to
the stall line. For operation close to the stall line, very large negative forces (i.e.,
inducing backward whirl) are generated. The magnitude of the destabilizing force
declines sharply for lower operating lines, and stabilizes at a small positive value
(i.e., making a small contribution to inducing forward whirl). In the case of radial-
flow turbomachinery, it has been suggested28 that destabilizing forces are exerted
on an eccentric (i.e., dynamically deflected) impeller due to variations of loading of
the diffuser vanes.

One text29 describes several manifestations of this class of instability—in the
thrust balance piston of a steam turbine; in the radial labyrinth seal of a radial-flow
Ljungstrom counterrotating steam turbine; in the Kingsbury thrust bearing of a
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FIGURE 5.7 Fluid bearing whip.



vertical-shaft hydraulic turbogenerator; and in the tip seals of a radial-inflow hy-
draulic Francis turbine.

A survey paper3 includes a bibliography of several German papers on the subject
from 1958 to 1969.

An analysis is available30 dealing with the possibility of stimulating flexural vibra-
tions in the seals themselves, although it is not clear if the solutions pertain to gross
deflections of the entire rotor.

It is reasonable to expect that such destabilizing forces may at least contribute
to instabilities experienced on high-powered turbomachines. If this mechanism
were indeed a key contributor to instability, one would conjecture that very small
or very large initial tip clearances would minimize the influence of tip clearance 
on the unit’s performance and, hence, minimize the contribution to destabilizing
forces.

5.14 CHAPTER FIVE

FIGURE 5.8 Turbomachinery tip clearance effect’s contribution to whirl.



PROPELLER AND TURBOMACHINERY WHIRL

Propeller whirl has been identified both analytically31 and experimentally.32 In this
instance of shaft whirling, a small angular deflection of the shaft is hypothesized, as
shown schematically in Fig. 5.9.The tilt in the propeller disc plane results at any instant
at any blade in a small angle change between the propeller rotation velocity vector and
the approach velocity vector associated with the aircraft’s speed. The change in local
relative velocity angle and magnitude seen by any blade results in an increment in its
load magnitude and direction.The cumulative effect of these changes in load on all the
blades results in a net moment whose vector has a significant component which is nor-
mal to and approximately proportional to the angular deflection vector. By analogy to
the destabilizing cross-coupled deflection stiffness we noted in previously described
instances of whirling and whipping, we have now identified the existence of a cross-

SELF-EXCITED VIBRATION 5.15

FIGURE 5.9 Propeller whirl.2

coupled destabilizing moment stiffness. At high airspeeds, the destabilizing moments
can grow to the point where they may overcome viscous damping moments to cause
destructive whirling of the entire system in a “conical” mode. This propeller whirl is
generally found to be counter to the shaft rotation direction. It has been suggested33

that equivalent stimulation is possible in turbomachinery.An attempt has been made34

to generalize the analysis for axial-flow turbomachinery. Although it has been shown
that this analysis is not accurate, the general deduction seems appropriate that forward
whirl may also be possible if the virtual pivot point of the deflected rotor is forward of
the rotor (i.e., on the side of the approaching fluid).

Instability is found to be load-sensitive in the sense of being a function of the veloc-
ity and density of the impinging flow. It is not thought to be sensitive to the torque level
of the turbomachine since, for example, experimental work32 was done on an unloaded
windmilling rotor. Corrective action is generally recognized to be stiffening the entire
system and manipulating the effective pivot center of the whirling mode to inhibit
angular motion of the propeller (or turbomachinery) disc as well as system damping.



PARAMETRIC INSTABILITY

ANALYTIC MODELING

There are systems in engineering and physics which are described by linear differ-
ential equations having periodic coefficients

+ p(z) + q(z)y = 0 (5.13)

where p(z) and q(z) are periodic in z. These systems also may exhibit self-excited
vibrations, but the stability of the system cannot be evaluated by finding the roots
of a characteristic equation. A specialized form of this equation, which is represen-
tative of a variety of real physical problems in rotating machinery, is Mathieu’s
equation:

+ (a − 2q cos 2z)f = 0 (5.14)

Mathematical treatment and applications of Mathieu’s equation are given in Refs.
35 and 36.

This general subcategory of self-excited vibrations is termed “parametric insta-
bility,” since instability is induced by the effective periodic variation of the system’s
parameters (stiffness, inertia, natural frequency, etc.). Three particular instances of
interest in the field of rotating machinery are

Lateral instability due to asymmetric shafting and/or bearing characteristics
Lateral instability due to pulsating torque
Lateral instabilities due to pulsating longitudinal compression

LATERAL INSTABILITY DUE TO ASYMMETRIC SHAFTING

If a rotor or its stator contains sufficient levels of asymmetry in the flexibility 
associated with its two principal axes of flexure as illustrated in Fig. 5.10, self-
excited vibration may take place. This phenomenon is completely independent 

of any unbalance, and independent of
the forced vibrations associated with
twice-per-revolution excitation of such
shafting mounted horizontally in a grav-
itational field.

As described in standard vibration
texts,37 we find that presupposing a
nominal whirl amplitude of the shaft at
some whirl frequency, the rotation of
the asymmetric shaft at an rpm differ-
ent from the whirling speed will appear
as periodic change in flexibility in the
plane of the whirling shaft’s radial
deflection. This will result in an instabil-
ity in certain specific ranges of rpm as a

d2f
�
dz2

dy
�
dz

d2y
�
dz2
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FIGURE 5.10 Shaft system possessing un-
equal rigidities, leading to a pair of coupled inho-
mogeneous Mathieu equations.



function of the degree of asymmetry. In general, instability is experienced when the
rpm is approximately one-third and one-half the critical rpm and approximately
equal to the critical rpm (where the critical rpm is defined with the average value of
shaft stiffness), as in Fig. 5.11. The ratios of whirl frequency to rotational speed will
then be approximately 3.0, 2.0, and 1.0. But with gross asymmetries, and with the
additional complication of asymmetrical inertias with principal axes in arbitrary
orientation to the shaft’s principal axes’ flexibility, no simple generalization is pos-
sible.

There is a considerable literature dealing with many aspects of the problem and
substantial bibliographies.38–40

Stability is accomplished by minimizing shaft asymmetries and avoiding rpm
ranges of instability.

LATERAL INSTABILITY DUE TO PULSATING TORQUE

Experimental confirmation41 has been achieved that establishes the possibility of
inducing first-order lateral instability in a rotor-disc system by the application of a
proper combination of constant and pulsating torque.The application of torque to a
shaft in the range of its torsional buckling magnitude affects its natural frequency in
lateral vibration so that the instability may also be characterized as “parametric.”
Analytic formulation and description of the phenomenon are available in Ref. 42
and in the bibliography of Ref. 3. The experimental work (Ref. 41) explored regions
of shaft speed where the disc always whirled at the first critical speed of the rotor-
disc system, regardless of the torsional forcing frequency or the rotor speed within
the unstable region.

It therefore appears that combinations of ranges of steady and pulsating torque,
which have been identified40 as being sufficient to cause instability, should be
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FIGURE 5.11 Instability regimes of rotor system induced by asymmetric stiffness
(Ref. 39).



avoided in the narrow-speed bands where instability is possible in the vicinity of
twice the critical speed and lesser instabilities at 2/2, 2/3, 2/4, 2/5, . . . times the criti-
cal frequency, as in Fig. 5.12, implying frequency/speed ratios of approximately 0.5,
1.0, 1.5, 2.0, 2.5, . . . .

LATERAL INSTABILITY DUE TO PULSATING LONGITUDINAL LOADS

Longitudinal loads on a shaft which are of an order of magnitude of the buckling will
tend to reduce the natural frequency of that lateral, flexural vibration of the shaft.
Indeed, when the compressive buckling load is reached, the natural frequency goes
to zero. Therefore pulsating longitudinal loads effectively cause a periodic variation
in stiffness, and they are capable of inducing “parametric instability” in rotating as
well as stationary shafts,43 as noted in Fig. 5.13.
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FIGURE 5.12 Instability regimes of rotor system induced by pulsating torque
(Ref. 42).

FIGURE 5.13 Long column with pinned ends. A periodic force is superim-
posed upon a constant axial pull. (After McLachlan.43)



STICK-SLIP RUBS AND CHATTER

Mention is appropriate of another family of instability phenomena—stick-slip or
chatter. Though the instability mechanism is associated with the dry friction contact
force at the point of rubbing between a rotating shaft and a stationary element, it
must not be confused with dry friction whip, previously discussed. In the case of
stick-slip, as is described in standard texts (e.g., Ref. 44), the instability is caused by
the irregular nature of the friction force developed at very low rubbing speeds.

At high velocities, the friction force is essentially independent of contact speed.
But at very low contact speeds we encounter the phenomenon of “stiction,” or break-
away friction, where higher levels of friction force are encountered, as in Fig. 5.14.
Any periodic motion of the rotor’s point of contact, superimposed on the basic rela-
tive contact velocity, will be self-excited. In effect, there is negative damping (as illus-
trated in Fig. 5.1B) since motion of the rotor’s contact point in the direction of
rotation will increase relative contact velocity and reduce stiction and the net force
resisting motion. Rotor motion counter to the contact velocity will reduce relative
velocity and increase friction force, again reinforcing the periodic motion. The ratio
of vibration frequency to rotation speed will be much larger than unity.

While the vibration associated with stick-slip or chatter is often reported to be tor-
sional, planar lateral vibrations can also occur. Surveys of the phenomenon are in-
cluded in Refs.45 and 46.The phenomenon is closely related to chatter in machine tools.

Measures for avoidance are similar to those prescribed for dry friction whip:
avoid contact where feasible and lubricate the contact point where contact is essen-
tial to the function of the apparatus.

INSTABILITIES IN FORCED VIBRATIONS

In a middle ground between the generic categories of force vibrations and self-
excited vibrations is the category of instabilities in force vibrations. These instabili-
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FIGURE 5.14 Dry friction characteristic giving rise to stick-slip rubs or chatter.



ties are characterized by forced vibration at a frequency equal to rotor rotation
(generally induced by unbalance), but with the amplitude of that vibration being
unsteady or unstable. Such unsteadiness or instability is induced by the interaction
of the forced vibration on the mechanics of the system’s response, or on the unbal-
ance itself.Two manifestations of such instabilities and unsteadiness have been iden-
tified in the literature—bistable vibration and unstable imbalance.

BISTABLE VIBRATION

A classical model of one type of unstable motion is the relaxation oscillator, or
multivibrator. A system subject to relaxation oscillation has two fairly stable states,
separated by a zone where stable operation is impossible.47 Furthermore, in each of
the stable states, a mechanism exists which will induce the system to drift toward the
unstable state.The system will develop a periodic motion of the general form shown
in Fig. 5.15.

An idealized formulation of this class of vibration with nonlinear damping is48

mẍ + c(x2 − 1)ẋ + kx = 0 (5.15)

When the deflection amplitude x is greater than +1 or less than −1, as in A-B and 
C-D, the damping coefficient is positive, and the system is stable, although presence
of a spring system k will always tend to drag the mass to a smaller absolute deflec-
tion amplitude. When the deflection amplitude lies between −1 and +1, as in B-C or
D-A, the damping coefficient is negative and the system will move violently until it
stabilizes in one of the damped stable zones.

While such systems are common in electronic circuitry, where they may be
referred to as flip-flop circuits, they are rather rare in the field of rotating machinery.
One instance has been observed49 in a rotor system supported by rolling element
bearings with finite internal clearance. In this situation, the effective stiffness of the
rotor is small for small deflections (within the clearance) but large for large deflec-
tions (when full contact is made between the rollers and the rotor and stator). Such a
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FIGURE 5.15 General form of relaxation oscillations.



nonlinearity in stiffness causes a “right-
ward leaning” peak in the response
curve when the rotor is operating in the
vicinity of its critical speed and being
stimulated by unbalance. In this region,
two stable modes of operation are possi-
ble, as in Fig. 5.16. In region A-B, the
rotor and stator are in solid contact
through the rollers. In region C-D, the
rotor is whirling within the clearance,
out of contact. A jump in amplitude is
experienced when operating from B to
C or D to A.When operating at constant
speed, either of the nominally stable
states can drift toward instability by
virtue of thermal effects on the rollers.
When the rollers are unloaded, they will
skid and heat up, thereby reducing the
clearance. When the rollers are loaded,
they will be cooled by lubrication and

will tend to contract and increase clearance. In combination, these mechanisms are
sufficient to cause a relaxation oscillation in the amplitude of the forced vibration.

The remedy for this type of self-excited vibration is to eliminate the precondition
of skidding rollers by reducing bearing geometric clearance, by preloading the bear-
ing, or by increasing the temperature of any recirculating lubricant.

UNSTABLE IMBALANCE

A standard text50 describes the occurrence of unstable vibration of steam turbines
where the rotor “would vibrate with the frequency of its rotation, obviously caused
by unbalance, but the intensity of the vibration would vary periodically and
extremely slowly.” The instability in the vibration amplitude is attributable to ther-
mal bowing of the shaft, which is caused by the heat input associated with rubbing at
the rotor’s deflected “high spot,” or by the mass of accumulated steam condensate in
the inside of a hollow rotor at the rotor’s deflected high spot. In either case, there is
basis for continuous variation of amplitude, since unbalance gives rise to deflection
and the deflection is, in turn, a function of that imbalance.

The phenomenon is sometimes referred to as the Newkirk effect in reference to
its early recorded experimental observation.51 A manifestation of the phenomenon
in a steam turbine has been diagnosed and reported in Ref. 52 and a bibliography is
available in Ref. 53. An analytic study54 shows the possibility of both spiraling, oscil-
lating, and constant modes of amplitude variability.

IDENTIFICATION OF SELF-EXCITED VIBRATION

Even with the best of design practice and application of the most effective methods
of avoidance, the conditions and mechanisms of self-excited vibrations in rotating
machinery are so subtle and pervasive that incidents continue to occur, and the
major task for the vibrations engineer is diagnosis and correction.
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FIGURE 5.16 Response of a rotor, in bearings
with (constant) internal clearance, to unbalance
excitation in the vicinity of its critical speed.



Figure 5.3B suggests the forms for display of experimental data to perceive the
patterns characteristic of whirling or whipping, so as to distinguish it from forced
vibration, Fig. 5.3A. Table 5.2 summarizes particular quantitative measurements that
can be made to distinguish between the various types of whirling and whipping, and
other types of self-excited vibrations. The table includes the characteristic ratio of
whirl speed to rotation speed at onset of vibration, and the direction of whirl with
respect to the rotor rotation.The latter parameter can generally be sensed by noting
the phase relation between two stationary vibration pickups mounted at 90° to one
another at similar radial locations in a plane normal to the rotor’s axis of rotation.
Table 5.1 and specific prescriptions in the foregoing text and references suggest cor-
rective action based on these diagnoses. Reference 55 gives additional description of
corrective actions.
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TABLE 5.2 Diagnostic Table of Rotating Machinery Self-excited Vibrations

R, characteristic ratio:
whirl frequency/rpm Whirl direction

Whirling or whipping:
Hysteretic whirl R ≈ 0.5 Forward
Fluid trapped in rotor 0.5 < R < 1.0 Forward
Dry friction whip No functional relationship; Backward—axial contact 

whirl frequency a function on disc side nearest 
of coupled rotor-stator virtual pivot; Forward—
system; onset rpm is a axial contact on disc side 
function of rpm at contact opposite to virtual pivot;

Backward—radial
contact

Fluid bearing whip R < 0.5 Forward
Seal and blade-tip-clearance Load-dependent Forward—turbine blade 

effect in turbomachinery tip; Backward—
compressor blade tip;
Unspecified—for seal
clearance

Propeller and Load-dependent Backward—virtual pivot 
turbomachinery whirl aft of rotor; Forward—

virtual pivot front of 
rotor  (where front is 
source of impinging flow)

Parametric instability:
Asymmetric shafting R ≈ 1.0, 2.0, 3.0, . . . Unspecified
Pulsating torque R ≈ 0.5, 1.0, 1.5, 2.0, . . . Unspecified
Pulsating longitudinal load A function of pulsating load Unspecified

frequency rather than rpm
Stick-slip rubs and chatter R << 1 Essentially planar rather 

than whirl motion
Instabilities in forced 

vibrations:
Bistable vibration R = 1 with periodic square Forward

wave fluctuations in ampli-
tude of frequency much
lower than rotation rate

Unstable imbalance R = 1 with slow variation Forward
in amplitude
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CHAPTER 6
DYNAMIC

VIBRATION ABSORBERS
AND AUXILIARY
MASS DAMPERS

Sheldon Rubin

INTRODUCTION

Auxiliary masses can be attached to vibrating systems by elastic and damping
devices to assist in reducing the amplitude of vibration of the system. Depending
upon the application, these auxiliary systems fall into two distinct classes:

1. If the vibration reduction of the primary system is to be in a narrow band of fre-
quency, then it is possible to use one or more dynamic auxiliary systems, each
tuned to the center frequency of the target band so as to magnify the resistance
to motion of the primary system in that band. The band may be the centered on
an exciting frequency or on the frequency of a vibration mode of the primary sys-
tem. Such an auxiliary system is traditionally called a tuned vibration absorber
(TVA). The effectiveness of such an auxiliary system is due to narrowband
increase in damping, so it is sometimes called a tuned mass damper (TMD).

2. If damping increase of the primary system over a wide range of frequency is the
objective, then one or more auxiliary systems involving mass addition may be a
practical alternative to modifying the structure of the primary system by other
types of damping treatment (Chap. 36). Such an auxiliary system can be called an
auxiliary mass damper. Tuning may or may not be involved.

FORMS OF AUXILIARY MASS SYSTEMS

In its simplest form, as applied to a single-degree-of-freedom (SDOF ) system, the
character of a dynamic auxiliary system is the same as that of the primary system.

6.1



Thus, a torsional system has a torsionally
connected auxiliary system and a linear
system has a linearly connected auxiliary
system. Schematics are shown in Fig. 6.1.

Multiple-degree-of-freedom auxiliary
systems are often practical to apply and
can more effectively address vibration
reduction of the primary system. One
example is a resiliently connected axi-
symmetric dynamic absorber placed on
a round shaft. The absorber tuning can
be in any radial direction to reduce
bending vibration, or in the axial direc-
tion to reduce axial vibration, or in the
torsional direction to address torsional
vibration, or in some combination of
these directions. Another example is an
axially symmetric cantilever beam con-
taining a mass near its end, as depicted
in Fig. 6.2. In this case, the auxiliary sys-
tem is effective for motion in any axis in
the plane normal to the TVA axis at its

base and for rotation about such an axis. The only directions of base motion not
reacted by the tuning influence are the TVA beam axial and torsional directions.
Thus, the auxiliary system depicted in Fig. 6.2 is effective in four of the six degrees
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FIGURE 6.1 Typical dynamic vibration ab-
sorbers. The principal and auxiliary systems
vibrate in torsion in the arrangement at (A); the
auxiliary system is in the form of masses and
beams at (B).

FIGURE 6.2 Axisymmetric cantilever beam/
mass acting as a tuned vibration absorber when
attached rigidly at its base to a primary system.
This TVA effectively impedes motion along any
direction in the plane normal to the beam cen-
terline at its base, and impedes rotation about
any such axis.

FIGURE 6.3 Typical damped auxiliary mass
systems. In the torsional system at (A), damping
is provided by relative motion of the flywheels J,
Ja. In the antiroll tanks for ships shown at (B),
water flows from one tank to the other and
damping is provided by a constriction in the con-
necting pipe.



of freedom at the base of the beam. The tuning of an auxiliary system on a beam
can be adjusted by adding or subtracting mass or by moving the position of the
mass along the beam.

An auxiliary mass damper is intended to provide vibration reduction in a range
of frequencies by contributing energy dissipation to the primary system. The energy
dissipation in the torsional example in Fig. 6.3A can be in the form of viscous, elas-
tomeric, or hysteretic damping reacting to relative motion of the primary and auxil-
iary flywheels. In the ship roll example in Fig. 6.3B, the dissipation is by laminar or
turbulent flow of fluid through the restriction in the pipe transferring fluid from one
tank to the other caused by ship roll motion.

INFLUENCE OF AN AUXILIARY SYSTEM

Single-degree-of-freedom analysis is often a practical approach to preliminary siz-
ing of an auxiliary system. Influence of an auxiliary system is a function of the rela-
tive mechanical impedance of the primary and auxiliary systems in the affected
degree of freedom. A block diagram of an auxiliary system attached to a primary
system that is a source of vibration at its output is shown in Fig. 6.4A. The impedance
of the primary system Z0 is the complex ratio of force and resulting velocity applica-
ble to the auxiliary system attachment; the inverse of Z0 is the mobility �0 (Chap. 9).
(Another name for mobility is admittance.) The impedance of the auxiliary system Za

is the corresponding force-to-velocity ratio looking into its attachment point; the
inverse of Za is the mobility �a.

Consider a primary system of any complexity vibrating in response to a source
of vibration. Assume that the strength of the vibration source is unaffected by the

presence of an attachment to an output
point of the primary system. In a single
degree of freedom at the attachment
point, the equation governing the rela-
tion of the complex amplitude of a har-
monic force F applied by the primary
system and resulting velocity v is

F = Z0 (v0 − v) or �0 F = v0 − v

(6.1)

The “free velocity” v0 is the complex
amplitude of velocity at the output of
the primary system in the absence of the
attached system; thus, v0 = v when F = 0
(see Fig. 6.4B). Equation (6.1) stems
from the linear superposition of the free
vibration and the additional vibration
caused by the action of the force reacted
from an attached auxiliary system.

The equation governing the attached
system is

F = Za v or �a F = v (6.2)
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FIGURE 6.4 (A) Block diagram of an auxil-
iary system with impedance Za attached to the
output of an excited primary system with imped-
ance Z0; the force F is delivered to the auxiliary
system and a velocity v results. (B) The primary
system without an attachment (F = 0) has an out-
put free velocity of v0. (C) A general load with
impedance ZL is attached to the primary system
and an auxiliary system is also attached to the
primary system; the velocity at the output is vLa.



Combining these two equations, the influence of the attached system can be expressed
as the complex ratio v/v0:

v/v0 = 1/(1 + Za /Z0) = 1/(1 + �0 /�a) (6.3)

Thus, attenuation of the magnitude of the vibration at the attachment point is
inversely proportional to the magnitude of 1 + Za/Z0 or 1 + �0 /�a.A high magnitude
of impedance of the attached system relative to the source will lead to large attenua-
tion.Alternatively, a high magnitude of mobility of the source relative to the attached
system will lead to large attenuation. The force delivered to the attached system is

F = Z0v0 /(1 + Za /Z0) = Z0v0 /(1 + �0 /�a) (6.4)

If the attached system impedance is very large relative to the source impedance, the
delivered force becomes Z0v0, referred to as the blocked force of the source, since
this is the force delivered when the motion of the output is zero; see Eq. (6.1).

A block diagram of an auxiliary system placed at the junction of a source system
and a “load” system is shown in Fig. 6.4C. The aim of the auxiliary system is to reduce
the transmission of vibration into the load whose impedance is ZL. The impedance
of the combination of the load and auxiliary system is simply the sum of their imped-
ances, ZL + Za. Corresponding to Eq. (6.3), the ratio of velocity into the load and
absorber, vLa, to the free velocity is

vLa/v0 = 1/[1 + (ZL + Za)/Z0] (6.5)

The result without the absorber is

vL/v0 = F/F0 = 1/(1 + ZL/Z0) (6.6)

So the effect of the absorber in reducing the input to the load is expressed by

vLa/vL = 1/[1 + Za /(ZL + Z0)] (6.7)

Thus, high absorber impedance relative to the sum of the source and load imped-
ances will provide large attenuation of the magnitude of the vibration transmitted to
the load.An application of Eq. (6.7) to engine vibration transmission into an aircraft
fuselage involved experimental mobility for the engine (source) and for the fuselage
(load) and theoretical impedance of an SDOF auxiliary system (development fol-
lows) tuned to a disturbance frequency.1

Equations (6.1) to (6.7) have counterparts for multiple-DOF systems wherein the
impedances or mobilities are square matrices and the forces and velocities are col-
umn vectors.The generalization of Eq. (6.3) is the relation of the column of modified
velocities v to the column of free velocities v0

v = (Za + Z0)−1Z0 v0 = (�a + �0)−1�a v0 (6.8)

The bold symbols denote matrix or column quantities. Za and Zs are the square matri-
ces of auxiliary system and source impedance, respectively; �a and �0 are the cor-
responding mobility matrices that are inverses of the impedance matrices (Chap. 9).
Experimental measurements for a multiple-degree-of-freedom system invariably
produce elements of the mobility matrix. The generalization of Eq. (6.7) is

vLa = (Za + ZL + Z0)−1(ZL + Z0)vL (6.9)

Effectiveness of the auxiliary system can be expressed in terms of any ratio of mod-
ified and source velocities.
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IMPEDANCE OF A SINGLE-DEGREE-OF-FREEDOM 

TUNED ABSORBER

Using the nomenclature in Fig. 6.5, the equation of motion of an idealized SDOF
absorber (massless stiffness and viscous damper) is

maẍa + ca(ẋa − ẋ0) + ka(xa − x0) = 0 (6.10)

For steady-state harmonic motion at the radian frequency ω,

−ω2ma xa + ( jωca + ka)(xa − x0) = 0 (6.11)

Let F0 be the force required to be applied to the base of the absorber to produce the
motion x0. Then,

F0 = −( jωca + ka)(xa − x0) = −ω2ma xa (6.12)

From Eqs. (6.11) and (6.12), the impedance (Chap. 9) at the base looking toward the
absorber mass is

Za = F0 /jωx0 = jωma( jωca + ka)/(−ω2ma + jωca + ka) (6.13)

In nondimensional terms, Eq. (6.13) becomes

Za = jωma(1 + j2ξaβa)/(1 − βa
2 + j2ξaβa) (6.14)

where ωa = (ka /ma)1/2, the natural frequency of the absorber (tuning frequency)
βa = ω/ωa, the nondimensional frequency
cca = 2(ka ma)1/2 = 2maωa, the critical damping coefficient of the absorber
ξa = ca/cca, the fraction of critical damping

Expressing the normalized impedance of the tuned absorber in real (Re) and imag-
inary (Im) parts,

Re(Za)/ωama = 2ξaβa
4/[(1 − βa

2)2 + (2ξaβa)2] (6.15)

Im(Za)/ωama = βa[1 − βa
2 + (2ξaβa)2]/[(1 − βa

2)2 + (2ξaβa)2] (6.16)

The real part expresses a damping con-
tribution (positive at all frequencies as
required for a stable system). The real
and imaginary part of the absorber im-
pedance, as a factor on the mass imped-
ance magnitude (ωama) at its tuning
frequency, is plotted in Fig. 6.6A and B,
respectively. When the frequency equals
the tuning frequency βa = 1, the normal-
ized real part (damping impedance) goes
to the resonant magnification (1/2ξa, also
known as the quality factor Qa):

Re(Za)/ωama = 1/2ξa for ω = ωa

(6.17)

In the limit of zero absorber damping,
the real part of the impedance goes to
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FIGURE 6.5 An idealized single-degree-of-
freedom auxiliary system with mass m, stiffness
k, and viscous damping coefficient c. The force F0

causes the displacement response x0 at the base.
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FIGURE 6.6 (A) Real part of normalized input impedance (effective damping) of a dynamic
absorber versus the frequency relative to the natural frequency of the absorber ωa. Curves for a
sequence of values of fraction of critical damping ξ appear. (B) Corresponding curves for the imagi-
nary part (mass-like contribution when positive and spring-like when negative).



infinity; thus, a finite force produces no base motion (i.e., a vibration node is pro-
duced at the point and direction of absorber attachment). In the limit of an infinite
frequency (βa = �), the real and imaginary impedances go to the impedance of the
spring and dashpot in parallel since the mass becomes fixed in inertial space. Thus,

Re(Za) = 2ξaωama = ca and Im(Za) = −ωa
2ma/ω = −ka/ω for ω = � (6.18)

As seen in Fig. 6.6A, when ξa is less than 0.3 the real impedance (damping) is a
maximum at the tuning frequency and continually decreases with increasing fre-
quency. For all ξ, an asymptotic value is reached essentially by three times the natu-
ral frequency at a value equal to the viscous damping coefficient per Eq. (6.14).
Devices with ξa up to 0.1 are typically used for narrowband damping effectiveness
and are commonly denoted as tuned vibration absorbers (TVAs). Tuned devices
intended for broad damping effectiveness may be targeted to have ξa in the range of
0.3 to 1 and may be more appropriately denoted as tuned mass dampers (TMDs).

As seen in Fig. 6.6B, the imaginary part of Za/ωama, is positive (mass-like) below
the natural frequency and negative (spring-like) above. For ξa up to 0.3, a mass-like
peak occurs just below the natural frequency and a stiffness-like peak occurs just
above the natural frequency.Thus, the dynamic absorber will cause a lowering of sys-
tem natural frequencies below the tuning frequency due to mass-like addition by the
absorber and an increase of system natural frequencies above its tuning frequency
due to stiffness-like addition.

IMPEDANCE OF AN ABSORBER WITH MASS AND 

VISCOUS DAMPER ONLY

Without stiffness, this becomes the limiting case for a zero tuning frequency of a
dynamic absorber. Setting ka = 0 in Eq. (6.13), the impedance is

Za = F0 / jωx0 = jωma( jωca)/(−ω2ma + jωca) = ca/(1 − jca/maω) (6.19)

When the product of mass and frequency is high enough to make ca/maω small, the
impedance is close to that of the viscous damper alone. Effectively, the mass motion
becomes small enough so that the input motion to the absorber is close to the rela-
tive motion across the damper. An optimum damping for such an auxiliary system
attached to an SDOF primary system is described subsequently.

EFFECTIVENESS OF AN SDOF ABSORBER ATTACHED TO AN 

SDOF PRIMARY SYSTEM

It is instructive to address the interaction between an SDOF dynamic absorber and
an SDOF primary system.2–4 The equation of motion of the SDOF primary system
alone, shown in Fig. 6.7A with force excitation of the primary mass, is

mẍ0 + cẋ0 + kx0 = F (6.20)

The impedance of this primary system is

Z0 = F/jωx0 = (−ω2m + jωc + k)/jω (6.21)
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In nondimensional terms, Eq. (6.21) becomes

Z0 = mω0
2(1 − β2 + j2ξβ)/jω (6.22)

where ω0 = (k/m)1/2, the natural frequency of the primary system
β = ω/ω0, a nondimensional frequency
cc = 2(km)1/2 = 2mω0, the critical damping of the primary system
ξ = c/cc, the fraction of critical damping of the primary system

At the source natural frequency, ω = ω0 and β = 1, the magnitude of the source
impedance is a minimum equal to the damping coefficient of the primary system:

Z0 = mω0
2 j2ξβ/jω = cc for ω = ω0

(6.23)

Thus, the primary system impedance
vanishes at its natural frequency if it is
undamped; that is, an infinitely large
velocity will result from a finite force
applied to the primary system mass.

A dynamic auxiliary system attached
to a primary system is shown in Fig. 6.7B.
The ratio of the velocity of the primary
mass with the absorber attached to the
free velocity of the primary mass, v/v0, is
given in terms of impedances in Eq.
(6.3). Inserting Eq. (6.23) for the pri-
mary system impedance and Eq. (6.14)
for the absorber impedance, yields

v/v0 = [1 − μβ2(1 + j2ξaβa)/(1 − βa
2 + j2ξaβa)(1 − β2 + j2ξβ)]−1 (6.24)

The ratio of absorber mass to primary mass is μ = ma/m.
If the absorber were tuned to the primary system natural frequency, ωa = ω0, the

velocity ratio at this common frequency becomes

v/v0 = 4ξaξ/[4ξaξ + μ(1 + j2ξa)] (6.25)

If 4ξaξ << μ and 4ξ a
2 << 1, the absorber effectiveness is closely given by

v/v0 = 4ξaξ/μ (6.26)

For example, with Eq. (6.26), if μ = 0.05 and ξ = ξa = 0.02, v/v0 = 0.032 versus 0.031 by
Eq. (6.25), so that a reduction of the free velocity by a factor of 31 will result.

Free vibration of the composite system obeys Z0 + Za = 0 or

jωma(1 + j2ξaβa)/(1 − βa
2 = j2ξaβa) + mω0

2(1 − β2 + j2ξβ)/jω = 0 (6.27)

In the absence of damping, free vibration occurs at the natural frequencies of this
two-DOF system (designated ωn) which are solutions of

(ωn
2 − ωa

2)(ωn
2 − ω0

2) − ωn
2ωa

2 = 0 (6.28)

The natural frequencies are found from the roots ωn
2 of Eq. (6.28):

ωn
2 = [ωa

2(1 + μ) + ω0
2]/2 � {[ωa

2(1 + μ) − ω0
2]2/4 + ωa

2ω0
2μ}0.5 (6.29)
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FIGURE 6.7 (A) The primary system is excited
by a force F on its mass, resulting in a displace-
ment x0. (B) An auxiliary system is attached and
the displacement of the primary mass becomes x.



Consider the case of an absorber intended to attenuate response to an excitation
with a moderately variable frequency. A strategy for preliminary design of the ab-
sorber mass might be to select a trial series of absorber mass values and tune each
mass case to place the square of the target excitation frequency ωT midway between
the square of the higher and lower system resonance frequencies. Namely,

ωa
2 = (2ωT

2 − ω0
2)/(1 + μ) (6.30)

Then, to observe whether the absorber mass is sufficient to cause the two system res-
onances to lie outside the range of the excitation frequency, calculate the system fre-
quencies from Eq. (6.29). Finally, include system damping and absorber damping to
achieve the desired attenuation versus excitation frequency.

Minimization of Response Near a Primary System Mode. When a relatively
light auxiliary system is tuned to near the natural frequency of the SDOF primary
system, the coupled system has a pair of closely spaced modes. The amplification of
primary mass response to force input will have two closely spaced peaks as long as
the damping in the auxiliary system is not too large; for example, see Fig. 6.8. Note
that all curves pass through the two fixed points A and B, independent of damping.
Peak amplification can be minimized with proper tuning and damping of the auxil-
iary system; for example, see Fig. 6.9.

This optimization problem has been investigated extensively for an undamped
primary system.2–6 Let α be the ratio of absorber and primary natural frequencies:

α = ωa/ω0 (6.31)
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FIGURE 6.8 Curves for auxiliary mass damper showing amplitude of vibra-
tion of mass of primary system as a function of the ratio of forcing frequency
ω to natural frequency of primary system ω = �k�/m�. The mass ratio ma/m =
0.05, and the natural frequency ωa of the auxiliary mass system is equal to the
natural frequency ω0 of the primary system. Curves are included for several
values of damping in the auxiliary system.



The condition that the points A and B have the same amplification is

α* = 1/(1 + μ) (6.32)

This optimum tuning leads to equal amplification P* at the fixed points A and B
given by

P* = PA = PB = [(2 + μ)/μ]1/2 (6.33)

Given that P* is the target value of peak amplification, the necessary mass ratio is μ*
from Eq. (6.33):

μ* = 2/(P*2 − 1) (6.34)

Finally, two values of optimum damping of the auxiliary system have been derived
based on slightly different conditions for the optimization:2,6

ξa,opt1 = [(3/8)μ*/(1 + μ*)]0.5 and ξa,opt2 = [(1/2)μ*/(1 + μ*)]0.5 (6.35)

Figure 6.9 shows the difference in the amplification for the two values of optimum
damping for the mass ratio of 0.05.The higher value of damping in Eq. (6.35) has the
benefit of a lower relative displacement within the absorber.6 Studies have also been
applied to multimass systems.7,8

Optimum Damping for an Auxiliary Mass Absorber Connected to the Pri-
mary System with Damping Only. In general, the most effective damping is
obtained where the auxiliary mass damping system includes a spring in its connec-
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FIGURE 6.9 Curves similar to Fig. 6.8 but with optimum tuning. Curves 1
apply to an undamped absorber, curve 2 represents infinite damping in the aux-
iliary system, and curves 3 have horizontal tangents at the fixed points A and B.



tion to the primary system. However, such a design requires a calculation of the opti-
mum stiffness of the spring. Sometimes it is more expedient to add an oversize mass,
coupled only by damping to the primary system, than it is to compute the optimum
system. However, if use is made of such a simplified damper by taking it from a list
of standard dampers and applying it with a minimum of calculations, the stock
dampers should be as efficient as the application will permit.

Curves showing the amplification of motion of the primary mass for a mass ratio
μ = 0.4 appear in Fig. 6.10.The fixed point A is at zero frequency and B is at the inter-
section of the curves for ξ = 0 (absorber mass is disconnected) and ξ = � (absorber
mass is rigidly connected). The optimum damping is the one that makes the peak
amplification appear at fixed point B. The optimum viscous damping coefficient of
the absorber is

ca* = 2maω0/[2(2 + μ)(1 + μ)]0.5 (6.36)

As a function of the ratio of primary to absorber mass (m/ma), the values for the
amplitude of vibration of the primary mass, the relative amplitude between the pri-
mary and absorber masses, and optimum damping constants are given in Figs. 6.11,
6.12, and 6.13, respectively.

Auxiliary Mass Damper Using Coulomb Friction Damping.9 Dampers rely-
ing on coulomb friction (i.e., friction whose force is constant) have been widely
used. A damper relying on dry friction and connected to its primary system with a
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FIGURE 6.10 Curves similar to Fig. 6.9 for system having auxiliary mass
coupled by damping only. Several values of damping are included.
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FIGURE 6.11 Displacement amplitude of the primary mass as a function
of the size of the auxiliary mass: (a) auxiliary system coupled only by
coulomb friction (α = 0) with optimum damping; (b) auxiliary system cou-
pled only by viscous damping (α = 0) of optimum value; (c) auxiliary system
coupled by spring and damper tuned to frequency of primary system (α = 1)
with optimum damping; (d) auxiliary system coupled by spring and damper
with optimum tuning [α = 1/(1 + μ)] and optimum damping.

FIGURE 6.12 Relative displacement amplitude between the primary mass
and the auxiliary mass as a function of the size of the auxiliary mass: (a) aux-
iliary system coupled by spring and damper with optimum tuning [α = 1/
(1 + μ)] and optimum damping; (b) auxiliary system coupled only by viscous
damping (α = 0) of optimum value; (c) auxiliary system coupled by spring and
damper tuned to frequency of primary system (α = 1) with optimum damping.
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spring is too complicated to be analyzed or to be adjusted by experiment. For this
reason, a damper with coulomb friction has been used with only friction damping
connecting the seismic mass (usually in a torsional application) to the primary sys-
tem.2,4 Because the motion is irregular, it is necessary to use energy methods of
analysis. The analysis given here applies to the case of linear vibration. By analogy,
the application to torsional or other vibration can be made easily (see Table 2.1 for
analogous parameters).

Consider the system shown in Fig. 6.14. It consists of a mass resting on wheels that
provide no resistance to motion and are connected through a friction damper to a wall
that is moving sinusoidally.The friction damper consists of two friction facings that are
held on opposite sides of a plate by a spring that can be adjusted to give a desired
clamping force.The maximum force that can be transmitted through each interface of
the damper is the product of the normal force and the coefficient of friction; the max-
imum total force for the damper is the summation over the number of interfaces.

Consider the velocity diagrams shown
in Fig. 6.15A, B, and C. In these diagrams
the velocity of the moving wall, ẋ = x0ω
sin ωt, is shown by curve 1; the velocity u̇
of the mass is shown by curve 2. The
force exerted by the damper when slip-
ping occurs is Fs.When Fs ≥ mü, the mass
moves sinusoidally with the wall. When
Fs < mü, slipping occurs in the damper
and the mass is accelerated at a constant
rate. Since a constant acceleration pro-
duces a uniform change in velocity, the

FIGURE 6.13 Curves showing damping required in auxiliary mass systems
to minimize vibration amplitude of primary system: (a) auxiliary mass cou-
pled by viscous damping only (α = 0); (b) auxiliary system coupled by spring
and damper tuned to frequency of primary system (α = 1); (c) auxiliary sys-
tem coupled by spring and damper with optimum tuning [α = 1/(1 + μ)].The
ordinate of the curves is ζα, where ζ is the fraction of critical damping in the
auxiliary system [Eq. (6.4)] and α is the tuning parameter [Eq. (6.31)].

FIGURE 6.14 Schematic diagram of auxiliary
mass absorber with coulomb friction damping.



6.14 CHAPTER SIX

velocity of the mass when the damper is slipping is shown by straight lines. The rela-
tive velocity between the wall and the mass is shown by the vertical shading.

Figure 6.15A applies to a damper with a low friction force. The damper slips con-
tinuously. In Fig. 6.15B the velocities resulting from a larger friction force are shown.
Slipping disappears for certain portions of the cycle. Where the wall and the mass
have the same velocity, their accelerations also are equal. Slipping occurs when the
force transmitted by the damper is not large enough to keep the mass accelerating
with the wall. Since at the breakaway point the accelerations of the wall and mass
are equal, their velocity-time curves have the same slope; i.e., the curves are tangent
at this point. In Fig. 6.15C, the damping force is so large that the mass follows the
wall for a considerable portion of the cycle and slips only where its acceleration
becomes greater than the value of Fs/m. A slight increase in the clamping force or in
the coefficient of friction locks the mass to the wall; then there is no relative motion
and no damping.

Because of the nature of the damping force, the damping provided by the friction
damper can be computed most practically in terms of energy. If the friction force
exerted through the damper is Fs, the energy dissipated by the damper is the prod-
uct of the friction force and the total relative motion between the mass and the mov-
ing wall.The time reference is taken at the moment when the auxiliary mass m has a
zero velocity and is being accelerated to a positive velocity, Fig. 6.15A. Let the period
of the vibratory motion of the wall be τ = 2π/ω, where ω is the angular frequency of
the wall motion. By symmetry, the points of no slippage in the damper occur at times
−τ/4, τ/4, and 3τ/4. Let the time when the velocity of the wall is zero be −t0; then the
velocity of the wall ẋ is

ẋ = +x0ω sin ω(t + t0)

FIGURE 6.15 Velocity-time diagrams for motion of wall (curve 1) and mass (curve 2) of Fig.
6.14. The conditions for a small damping force are shown at (A), for an intermediate damping
force at (B), and for a large damping force at (C). The relative velocity between the wall and the
mass is indicated by vertical shading.
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The velocity u̇ of the mass for −τ/4 < t < τ/4 is

u̇ = üt = t

The velocities of the wall and the mass are equal at time t = τ/4:

x0ω sin ω � + t0	 =

Since ωτ/4 = π/2, sin ω(τ/4 + t0) = cos ωt0. Therefore,

cos ωt0 =

The relative velocity between the moving wall and the mass is ẋ − u̇, and the total rel-
ative motion is the integral of the relative velocity over a cycle. Note that the area
between the two curves for the second half of the cycle is the same as for the first.
Hence, the work V per cycle is

V = 2 �τ/4

−τ/4
Fs(ẋ − u̇) dt = 4Fsx0 �1 − � 	2

(6.37)

Optimum damping occurs when the work per cycle is a maximum. It can be deter-
mined by setting the derivative of V with respect to Fs in Eq. (6.37) equal to zero and
solving for Fs:

(Fs)opt = mω2x0 (6.38)

Energy absorption per cycle with optimum damping is, from Eq. (6.37),

Vopt = mω2x0
2 (6.39)

A comparison of the effectiveness of the Coulomb friction damper with other types
is given in Fig. 6.11.

PRACTICAL APPLICATIONS OF AUXILIARY 

MASS DAMPERS AND ABSORBERS TO 

SINGLE-DEGREE-OF-FREEDOM SYSTEMS

THE DYNAMIC ABSORBER

The dynamic absorber, because of its tuning, can be used to eliminate vibration only
where the frequency of the vibration is constant. Many pieces of equipment to which
it is applied are operated by alternating current. So that it can be used for time keep-
ing, the frequency of this alternating current is held remarkably constant. For this
reason, most applications of dynamic absorbers are made to mechanisms that oper-
ate in synchronism from an ac power supply.

An application of a dynamic absorber to the pedestal of an ac generator having
considerable vibration is shown in Fig. 6.16, where the relative sizes of absorber and
pedestal are shown approximately to scale. In this case, the application is made to a
complicated structure and the mass of the absorber is much less than that of the pri-
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mary system; however, since the fre-
quency of the excitation is constant, the
dynamic absorber reduces the vibration.
When the mass ratio is small, it is impor-
tant that the absorber be accurately
tuned and that the damping be small. In
this case, the excitation was the unbal-
ance in the turbine rotor which was elas-
tically connected to the pedestal through
the flexibility of the shaft. If the absorber
were ideally effective, there would be 
no forces at the frequency of the shaft
speed; therefore, there would be no dis-
placements from the pedestal where the
force is neutralized through the remain-
der of the structure.

The dynamic absorber has been ap-
plied to the electric clipper shown in Fig.
6.17. The structure consisting of the cut-
ter blade and its driving mechanism is
actuated by the magnetic field at a fre-
quency of 120 Hz, as a result of the 60-Hz
ac power supply. The forces and torques
required to move the blade are balanced
by reactions on the housing, causing it to
vibrate.The dynamic absorber tuned to a

frequency of 120 Hz enforces a node at the location of its mass. Since this is approxi-
mately the center of gravity of the assembly of the cutter and its driving mechanism,
the absorber effectively neutralizes the unbalanced force. The moment caused by
the rotation of the moving parts is still unbalanced. A second very small dynamic
absorber placed in the handle of the clipper could enforce a node at the handle and
substantially eliminate all vibration.The design of these absorbers is simple after the
unbalanced forces and torques generated by the cutter mechanism are computed.
The sum of the inertia forces generated by the two absorbers, m1x1ω2 + m2x2ω2

(where m1 and x1 are the mass and amplitude of motion of the first absorber, m2 and
x2 are the corresponding values for the second absorber, and ω = 240π), must equal
the unbalanced force generated by the clipper mechanism. The torque generated by
the two absorbers must balance the torque of the mechanism. Since the value of ω2

is known, the values of m1x1 and m2x2 can be determined. Weights that fit into the
available space with adequate room to move are chosen, and a spring is designed of
such stiffness that the natural frequency is 120 Hz.

Because of the desirable balancing properties of the simple dynamic absorber
and the constancy of frequency of ac power, it might be expected that devices oper-
ating at a frequency of 120 Hz would be used more widely. However, their applica-
tion is limited because the frequency of vibration is too high to allow large
amplitudes of motion.

REDUCTION OF ROLL OF SHIPS BY AUXILIARY TANKS

An interesting application of auxiliary mass absorbers is found in the auxiliary tanks
used to reduce the rolling of ships, as shown in Fig. 6.18. When a ship is heeled, the
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FIGURE 6.17 Application of a dynamic ab-
sorber to a hair clipper.

FIGURE 6.16 Application of a dynamic ab-
sorber to the bearing pedestal of an ac generator.



restoring moment krφ acting on it is pro-
portional to the angle of heel (or roll).
This restoring moment acts to return the
ship (and the water that moves with it)
to its equilibrium position. If Is repre-
sents the polar moment of inertia of the
ship and its entrained water, the differ-
ential equation for the rolling motion of
the ship is

Is φ̈ + krφ = Ms (6.40)

where Ms represents the rolling moments
exerted on the ship, usually by waves.

To reduce rolling of the ship, auxil-
iary wing tanks connected by pipes are
used. The water flowing from one tank
to another has a natural frequency that
is determined by the length and cross-
sectional area of the tube connecting the

tanks. The damping is controlled by restricting the flow of water, either with a valve
S in the line that allows air to flow between the tanks (Fig. 6.18) or with a valve V in
the water line. Since the tanks occupy valuable space, the mass ratio of the water in
the tanks to the ship is small. Fortunately, the excitation from waves generally is not
large relative to the restoring moments, and roll becomes objectionable only
because the normal damping of a ship in rolling motion is not very large. The use of
antirolling tanks in the German luxury liners Bremen and Europa reduced the max-
imum roll from 15 to 5°.

REDUCTION OF ROLL OF SHIPS BY GYROSCOPES

A large gyroscope may be used to reduce roll in ships, as shown in Fig. 6.19. In
response to the velocity of roll of a ship, the gyroscope precesses in the plane of sym-

metry of the ship. By braking this preces-
sion, energy can be dissipated and the
roll reduced. The torque exerted by the
gyroscope is proportional to the rate of
change of the angular momentum about
an axis perpendicular to the torque. Let-
ting I represent the polar moment of
inertia of the gyroscope about its spin
axis and θ̇ the angular velocity of preces-
sion of the gyroscope, then the equation
of motion of the ship is

Is φ̈ + krφ + IΩθ̇ = Ms (6.41)

Assume that the gyroscope has (1) a
moment of inertia about the precession
axis of Ig, (2) a weight of W, and (3) that
its center of gravity is below the gimbal
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FIGURE 6.18 Cross section of ship equipped
with antiroll tanks. The flow of water from one
tank to the other tends to counteract rolling of
the ship.

FIGURE 6.19 Application of a gyroscope to a
ship to reduce roll.



axis (as it must be for the gyro to come to equilibrium in a working position) a dis-
tance a, as shown in Fig. 6.19. Then the equation of motion of the gyroscope is

Igθ̈ + Waθ + cθ̇ − IΩφ̇ = 0 (6.42)

where Ω is the spin velocity of the gyroscope. From Eq. (6.42), for a roll frequency of
ω, the angle of precession of the gyroscope is

θ = (6.43)

The torque exerted on the ship is

IΩθ̇ = (6.44)

The equivalent moment of inertia of the gyroscope system in its reaction on the ship is

(6.45)

It follows that

= � (6.46)

where the parameters are defined in terms of ship and gyro constants as follows:

βg = β = ζ = μ = φst =

Because IΩ can be made large by using a large gyro rotor and spinning it at a high
speed, and Wa can be made small by choice of a design, the value of μ can be made
quite large even though Is is large. In one experimental ship, μ = 20 was obtained.
Even with this large value of μ, the precession angle of the gyroscope would become
very large for optimum damping. Therefore it is necessary to use much more damp-
ing than optimum. Gyro stabilizers were used on the Italian ship Conte di Savoia;
they are sometimes installed on yachts.

Both antirolling tanks and gyro stabilizers are more effective if they are active
rather than passive. Activated dampers are considered below.

AUXILIARY MASS DAMPERS APPLIED TO

ROTATING MACHINERY

An important industrial use of auxiliary mass systems is to neutralize the unbalance
of centrifugal machinery.An application is the balance ring in the spin dryer of home
washing machines.The operation of such a balancer is dependent upon the basket of
the washer rotating at a speed greater than the natural frequency of its support. The
balance ring is attached to the washing machine basket concentric with its axis of
rotation, as shown in Fig. 6.20.

Consider the washing machine basket shown in Fig. 6.20.When its center of gravity
does not coincide with its axis of rotation and it is rotating at a speed lower than its
critical speed (corresponding to the natural frequency in rocking motion about the
spherical seat), the centrifugal force tends to pull the rotational axis in the direction of
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the unbalance. This effect increases with
an increase in rotational speed until the
critical speed is reached. At this speed,
the amplitude would become infinite if it
were not for the damping in the system.
Above the critical speed, the phase posi-
tion of the axis of rotation relative to the
center of gravity shifts so that the basket
tends to rotate about its center of gravity
with the flexibly supported bearing mov-
ing in a circle about an axis through the
center of gravity.The relative positions of
the bearing center and the center of grav-
ity are shown in Fig. 6.21A and B.

Since the balance ring is circular with
a smooth inner surface, any weights or
fluids contained in the ring can be acted

upon only by forces directed radially. When the ring is rotated about a vertical axis,
the weights or fluids will move within the ring in such a manner as to be concen-
trated on the side farthest from the axis of rotation. If this concentration occurs
below the natural frequency (Fig. 6.21A), the weights tend to move farther from the
axis and the resultant center of gravity is displaced so as to give a greater eccentric-
ity.The points A and G rotate about the axis O at the frequency ω.The initial eccen-
tricity of the center of gravity of the washer basket and its load from the axis of
rotation is represented by e, and ρ is the elastic displacement of this center of rota-
tion due to the centrifugal force. Where the off-center rotating weight is W, the
unbalanced force is (W/g)(ρ + e)ω2 [where ρ = e/(1 − β2) and β2 = ω2/ωn

2 < 1] and acts
in the direction from A to G.

If the displacement of the weights or fluids in the balance ring occurs above the
natural frequency, the center of gravity tends to move closer to the dynamic loca-
tion of the axis. The action in this case is shown in Fig. 6.21B. Then the points A and

G rotate about O at the frequency ω.
The unbalanced force is (W/g)(ρ + e)ω2

[where ρ = e/(1 − β2) and β2 = ω2/ωn
2 > 1].

This gives a negative force that acts in a
direction from G to A. Thus, the eccen-
tricity is brought toward zero and the
rotor is automatically balanced. Because
it is necessary to pass through the critical
speed in bringing the rotor up to speed
and in stopping it, it is desirable to heav-
ily damp the balancing elements, either
fluid or weights.

In practical applications, the balanc-
ing elements can take several forms. The
earliest form consisted of two or more
spheres or cylinders free to move in a
race concentric with the axis of the rotor,
as shown in Fig. 6.22A. A later modifica-
tion consists of three annular discs that
rotate about an enlarged shaft concentric
with the axis, as indicated in Fig. 6.22B.
These are contained in a sealed compart-
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FIGURE 6.20 Schematic diagram showing lo-
cation of balance ring on basket of a spin dryer.

FIGURE 6.21 Diagram in plane normal to
axis of rotation of spin dryer in Fig. 6.20. Rela-
tive positions of axes when rotating speed is less
than natural frequency are shown at (A); corre-
sponding diagram for rotation speed greater
than natural frequency is shown at (B).



ment with oil for lubrication and damp-
ing. A fluid type of damper is shown in
Fig. 6.22C, the fluid usually being a high-
density viscous material. With proper
damping, mercury would be excellent,
but it is too expensive. Therefore a more
viscous, high-density halogenated fluid
is used.

The balancers must be of sufficient
weight and operate at such a radius that
the product of their weight and the max-
imum eccentricity they can attain is
equivalent to the unbalanced moment
of the load. This requirement makes the
use of the spheres or cylinders difficult
because they cannot be made large; it
makes the annular plates large because
they are limited in the amount of eccen-
tricity that can be obtained.

In a cylindrical volume 24 in. (61 cm)
in diameter and 2 in. (5 cm) thick, seven
spheres 2 in. (5 cm) in diameter can neu-
tralize 98.6 lb-in. (114 kg-cm) of unbal-
ance; three cylinders 4 in. (10 cm) in
diameter by 2 in. (5 cm) thick can neu-
tralize 255 lb-in. (295 kg-cm); three annu-
lar discs, each 5⁄8 in. (1.6 cm) thick with an
outside diameter of 19.55 in. (50 cm) and
an inside diameter of 10.45 in. (26.5 cm)
[the optimum for a center post 6 in.
(15.2 cm) in diameter], can neutralize
250 lb-in. (290 kg-cm); and half of a 2-in.
(5-cm) diameter torus filled with fluid
of density 0.2 lb/in3 (5.5 gram/cm3) can
neutralize 609 lb-in. (700 kg-cm). Only
the fluid-filled torus would be initially
balanced.

AUXILIARY MASS DAMPERS APPLIED TO

TORSIONAL VIBRATION

Dampers and absorbers are used widely for the control of torsional vibration of
internal-combustion engines. The most common absorber is the viscous-damped,
untuned auxiliary mass unit shown in Fig. 6.23. The device is comprised of a cylin-
drical housing carrying an inertia mass that is free to rotate.There is a preset clear-
ance between the housing and the inertia mass that is filled with a silicone oil of
proper viscosity. Silicone oil is used because of its high viscosity index; i.e., its vis-
cosity changes relatively little with temperature. With the inertia mass and the
damping medium contained, the housing is seal-welded to provide a leakproof and
simple absorber. However, the silicone oil has poor boundary lubricating prop-
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FIGURE 6.22 Examples of balancing means
for rotating machinery: (A) spheres (or cylin-
ders) in a race; (B) annular discs rotating on
shaft; (C) damping fluid in torus.



erties and if decomposed by a local 
hot spot (such as might be caused by a
reduced clearance at some particular
spot), the decomposed damping fluid is
abrasive.

Because of the simplicity of this un-
tuned damper, it is commonly used in
preference to the more effective tuned
absorber. However, it is possible to use
the same construction methods for a
tuned damper, as shown in Fig. 6.24. It is
also possible to mount the standard
damper with the housing for the un-
sprung inertia mass attached to the main
mass by a spring, as shown in Fig. 6.25. If

the viscosity of the oil and the dimensions of the masses and the clearance spaces are
known, the damping effects of the dampers shown in Figs. 6.23 and 6.25 can be com-
puted directly in terms of the equations previously developed.The damper in Fig. 6.25
can be analyzed by treating the spring and housing as additional elements in the main
system and the untuned mass as a viscous damped auxiliary mass. If the inertia of the
housing is negligible, the inertia mass is effectively connected to the main mass
through a spring and a dashpot in series.The two elements in series can be represented
by a complex spring constant equal to

=

Where there is no damping in parallel with the spring, the effective mass becomes

meq = km/(k − mω2)

Substituting the complex value of the spring constant, the effective mass is

meq = �  (6.47)
m

���
−mω2 + cjkω/(k + cjω)

ckjω
�
k + cjω

kcjω
�
k + cjω

1
��
(1/jcω) + (1/k)
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FIGURE 6.23 Untuned auxiliary mass damper
with viscous damping. The application to a tor-
sional system is shown at (A), and the linear ana-
log at (B).

FIGURE 6.24 Tuned auxiliary mass damper
with viscous damping. The application to a tor-
sional system is shown at (A), and the linear ana-
log at (B).

FIGURE 6.25 Auxiliary mass damper with
viscous damping and spring-mounted housing.
The application to a torsional system is shown at
(A), and the linear analog at (B).



In terms of the nondimensional parameters defined in Eq. (6.14):

meq = m + j (6.48)

Before the advent of silicone oil with its chemical stability and relatively constant
viscosity over service temperature conditions, the damper most commonly used for
absorbing torsional vibration energy was the dry friction or Lanchester damper
shown in Fig. 6.26. The damping is determined by the spring tension and the coeffi-
cient of friction at the sliding interfaces. Its optimum value is determined by the
equation for a torsional system analogous to Eq. (6.38) for a linear system:

(Ts)opt = Iω2θ0 (6.49)

where Ts is the slipping torque, I is the moment of inertia of the flywheels, and θ0 is
the amplitude of angular motion of the primary system. The dry-friction-based Lan-
chester damper requires frequent adjustment, as the braking material wears, to
maintain a constant braking force.

It is possible to use torque-transmitting couplings that can absorb vibration
energy, as the spring elements for tuned dampers. The Bibby coupling (Fig. 6.27) is
used in this manner. Since the stiffness of this coupling is nonlinear, the optimum
tuning of such an absorber is secured for only one amplitude of motion.

A discussion of dampers and of their application to engine systems is given in
Chap. 37.

�2�
�

π

−2ζβa
3m

���
βa

4 − (2ζβa)2(1 − βa
2)

(2ζβa)2(1 − βa
2)

���
βa

4 − (2ζβa)2(1 − βa
2)
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FIGURE 6.26 Schematic cross section through
Lanchester damper.

FIGURE 6.27 Coupling used as elastic and
damping element in auxiliary mass damper for
torsional vibration. The torque is transmitted by
an undulating strip of thin steel interposed
between the teeth on opposite hubs. The stiff-
ness of the strip is nonlinear, increasing as
torque increases. Oil pumped between the strip
and teeth dissipates energy.



DYNAMIC ABSORBERS TUNED TO ORDERS OF

VIBRATION RATHER THAN CONSTANT

FREQUENCIES

In the torsional vibration of rotating machinery, it is generally found that exciting
torques and forces occur at the same frequency as the rotational speed or at multi-
ples of this frequency.The ratio of the frequency of vibration to the rotational speed
is called the order of the vibration q. Thus, a power plant driving a four-bladed pro-
peller may have a torsional vibration whose frequency is 4 times the rotational speed
of the drive shaft; sometimes it may have a second torsional vibration whose fre-
quency is 8 times the rotational speed. These are called the fourth-order and eighth-
order torsional vibrations.

If a dynamic absorber in the form of
a pendulum acting in a centrifugal field
is used, then its natural frequency in-
creases linearly with speed. Therefore, it
can be used to neutralize an order of
vibration.10–12

Consider a pendulum of length l and
of mass m attached at a distance R from
the center of a rotating shaft, as shown in
Fig. 6.28. Since the pendulum is excited
by torsional vibration in the shaft, let the
radius R be rotating at a constant speed
Ω with a superposed vibration θ = θ0 cos
qΩt, where q represents the order of
the vibration. Then the angle of R with
respect to any desired reference is Ωt + θ0

cos qΩt. The angle of the pendulum with
respect to the radius R is defined as ψ =
ψ0 cos qΩt, as shown by Fig. 6.28.

The acceleration acting on the mass m at position B is most easily ascertained by
considering the change in velocity during a short increment of time Δt. The compo-
nents of velocity of the mass m at time t are shown graphically in Fig. 6.29A; at time
t + Δt, the corresponding velocities are shown in Fig. 6.29B. The change in velocity
during the time interval Δt is shown in Fig. 6.29C. Since the acceleration is the change
in velocity per unit of time, the accelerations along and perpendicular to l are:

Acceleration along l:

(6.50)

Acceleration perpendicular to l:

(6.51)

Only the force −F, directed along the pendulum, acts on the mass m. Therefore the
equations of motion are

−F = −ml(Ω + θ̇ + ψ̇)2 − mR(Ω + θ̇)2 cos ψ + Rθ̈ sin ψ
(6.52)

0 = ml(θ̈ +ψ̈) + mR(Ω + θ̇)2 sin ψ + mRθ̈ cos ψ̇

l(θ̈ + ψ̈) Δt + R(Ω + θ̇)2 Δt sin ψ + Rθ̈ Δt cos ψ
�����

Δt

−l(Ω + θ̇ + ψ̇2) Δt − R(Ω + θ̇)2 Δt cos ψ + Rθ̈ Δt sin ψ
������

Δt
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FIGURE 6.28 Schematic diagram of a pendu-
lum absorber.



Assuming that ψ and θ are small, Eqs.
(6.52) simplify to

Ft = m(R + l)Ω2

(6.53)
l(θ̈ + ψ̈) + RΩ2ψ + Rθ̈ = 0

The second of Eqs. (6.53) upon substitu-
tion of θ = θ0 cos qΩt and ψ = ψ0 cos qΩt
yields

= =

(6.54)

The torque M exerted at point 0 by the
force F is

M = RF sin ψ = RFψ when ψ is small

From Eqs. (6.53) and (6.54), when ψ is
small,

M = (6.55)

If a flywheel having a moment of iner-
tia I is accelerated by a shaft having an
amplitude of angular vibratory motion θ0

and a frequency qΩ, the torque ampli-
tude exerted on the shaft is I(qΩ)2θ0.
Therefore, the equivalent moment of
inertia Ieq of the pendulum is

Ieq = = (6.56)

When

= q2 (6.57)

the equivalent inertia is infinite and the pendulum acts as a dynamic absorber by
enforcing a node at its point of attachment.

Where the pendulum is damped, the equivalent moment of inertia is given by:

Ieq = m(R + l)2

= m(R + l)2 � −  (6.58)

where υ2 = q2l/R and ζ = (c/2mΩ)�l/�R�.

2ζυ3j
��
(1 − υ2)2 + (2ζυ)2

1 − υ2 + (2ζυ)2

��
(1 − υ2)2 + (2ζυ)2

1 + 2ζυj
��
(1 − υ2) + 2ζυj

R
�
l

m(R + l)2

��
1 − q2l/R

mR(R + l)2

��
R − q2l

mq2R(R + l)2Ω2

��
R − q2l

q2(l + R)
�

R − q2l
(qΩ)2(l + R)
��
−(qΩ)2l + Ω2R

ψ0�
θ0
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FIGURE 6.29 Velocity vectors for the pendu-
lum absorber: (A) velocities at time t; (B) veloc-
ities at time t + Δt; (C) change in velocities during
time increment �t.



When the pendulum is attached to a single-degree-of-freedom system, as is
shown in Fig. 6.30, the amplitude of motion θa of the flywheel of inertia I is given by

= � (6.59)

where 2ζυ =

μp =

βp =

θst =

The pendulum tends to detune when the amplitude of motion of the pendulum is
large, thereby introducing harmonics of the torque that it neutralizes.10 Suppose the
shaft rotates at a constant speed Ω, i.e., θ0 = 0, and consider the torque exerted on the
shaft as m moves through a large amplitude ψ0 about its equilibrium position. Equa-
tions (6.52) become

F = ml(Ω + ψ̇)2 + mRΩ2 cos ψ
(6.60)

lψ̈ + RΩ2 sin ψ = 0

A solution for the second of Eqs. (6.60) is

ψ̇ = � �co�s�ψ� −� c�o�s�ψ�0� (6.61)

The solution of Eq. (6.61) involves elliptic
integrals and is given approximately by

ψ = ψ0 sin ωt

where ω = �� Ω

and F(ψ0/2, π/2) is an elliptic function 
of the first kind whose value may be
obtained from tables.

Since ω/Ω = q (the order of the distur-
bance), the tuning of the damper will be
changed for large angles and becomes

q2 = � 	
2

(6.62)

The value of q2l/R = υ2 used in Eqs. (6.58)
and (6.59) is given in Fig. 6.31 as a func-
tion of the amplitude of the pendulum.

π/2
��
F(ψ0/2, π/2)

R
�
l

π/2
��
F(ψ0/2, π/2)

R
�
l

2Ω2R
�

l

m0�
kr

q
�
krI

m(R + l)2

��
I

cql
�
mR

(1 − υ2)2 + (2ζυ)2

������
[(1 − υ2)(1 − βp

2) − βp
2μ]2 + (2ζυ)2[1 − βp

2 − βp
2μp]2

θa�
θst
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FIGURE 6.30 Application of a pendulum ab-
sorber to a rotational single-degree-of-freedom
system.



Since the force exerted by the mass m is directed along the rod connecting it to
the pivot A (Fig. 6.28), the reactive torque on the shaft is

M = FR sin ψ

= mR2Ω2 � �1 + 	
2

sin ψ + sin ψ cos ψ
= mR2Ω2(A1 sin qΩt + A2 sin 2qΩt + A3 sin 3qΩt + . . .) (6.63)

The values of the fundamental torque
corresponding to the tuned frequency
and to the second and third harmonics
of this tuned frequency are given in 
Fig. 6.32 as a function of the angle of
swing of the pendulum, for a typical
installation. In this case, the pendulum
is tuned to the 41⁄2 order of vibration.
(The 41⁄2 order of vibration is one whose
frequency is 41⁄2 times the rotational fre-
quency and 9 times the fundamental fre-
quency.The latter is called the half order
and occurs at half of the rotational fre-
quency. This is common in four-cycle
engines.)

Two types of pendulum absorber are
used. The one most commonly used is
shown in Fig. 6.33. The counterweight,
which also is used to balance rotating

forces in the engine, is suspended from a hub carried by the crankshaft by pins that
act through holes with clearance, Fig. 6.33A. By suspending the pendulum from two
pins, the pendulum when oscillating does not rotate but rather moves as shown in
Fig. 6.33B. Since it is not subjected to angular acceleration, it may be treated as a
particle located at its center of gravity. Referring to Fig. 6.33A and B, the expression
for acceleration [Eqs. (6.50) and (6.51)] and the equations of motion [Eqs. (6.52)]
apply if

R = H1 + H2

(6.64)
l = − Db

where H1 = distance from center of rotation to center of holes in crank hub
H2 = distance from center of holes in pendulum to center of gravity of pen-

dulum
Dc = diameter of hole in crank hub
Dp = diameter of hole in pendulum
Db = diameter of pin

In practice, difficulty arises from the wear of the holes and the pin. Moreover, the
motion on the pins generally is small and the loads due to centrifugal forces are large
so that fretting is a problem. Because the radius of motion of the pendulum is short,
only a small amount of wear can be tolerated. Hardened pins and bushings are used
to reduce the wear.

Dc + Dp�
2

ψ̇
�
Ω

l
�
R
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FIGURE 6.31 Tuning function for a pendulum
absorber used in Eqs. (6.58) and (6.59).



The pendulum is most easily designed if it is recognized that the inertia torques
generated by the pendulum must neutralize the forcing torques. Thus,

mω2lψ0R = M (6.65)

The radii l and R are set by the design of the crank and the order of vibration to be
neutralized. The original motion ψ0 is generally limited to a small angle, approxi-
mately 20°. It is probable that the most stringent condition is at the lowest operating
speed, although the absorber may be required only to avoid difficulty at some par-
ticular critical speed. Knowing the excitation M, it is possible to compute the
required mass of the pendulum weight.

A second type of pendulum absorber is a cylinder that rolls in a hole in a coun-
terweight, as shown in Fig. 6.34. In this type, the radius of the pendulum corresponds
to the difference in the radii of the hole and of the cylinder. It is found, by observing
tests and checking the tuning of actual systems using cylindrical pendulums, that the
weight rotates with a uniform angular velocity. Therefore, the tuning is independent
of the moments of inertia of the cylinder. It is common to allow a larger amplitude
of motion with the absorber of Fig. 6.34 than with the absorber of Fig. 6.30.

Applications of pendulum absorbers to torsional-vibration problems are given in
Chap. 37.
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FIGURE 6.32 Harmonic components of
torque generated by a pendulum absorber as a
function of its angle of swing. The torque is
expressed by the parameters used in Eq. (6.63).

FIGURE 6.33 Bifilar type of pendulum ab-
sorber. The mechanical arrangement is shown at
(A), and a schematic diagram at (B).



PENDULUM ABSORBER FOR LINEAR VIBRATION

The principle of the pendulum absorber can be applied to linear vibration as well as
to torsional vibration.To neutralize linear vibration, pendulums are rotated about an
axis parallel to the direction of vibration, as shown in Fig. 6.35. This can be accom-
plished with an absorber mounted on the moving body.Two or more pendulums are
used so that centrifugal forces are balanced. Free rotational movement of each pen-
dulum in the plane of the axis allows the axial forces to be neutralized. The pendu-
lum assembly must rotate about the axis at some submultiple of the frequency of
vibration. The size of the absorber is determined by the condition that the compo-
nents of the inertia forces of the weights in the axial direction [Σmω2rθ] must bal-
ance the exciting forces. This device can be applied where the vibration is generated
by the action of rotating members but the magnitude of the vibratory forces is
uncertain. A discussion of this absorber, including the influence of moments of iner-
tia and damping of the pendulum, together with some applications to the elimina-
tion of vibration in special locations on a ship, is given in Ref. 13.

APPLICATIONS OF DAMPERS TO 

MULTIPLE-DEGREE-OF-FREEDOM SYSTEMS

Auxiliary mass dampers as applied to systems of several degrees of freedom can be
represented most effectively by equivalent masses or moments of inertia.The choice
of proper damping constants is more difficult. For the case of torsional vibration, the
practical problems of designing dampers and selecting the proper damping are con-
sidered in Chap. 37.

There are many applications of dampers to vibrating structures that illustrate
the use of different types of auxiliary mass damper. One such application has been
to ships.14 These absorbers had low damping and were designed to be filled with
water so that they could be tuned to the objectionable frequencies. In one case, the
absorber was located near the propeller (the source of excitation) and when prop-
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FIGURE 6.34 Roller type of pendulum ab-
sorber.

FIGURE 6.35 Application of pendulum ab-
sorbers to counteract linear vibration.



erly tuned was found to be effective in reducing the resonant vibration of the ship.
In another case, the absorber was located on an upper deck but was not as effec-
tive. It enforced a node at its point of attachment, but, because of the flexibility
between the upper deck and the bottom of the ship, there was appreciable motion
in the vicinity of the propeller and vibratory energy was fed to the ship’s structure.
To operate properly, the absorbers must be closely tuned and the propeller speed
closely maintained. Because the natural frequencies of the ship vary with the types
of loading, it is not sufficient to install a fixed-frequency absorber that is effective
at only one natural frequency of the hull, corresponding to a particular loading
condition.

An auxiliary mass absorber has been applied to the reduction of vibration in a
heavy building that vibrated at a low frequency under the excitation of a number of
looms.15 The frequency of the looms was substantially constant. However, the mag-
nitude of the excitation was variable as the looms came into and out of phase. The
dynamic absorber, consisting of a heavy weight hung as a pendulum, was tuned to
the frequency of excitation. Because the frequency was low and the forces large, the
absorber was quite large. However, it was effective in reducing the amplitude of
vibration in the building and was relatively simple to construct.

THE USE OF AUXILIARY MASS DEVICES TO

REDUCE TRANSIENT AND SELF-EXCITED

VIBRATIONS

Where the vibration is self-excited or caused by repeated impact, it is necessary to
have sufficient damping to prevent a serious buildup of vibration amplitude. This
damping, which need not always be large, may be provided by a loosely coupled
auxiliary mass. A simple application of this type is the ring fitted to the interior of
a gear, as shown in Fig. 6.36. By fitting this ring with the proper small clearance so
that relative motion occurs between it and the gear, it is possible to obtain enough
energy dissipation to damp the high-frequency, low-energy vibration that causes
the gear to ring. The rubbery coatings applied to large, thin-metal panels such as

automobile doors to give them a solid
rather than a “tinny” sound depend for
their effectiveness on a proper balance
of mass, elasticity, and damping (see
Chap. 36).

Another application where auxiliary
mass dampers are useful is in the pre-
vention of fatigue failures in turbines.
At the high-pressure end of an impulse
turbine, steam or hot gas is admitted
through only a few nozzles. Conse-
quently, as the blade passes the nozzle it
is given an impulse by the steam and set
into vibration at its natural frequency. It
is a characteristic of alloy steels that they
have very little internal damping at high
operating temperature. For this reason
the free vibration persists with only a
slightly diminished amplitude until the
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FIGURE 6.36 Application of auxiliary mass
damper to deaden noise in gear.



blade again is subjected to the steam im-
pulse. Some of these second impulses will
be out of phase with the motion of the
blade and will reduce its amplitude; how-
ever, successive impulses may increase
the amplitude on subsequent passes until
failure occurs. Damping can be increased
by placing a number of loose wires in a
cylindrical hole cut in the blade in a
radial direction. The damping of a num-

ber of these wires has been computed in terms of the geometry of the application
(number of wires, density of wires, size of the hole, radius of the blade, rotational
speed, etc.) and the amplitude of vibration.16 These computations show reasonable
agreement with experimental results.

An auxiliary mass has been used to damp the cutting tool chatter set up in a bor-
ing bar.17 Because of the characteristics of the metal-cutting process or of some cou-
pling between motions of the tool parallel and perpendicular to the work face, it is
sometimes found that a self-excited vibration is initiated at the natural frequency of
the cutter system. Since the self-excitation energy is low, the vibration usually is initi-
ated only if the damping is small. Chatter of the tool is most common in long, poorly
supported tools, such as boring bars. To eliminate this chatter, a loose auxiliary mass
is incorporated in the boring bar, as shown in Fig. 6.37. This may be air-damped or
fluid-damped. Since the excitation is at the natural frequency of the tool, the damp-
ing should be such that the tool vibrates with a minimum amplitude at this frequency.
The damping requirement can be estimated by

= �� (6.66)

The optimum value of the parameter
(ζα) is infinity.Thus, when the frequency
of excitation is constant, a greater reduc-
tion in amplitude can be obtained by a
shift in natural frequency than by damp-
ing. However, such a shift cannot be
attained because the frequency of the
excitation always coincides with the nat-
ural frequency of the complete system.
Instead, a better technique is to deter-
mine the damping that gives the maxi-
mum decrement of the free vibration.

Let the boring bar and damper be rep-
resented by a single-degree-of-freedom
system with a damper mass coupled to
the main mass by viscous damping, as
shown in Fig. 6.38A. The forces acting on
the masses are shown in Fig. 6.38B. The
equations of motion are

−kx1 − cẋ1 + cẋ2 = m1 ẍ1
(6.67)

cẋ1 − cẋ2 = m2 ẍ2

1 + 4(ζα)2

��
4(ζα)2μ2

x0�
δst
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FIGURE 6.37 Application of auxiliary mass
damper to reduce chatter in boring bar.

FIGURE 6.38 Schematic diagram of damper
shown in Fig. 6.37. The arrangement is shown at
(A), and the forces acting on the boring bar and
auxiliary mass are shown at (B).



Substituting x = Aest, the resulting frequency equation is

s3 + s2 + s + = 0 (6.68)

Where chatter occurs, this equation has three roots, one real and two complex. The
complex roots correspond to decaying free vibrations. Let the roots be as follows:

α1, α2 + jβ, α2 − jβ

The value of β determines the frequency of the free vibration, and the value of α2

determines the decrement (rate of decrease of amplitude) of the free vibration. The
decrement α2 is of primary interest; it is most easily found from the conditions that
when the coefficient of s3 is unity, (1) the sum of the roots is equal to the negative of
the coefficient of s2, (2) the sum of the products of the roots taken two at a time is the
negative of the coefficient of s, and (3) the product of the roots is the negative of the
constant term. The equations thus obtained are

α1 + 2α2 = − (6.69)

2α1α2 + α2
2 + β2 = −ωn

2 (6.70)

α1(α2
2 + β2) = −ωn

2 (6.71)

where ωn
2 = k/m1 and μ = m2/m1. It is not practical to find the optimum damping by

solving these equations for α2 and then setting the derivative of α2 with respect to c
equal to zero. However, it is possible to find the optimum damping by the following
process. Eliminate (α2

2 + β2) between Eqs. (6.70) and (6.71) to obtain

2α1
2α2 = ωn

2 � − α1	 (6.72)

Substituting the value of α1 from Eq. (6.69) in Eq. (6.72),

2α2 �2α2 + 2
= + ωn

2 �2α2 +  (6.73)

To find the damping that gives the maximum decrement, differentiate with respect
to c and set dα2/dc = 0:

2α2 �2α2 +  = 1⁄2ωn
2 (6.74)

Solving Eqs. (6.73) and (6.74) simultaneously,

copt = (6.75)

(α2)opt = − (6.76)

These values may be obtained by proper choice of clearance between the auxil-
iary mass and the hole in which it is located.Air damping is preferable to oil because
it requires less clearance. Therefore, the plug is not immobilized by the centrifugal
forces that, with the rotating boring bar, become larger as the clearance is increased.

(2 + μ)ωn��
4(1 + μ)1/2

μ2m1ωn��
2(1 + μ)3/2

2 + μ
�
1 + μ

c(1 + μ)
�

μm1

c(1 + μ)
�

μm1

cωn
2

�
μm1

c(1 + μ)
�

μm1

c
�
μm1

c
�
m1μ

c(1 + μ)
�

μm1

kc
�
m1m2

k
�
m1

c(m1 + m2)��
m1m2
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In precision measurements, it is necessary to isolate the instruments from effects
of shock and vibration in the earth and to damp any oscillations that might be gen-
erated in the measuring instruments. A heavy spring-mounted table fitted with a
heavy auxiliary mass that is attached to the table by a spring and submerged in an oil
bath (Fig. 6.39) has proved to be effective.18 In this example, the table has a top sur-
face of 131⁄2 in. (34 cm) by 131⁄2 in. (34 cm) and a height of 6 in. (15 cm). Each auxiliary
mass weighs about 70 lb (32 kg).The springs for both the primary table and the aux-
iliary system are designed to give a natural frequency between 2 and 4 Hz in both the
horizontal and the vertical directions. By trying different fluids in the bath, suitable
damping may be obtained experimentally.

ACTIVE VIBRATION ABSORBERS

In many cases, the auxiliary mass system must be relatively lightweight and perhaps
compact so as not to unduly burden the functionality of the primary system. A semi-
active TVA implements small energy expenditure to alter the TVA properties to opti-
mize its effectiveness. A theory for variable damping and variable stiffness has been
applied to machine tools.19 An active TVA implements a force-generating mechanism
in parallel with the spring and damper to allow the flexibility to incorporate a control
algorithm to provide additional vibration cancellation forcing.20 Application of an
active TVA to large-scale civil engineering structures has been made.21
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CHAPTER 7
VIBRATION OF SYSTEMS

HAVING DISTRIBUTED MASS
AND ELASTICITY

Ronald G. Merritt

INTRODUCTION

This chapter considers the vibration of systems that have mass and elasticity continu-
ously distributed in space. The objectives of this chapter are to (1) provide a basis for
continuous system vibration in terms of energy functionals and Hamilton’s variational
principle (HVP); (2) mention topics related to continuous system vibration such as
damping, stochastic loading, wave propagation, and dynamic stability; (3) demonstrate
analytical solutions and reference numerical solutions; and (4) present detailed
dynamic expressions of four basic continuous system configurations (bars, shafts,
beams, and plates) and reference four other configurations (strings, membranes,
arches, and shells). The examples, tables, and references challenge readers to go
beyond the use of tables and limited assumptions for problem solution. This chapter
contains few tables extracted from readily available reference material and encour-
ages engineers to build a library containing practical structure dynamic information.
Motivation for study of continuous systems comes from two sources. First, popular
numerical methods available for solution of vibration of continuous systems—for
example, the finite element method—must be checked against classical solutions. Sec-
ond, micromachines, nanostructures, and “intrinsically discrete objects only a few
atoms in diameter” can be formulated as continuum solutions.1

This chapter does not consider certain important solution techniques such as
Green’s function (integral equation solution) and transforms (Fourier or Laplace)
for either finite or infinite extent structures with transient loading. Dynamic loading
that can result in dynamic stability problems is not considered. Some potentially use-
ful approximate solution techniques such as the dynamic transfer matrix method are
only referenced.

In place of the general term system, the term structure is used throughout this
chapter. Structure refers to a finite-extent physical system of simple form having a
continuous distribution of mass and elasticity.A structure has a well-defined geomet-
ric boundary S and occupies a spatial domain V such that the governing equation(s)
of motion satisfy certain conditions on S and in V. Mathematical formulation is in
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terms of a boundary-value problem on S and an initial-value problem where time con-
straints are involved. Mass and elasticity are expressed in terms of quantities repre-
senting averages over microproperties of the continuum. This chapter does not
consider material behavior that goes beyond Hooke’s generalized constitutive law,
for example, viscoelastic or plastic behavior.

Basic and extended theories for vibration of structures lie in the area of contin-
uum mechanics,2 where details of the material kinematic and constitutive relation-
ships are stated and vibration is in the context of wave propagation through a
material continuum. Transition to structure macro vibration relationships is demon-
strated by vibration of a string whereby the equations of motion and solution can be
viewed as either standing waves in the string or vibration of the string.3,4

A brief review of the foundations of analytical mechanics provides context for
this chapter.5 Newton’s laws provide the origin of analytical mechanics in terms of
vector force, mass, and acceleration. Leibniz reformulated analytical mechanics in
terms of scalar energy and variational principles. Hamilton’s variational principle
(HVP), considered the fundamental law of dynamics, encompasses Newton’s equa-
tions of motion, Lagrange’s equations for structure dynamics, D’Alembert’s princi-
ple, and the principle of virtual work (PVW). Vibration of structures can be
conveniently formulated in terms of HVP. At times it may be expeditious to derive
the equations of motion for a structure in forms other than HVP. Because HVP is
energy functional based, the diverse areas of structure dynamics, numerical solutions
of partial differential equations, finite element methods, and functional analysis can
all be linked in a single development.6

HAMILTON’S PRINCIPLE AND THE LAGRANGIAN

Hamilton’s variational principle states7 that for a structure over domain V with
boundary S2, among all dynamic paths that satisfy the boundary conditions over S2 at
all times and that start and end with the actual values at two arbitrary instants of time
t1 and t2, at every point of the structure, the “actual” dynamic path of the structure is
distinguished by making the Lagrangian functional an extremum. Structure energy is
expressed in terms of the Lagrangian energy functional, and HVP requires that this
energy functional have a stationary value. The term functional is used to denote a
general expression for a continuous function of the domain V of the structure in
space and time. Table 7.1 defines the Lagrangian energy functional for a continuous
structure.

By convention, L is defined in component parts from Table 7.1 as

L = π − T + W (7.1)

The “action” or “principle function of dynamics”9 A can be expressed as the time
integral of L between two times t1 and t2:

A = �t2

t1
Ldt = �t2

t1
(π − T + W) dt (7.2)

HVP states that A has a stationary value expressed as δA = 0, where δ is termed
the variation operator. Table 7.2 summarizes the basic properties of the variation
operator.

The δ operator over a structure domain V implies that complete description of
the structure shape requires an infinite number of degrees of freedom—one degree
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of freedom for each shape. HVP requires that the action defined in Eq. (7.2) have a
minimum or stationary value over all possible structure variations, that is,

δA = δ�t2

t1
Ldt = �t2

t1
δLdt = �t2

t1
δ (π − T + W) dt = �t2

t1
[δπ − δT + δW] dt = 0 (7.3)

This expression of HVP in terms of δ A, utilizing the δ operator properties and inte-
gration by parts, provides the (1) differential equation(s) of motion termed the
Lagrange’s equation(s), (2) boundary displacements (kinematic boundary condi-
tions), (3) boundary forces (natural boundary conditions), and (4) eigenvalue solu-
tion form.10

Table 7.3 illustrates the general pattern for expression of the structure’s stationary
value of energy functional to obtain Lagrange’s equation(s) and boundary condi-
tions. This derivation generalizes in a computationally intensive way to all structures
considered in this chapter. Application of integration by parts imposes certain conti-
nuity/differentiability conditions on equations and solutions in addition to implying
that the operator form of an equation is self-adjoint.10,11 In this chapter, for time/space
variable a, ȧ signifies differentiation with respect to time and a′ signifies differentia-
tion with respect to a spatial variable. Table 7.4 illustrates the procedure outlined in
Table 7.3 for derivation of the one-dimensional wave equation.
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TABLE 7.1 Lagrangian Energy Functional L for an Elastic Structure8

L = �
V ��ρd��̇Td��̇	 − �ε��T [D]ε��	 + �2d��T φ���	� dV + �

S2

�d��T Φ��� 	 dS2

1
�
2

V structure volume
S = S1 + S2 total structure surface
S1 d�� prescribed for average body forces φ���

S2 average surface forces Φ��� prescribed
for d��

ρ mass density
dT�� = [u v w] displacement vector
dT�� = [u̇ v̇ ẇ] velocity vector
D material constitutive matrix
ε�� material strain vector
σ�� − (=[D]ε��) material stress vector

φ��� average body force vector per unit
volume

Φ��� average surface force vector on S2

T = ρd��̇Td��̇ kinetic energy per unit volume
π = ε��T [D]ε�� elastic energy per unit volume
WS1

= −2d��T φ��� work energy from average
body forces φ��� with d��

prescribed on S1

WS2
= −d��T Φ��� work energy from average

surface forces Φ��� prescribed
on S2

W = WS1
+ WS2

total work

TABLE 7.2 Definition and Properties of δ the Variation Operator

δA = A�(s) − A(s) = εη(s)

A(s) arbitrary scalar functional for s1 ≤ s ≤ s2

A�(s) infinitesimal change in A(s) at time t
η(s) infinitesimal functional change
ε > 0 small number

where δ obeys the following rules for differentiation and integration

δ(dA/ds) � d(δA)/ds and δ�t2

t1
A(s) ds � �t2

t1
δA(s) ds

T −WS1
−WS2

π
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TABLE 7.3 Expression of the Stationary Value of the Action A (HVP)

Form of energy functional:

L = L(t, u, u̇, u′) t1 ≤ t ≤ t2 and s1 ≤ s ≤ s2

u = u(s,t) displacement
u̇ = ∂u/∂t velocity
u′ = ∂u/∂s first spatial derivative

Displacement variation:

δu(s,t) = ũ(s,t) − u(s,t) = εη(s,t)

Variation of action:

δA = δ�t2

t1

Ldt = δ�t2

t1

�s2

s1

L(t, u,u̇, u′) dsdt = �t2

t1

�s2

s1

δL(t, u,u̇, u′) dsdt

= �t2

t1

�s2

s1
� δu + δu̇ + δu′	 dsdt = 0

Integration by parts for t:

t : �t2

t1

�s2

s1
� δu	 dsdt = �s2

s1

δu

t2

t1

ds − �t2

t1

�s2

s1
� δu	 dsdt

Integration by parts for s:

s : �t2

t1

�s2

s1
� δu′	 dsdt = �t2

t1

δu

s2

s1

dt − �t2

t1

�s2

s1
� δu	 dsdt

Substitution for du arbitrary:

δA = �t2

t1

�s2

s1
� − � 	 − � 	 δu dsdt + �s2

s1

δu

t2

t1

ds + �t2

t1

δu

s2

s1

dt = 0
∂L
�
∂u′

∂L
�
∂u̇

∂L
�
∂u′

d
�
ds

∂L
�
∂u̇

d
�
dt

∂L
�
∂u

∂L
�
∂u′

d
�
ds

∂L
�
∂u′

∂L
�
∂u′

∂L
�
∂u̇

d
�
dt

∂L
�
∂u̇

∂L
�
∂u̇

∂L
�
∂u′

∂L
�
∂u̇

∂L
�
∂u

TABLE 7.4 Derivation of the One-Dimensional Wave Equation Using HVP

Energy functional:

L = − ρu̇2 + Pu′2 + fu

u = u (s, t) displacement ρ volume density
u̇ = ∂u/∂t velocity P tension force
u′ = ∂u/∂s first spatial derivative f external applied force

For δu arbitrary

� δu − � δu	 − � δu	 = ( f + ρü − Pu″) δu = 0

One-dimensional wave equation ( f = 0):

− c2 = 0 for c = �� ρ δu

t2

t1

= 0, P δu

s2

s1

= 0

Solution:

u (s, t) = G1 (s − ct) + G2 (s + ct) for G1 and G2 arbitrary functions dependent upon initial 
conditions

∂u
�
∂s

∂u
�
∂t

P
�
ρ

∂2u
�
∂s2

∂2u
�
∂t2

∂L
�
∂u′

d
�
ds

∂L
�
∂u̇

d
�
dt

∂L
�
∂u

1
�
2

1
�
2



For each of the structures considered in detail, the energy components are pro-
vided for immediate application of Rayleigh’s method, Lagrange equation(s), and
the boundary conditions (kinematic and natural). This information is adequate for
determination of modes of structure vibration. Inclusion of initial conditions implies
a specific dynamic solution.

MECHANICAL PRINCIPLES

The static and dynamic behavior of structures is built upon mechanical principles.
The most important of these principles—Hamilton’s variational principle, D’Alem-
bert’s principle, Newton’s second law of motion, and the principle of virtual work—
involve subtle details in relationship to one another and in application.5,12 For
example, expression of the PVW (controlling the static equilibrium of a structure)
illustrates a form of practical subtlety in application. The PVW may be expressed
with variation in displacement δu alone (principle of minimum potential energy),
variation in stress δσss alone (principle of minimum complementary energy), or vari-
ation in combination of displacement and stress (principle of stationary Reissner
energy).8 The overriding importance of the PVW, regardless of expression, is that for
a continuum, all the internal forces can be neglected and only the external forces
consistent with the structure kinematic constraints need be considered. For kinetic
energy T = 0 and no moving boundary constraints, HVP reduces to the PVW.

DISSIPATION OF ENERGY (DAMPING) 

IN STRUCTURES

Energy dissipation is inherent in both structure materials and structure mechanisms
such as structure joints. Energy dissipation mechanisms may be difficult to identify
and even more difficult to specify mathematically and, if specified mathematically,
result in equations of motion for continuous structures that can be solved only by
numerical integration.4,7,13 Energy dissipation considerations play little role in this
chapter. Reference 14 on viscoelastic damping and Ref. 15 on material damping,
along with Chaps. 36 and 37, provide additional information on damping.

Since the damping effect on structure motion is most prominent at structure res-
onant frequencies, then for structures with proportional damping8 approximate rep-
resentation of damping effects can be obtained by specification of individual
single-degree-of-freedom modal viscous damping factors. Such damping factors can
then be applied to independent nonoverlapping resonant modes of a multimode
structure. Under the discussion of the assumed modes method, a convolution inte-
gral is provided, along with a modal damping ratio, to illustrate this approach to
structure response determination.

FORCING IN DYNAMIC EQUATIONS OF MOTION

Solution of the free vibration problem for a structure is a function of the structure
equation of motion and the boundary conditions on the structure. The solution pro-
vides (1) characteristic vibration frequencies (eigenfrequencies) and (2) a corre-
sponding orthogonal set of shape, or basis, functions (eigenvectors) in spatial
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coordinates. Each characteristic frequency and associated basis function defines a
normal mode of vibration for the structure. Obtaining the normal mode information
for a structure is a first step in assessing the dynamic behavior of a structure under
applied external body, surface, or boundary forces. In the assumed modes method
discussed in this chapter, the normal modes of vibration for the structure can be used
to estimate structure response when the structure is loaded by either deterministic
or stochastic force fields. The power of the assumed modes method has been used
for understanding the dynamic stability of structures—an important nonlinear vibra-
tion topic that is beyond the scope of this chapter.16

Forces on a structure are most often assumed to be deterministic—that is, they
are functionally described in time.The response of structures under stochastic forces
is an evolving field of inquiry and beyond the scope of this chapter. Information in
this area can be found in Refs. 4, 17, and 18.

The simplest forced vibration is a time-variant deterministic force field defined by
either (1) a single force at a point on the structure or its boundary, (2) a force distrib-
uted over a portion of the structure, or (3) a force moving along a structure surface.
Two useful deterministic force fields are characterized by being (1) harmonically
varying with discrete Fourier series representation or (2) nonperiodic with Fourier
integral representation.

SOLUTION OF DYNAMIC EQUATIONS 

OF MOTION

Knowledge of the form of structure displacement in time and space constitutes solu-
tion of the dynamic equations of motion. Solution may refer to (1) determining the
homogeneous equation solution part represented by knowledge of the first few nor-
mal modes of free structure vibration under kinematic boundary conditions with ini-
tial conditions or (2) determining the particular equation solution part under the
applied forces. This chapter focuses primarily on the homogeneous equation solu-
tion part, with structure displacement the variable for solution. Estimates of struc-
ture modal stresses and strains can be obtained from the modal displacements and
constitutive relationships. In the simplest cases of deterministic forced vibration,
structure free vibration modes and integration over the structure spatial domain
lead to an ordinary differential equation(s) in time and to a series solution for total
response displacement. Even though the number of analytical or approximated
eigenvalues and eigenvectors may be unlimited, seldom do the assumptions in deriv-
ing the equations of motion support use of more than a few of the lowest modes of
vibration for accurate structure stress/strain determination.

For general dynamic equation solution (free or forced), there are at least five
major categories of tools available. The first category is analytical solution of the
Lagrange equations of motion utilizing infinite series. References on both linear and
nonlinear partial differential equations summarize most all the problems that can be
solved in this manner.19,20,21 Analytic methods of solution are very limited in cases of
spatially coupled partial differential equations and dissipative forces within the gov-
erning equations. Occasionally, exact methods for simple structure configurations
lend themselves to creating tables that specify natural frequencies and mode shapes
for free vibration. The second category is an approximate solution for free vibration
for the fundamental natural frequency of a nonenergy dissipating structure using
Rayleigh’s method.8,10,22 The third category extending Rayleigh’s method for free
vibration beyond the fundamental natural frequency to a few higher frequencies is
referred to as the Rayleigh-Ritz method8,10 and entails solution of an algebraic
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eigenvalue problem. A fourth category, the assumed modes method,8 is designed to
solve problems associated with forced vibration and results in solution of a system of
ordinary differential equations whose coefficients are determined by integrating
over the structure spatial coordinates using suitable admissible functions. The fifth
category represents an assortment of approximation techniques. Researchers gener-
ally use a method that has been well developed or resort to some modification of an
existing method for solution. Table 7.5 provides a list of several approximate solu-
tion techniques and one or more references providing additional information.These
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TABLE 7.5 Approximate Solution Methodologies with Selected References

Methodology Reference

Rayleigh form methods:
Rayleigh 8, 10, 11, 22, 23, 25, 29
Ritz 6, 7, 8, 10, 11, 22, 25
Rayleigh-Ritz 28, 29
Rayleigh-Schmidt 27
Rayleigh-Ritz-Meirovitch 33
Weinstein 10

Assumed modes method: 8, 11, 23

Weighted residual form methods:
Galerkin 7, 8, 11, 29
Bubnov-Galerkin 6, 24
Petrov-Galerkin 6
Collocation 6, 7, 8, 11
Subdomain 6, 7, 8, 11
Method of least squares 6, 7, 8, 11
Method of moments 11, 23

Lanczo’s orthogonalization 23
Pade’s 23

Lumped parameter 11
Courant (Ritz-least squares) 6

Dunkerley’s method: 26, 29
Transfer matrix method: 25, 29, 34
Iterative methods:

Stodola 25
Holzer 25
Holzer-Van Den Dungen 29
Holzer-Myklestad 25

Perturbation method (Taylor series): 11, 31
Finite difference method: 7, 31
WKB and wave methods: 30
Differential quadrature method: 32
Kantorovich method: 6, 7
Trefftz method: 6, 7
Numerical integration methods:

Linear acceleration 25
Wilson θ 25
Central difference scheme 6
Houbolt (method) 6
Newmark scheme 6



techniques fall under broad categories and may overlap one another in their
assumptions and the details of their implementation.

This chapter illustrates Rayleigh’s method, the Rayleigh-Ritz method, and the
assumed modes method in case of forced vibration of simple structures. Complica-
tions arise for structures that have modes of a different nature that couple in more
than one dynamic equation of motion.A brief summary of each of these three meth-
ods follows.

RAYLEIGH’S PRINCIPLE (METHOD)

Reference 22 expresses Rayleigh’s principle as follows:“In the fundamental mode of
vibration of an elastic system, the distribution of kinetic and potential energies is
such as to make the frequency a minimum.” For the free vibration of a structure with
no dissipative forces and potential/kinetic energies that vary in time, Rayleigh’s
method assumes that Rayleigh’s quotient has a stationary value. Table 7.6 provides
the basic mechanics of this method.As Ref. 9 indicates, a rigorous and general proof
of the principle behind Rayleigh’s method is difficult. It is remarkable that the ratio
of the maximum potential energy to the maximum kinetic energy must have a sta-
tionary value that represents an upper-bound approximation to the lowest natural
frequency of the structure.

The true first normal mode can be approximated with simple functions, and the
Rayleigh’s quotient is reasonably insensitive to the shape of X(s). The maximum
potential energy generally is a function of derivatives of X(s), and this may affect the
accuracy of the stationary value.10,22,33 For higher-order theories, Rayleigh’s method
is applicable, since evaluation is in the area of energy functionals; however, kine-
matic and constitutive complexities may not be reflected in selected admissible func-
tions X(s). Reference 8 provides a table of energies for a wide variety of structures
that may be used for forming Rayleigh’s quotient. In addition, Ref. 8 illustrates
Rayleigh’s method when nondissipative passive boundary elements are present.
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TABLE 7.6 Rayleigh’s Method for Approximating an Upper Bound on the Lowest
Natural Frequency for a Structure by Rayleigh’s Principle

Rayleigh’s quotient*:

R[X(s)] = max
t

{πp[X(s)]} / max
t

{T[X(s)]} = ω2

where generally πp and T can be computed independent of time considerations

X(s) an admissible function satisfying strucure kinematic boundary conditions and
approximating structure mode shape at frequency ω

πp[X(s)] structure potential (elastic) energy including any passive boundary elements
T[X(s)] structure kinetic energy including any passive boundary elements

Assumption:

max
t

{T[X(s)]} = ω2Tmax [X(s)] by separation of s and t variables

Stationary value assumption for quotient:

ω2
1 = min {R [X1 (s)]} ≥ ω2

*NOTE: Since πp and T are positive and continuously time varying maximum values exist when evaluated
for X (s)



RAYLEIGH-RITZ METHOD

The Rayleigh-Ritz method is an extension of Rayleigh’s method in that it assumes
several independent modes and depends upon a family of admissible functions.
Table 7.7 presents the Rayleigh-Ritz method for determining an approximation to
the true modal description of a structure.

ASSUMED MODES METHOD

The assumed modes method solves deterministic forced structure vibration prob-
lems. In place of unknown constants ci in the Rayleigh-Ritz method, Table 7.7,
unknown functions of time termed generalized coordinates ηi(t), are used and a
solution to the partial differential equation(s) of the form

X(s,t) = �
n

i = 1
ηi(t)φi(s) (7.4)

is assumed. It is also assumed that the deterministic structure forcing function can be
expressed in terms of the admissible functions and the generalized coordinates. Sub-
stitution of Eq. (7.4) into the Lagrange’s equation(s) and subsequent integration
over the spatial coordinate(s) in the partial differential equation(s) leads to a set of
ordinary differential equations (ODEs) in the generalized coordinates ηi(t) for i =
1,2, . . . ,n. Table 7.8 provides a general expression for the solution in terms of gener-
alized coordinates, a modal damping ratio, and structure initial conditions.

Substitution of ηi(t) into Eq. (7.4) provides the overall solution X(s,t). The initial
conditions on the structure become a superimposed time invariant loading. For de-
terministic nonharmonic forced structure vibration problems or moving loads on
the structure,8,35 Fourier transform methods must be used.

VIBRATION OF SYSTEMS HAVING DISTRIBUTED MASS AND ELASTICITY 7.9

TABLE 7.7 Rayleigh-Ritz Method for Approximating the Normal Modes 
for a Structure8

Assumption:

X(s) = �
n

i = 1
ciφi(s)

ci unknown constants (Ritz coefficients) i = 1,2, . . . ,n
φi(s) admissible functions i = 1,2, . . . ,n

Rayleigh’s quotient:

R[X(s)] = R(c1,c2, . . . ,cn) (= max
t

{πp[X(s)]} / max
t

{T[X(s)]})

Solution:

Minimizing Rayleigh’s quotient with respect to coefficients ci

= 0,i = 1,2, . . . ,n leads to an algebraic eigenvalue problem of order n in structure

parameters where the ith eigenvector �c(i) provides a set of n constants and ith approxi-

mate mode shape X(i)(s) = �
n

j = 1
cj

(i)φj(s). In matrix notation for the ith eigenterm

�[k] − λ i
(n)[m] �c(i) = �0 ⇒ �[k] − λ(n)[m]� = 0 ⇒ ωi = �λ i

(n)�, i = 1,2, . . . ,n
[k] n by n structure stiffness matrix, λ i

(n) eigenvalues i = 1,2, . . . ,n
[m] n by n structure mass matrix, �c(i) eigenvector with eigenvalue λi

(n)

∂R
�
∂ci



APPLIED DYNAMIC BEHAVIOR OF STRUCTURES

The final portion of this chapter provides practicing engineers insight into solving
vibration problems for basic structures. Continuous structure vibration (1) favors a
HVP formulation, (2) relies upon references that provide solutions in table form,
and (3) uses personal computer (PC) computational power for unique solutions.

Personal computer technology has led to two major advances in structure vibra-
tion analysis. First, PC-based Mathematica,31 MATLAB,36,37 and FORTRAN38 provide
computing tools for solution of partial differential equations. Second, PC Internet
access provides a resource for substantial literature on vibration of structures.

A practicing engineer is able to formulate the equation(s) of motion for a struc-
ture, decide on a method of solution, and have access to a library of structure
dynamic tables. Basic composition of either (1) lumped mass and stiffness compo-
nents for simple structures or (2) buildup of simple structures into more complex
structures represent options. The power of the finite element method has assisted in
vibration solutions for complex structures and made possible solutions for struc-
tures with nonuniform properties.39

This last chapter section provides detailed information on the vibration of four
common structure forms: bars (rods), shafts, beams, and plates. Four remaining
structure forms—strings, membranes, arches, and shells—are referenced at the end
of the section. Structure forms considered in detail contain (1) expressions for both
the structure potential and kinetic energies for direct application of Rayleigh’s
method, structure energy input from external load, and the equation(s) of motion
with both kinematic and natural boundary conditions; (2) tables for various struc-
ture configurations; (3) an occasional computational example; and (4) an extended
reference guide. Selection of peer-reviewed references reflects no particular pattern
but rather demonstrates the diversity of applications. References related to useful
handbooks concerning structure dynamic information are highlighted by a dagger
(†) placed at the end of the reference in the References section, and engineers are
encouraged to begin building a practical library that includes these references. The
Rayleigh, Raleigh-Ritz, and assumed modes methods are illustrated by examples.
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TABLE 7.8 Solution for Generalized Coordinates with Viscous Damping
(Duhamel’s Integral)8

Assumption:

Uncoupled set of n second-order ODE in ηi(t), η̇i(t), and η̈i(t), i = 1,2, . . . ,n and where

ηi(t) ith generalized coordinate (ηi ≠ ηj for i ≠ j)
ηi,0 = ηi(0) ith generalized initial “displacement”
η̇i,0 = η̇i(0) ith generalized initial “velocity”
ζi damping ratio for the ith normal mode
ωdi = �1 − ζi

2� ωi damped natural frequency for the ith normal mode with natural frequency ωi

Qi(t) ith generalized force
φi(s) ith admissible function

Solution (convolution or Duhamel’s integral):

ηi(t) = ηi,0e−ζiωit �cos (ωdit) + sin (ωdit) + e−ζiωit sin (ωdit)

+ �t

0
Qi (τ)e−ζiωi(t-τ) sin [ωi (t − τ)] dτ

1
��
ωdi

η̇i,0
�
ωdi

ζiωi
�
ωdi



All of the major structure forms have more than one dynamic formulation depen-
dent upon the assumptions made in formulating Hamilton’s variational principle.
Assumptions underlying HVP are found in most cases in expression of the dis-
placement/strain relationships contained in references. Each dynamic formulation
is generally termed a theory. Practicing engineers need to identify the theory and
understand the scope of the assumptions behind it. No parameters are explicitly
stated as functions of spatial variables. If a material parameter [e.g., E = E(x) −
(elastic modulus)] or a structure parameter [e.g., A = A(x) − (cross-sectional area)]
varies according to spatial dimension, then the chain rule for differentiation for vari-
able products (or quotients) applies and single terms expand into multiple terms,
complicating the solution of the resulting differential equation.

Table 7.9 provides reference definitions for all the parameters in the equations in
this section. Tables and examples may explicitly define parameters for use with the
structure configurations pertinent to the table or example, respectively. Parameter
correspondences from table or example parameters to equation parameters should
be obvious.

BARS (LONGITUDINAL/TORSIONAL VIBRATION 

BASIC THEORY)

Equations of Motion. Basic longitudinal (bar) and torsional (shaft) vibration
have the same form of governing equation: a one-dimensional wave equation. Bars
are characterized by propagation of elastic energy in a single linear or rotational
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TABLE 7.9 Definitions for Material/Structure Parameters for Equations

E modulus of elasticity
v Poisson’s ratio

G modulus of rigidity �= 	
D = modulus of flexural rigidity

(plates)

k shear correction factor
l beam length
h plate thickness

A cross-sectional area (bar or beam)
Ib beam section bending area moment of

inertia

Ip = ��
A

(y2 + z2) dA polar moment of inertia 

ρl mass/length
ρA mass/area
ρm mass/volume
ρ general density (when context is clear)
ψ plane section warping function
C torsional rigidity coefficient
u(x,t) rod or beam longitudinal 

displacement

w(x,t) beam transverse displacement
w(x,y,t) plate transverse displacement
θ(x,t) rod rotational coordinate
f(x,t) applied force component in coordi-

nate direction u or w
mt(x,t) applied torque θ(x,t) direction
ka beam foundation deflection stiffness

coefficient
k1 beam foundation rotational stiffness

coefficient

Ig = �l

0

GIp� 	
2

dx shaft strain energy

Iψ = ��
A

ψ2 dA shaft warping function

Iθ = �l

0

ρ� 	
2

dx shaft rotary inertia

Q plate transverse shearing forces
M plate bending and twisting moments
V Kelvin-Kirchhoff plate edge reactions
lx and ly direction cosines in x, y directions,

respectively
Tr applied torque

∂2θ
�
∂t∂x

∂θ
�
∂x

1
�
2

Eh3

��
12(1 − v2)

E
�
2(1 + v)



dimension. Figure 7.1 displays a bar/shaft configuration at coordinate x for both lon-
gitudinal and rotational response modes.

Equations (7.5) through (7.10) are based upon the HVP development for the bar
longitudinal dynamics in terms of displacement along the bar length u(x,t) with
applied force fl(x,t) (force / unit length) and torsional dynamics in terms of angle of
rotation about the center of twist of the bar θ(x,t), with applied moment mt(x,t)
(forceunit length / unit lengthradian). The expression on the left-hand side of each
equation represents the bar longitudinal dynamics, while the expression on the
right-hand side represents bar torsional dynamics. Structure/material properties,
forces, and torques may be nonuniform along the bar axis.

Structure potential (elastic) energy for constants in Table 7.9 is given by

π = �
1
2

� �l

0 �EA��
∂
∂
u
x
�	

2

 dx π = �
1
2

� �l

0 �GIp��
∂
∂
θ
x
�	

2

 dx (7.5)
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FIGURE 7.1 Loaded bar/shaft configuration: (A) longitudinal applied
load fl(x,t); (B) rotational applied torque mt(x,t).

(A)

(B)

longitudinal torsional



and structure kinetic energy for mass density ρm by the following expressions:

T = �
1
2

� �l

0 �ρmA��
∂
∂
u
t
�	

2

 dx T = �
1
2

� �l

0 �ρmIp��
∂
∂
θ
t
�	

2

 dx (7.6)

The work performed on the structure by external forces is given by

W = �l

0
[flu] dx W = �l

0
[mtθ] dx (7.7)

Application of integration by parts in HVP provides Lagrange’s equations of
motion:

�
∂
∂
x
� �EA �

∂
∂
u
x
�	 + fl = ρmA �

∂
∂

2

t
u
2� �GIp �

∂
∂
θ
x
�	 + mt = ρmIp �

∂
∂

2

t
θ
2� (7.8)

Kinematic and natural boundary conditions are provided in terms of the variation
operator δ

EA �
∂
∂
u
x
� δu


l

0

= 0 GIp �
∂
∂
θ
x
� δθ


l

0

= 0 (7.9)

Finally, initial displacement and velocity can be stated as

u(x, 0) = u0(x),u̇(x, 0) = u̇0(x) θ(x, 0) = θ0(x),θ̇(x, 0) = θ̇0(x) (7.10)

for Figure 7.2A.
Basic bar boundary conditions are fixed-end (X) or free (R). Figure 7.2A general-

izes this by attaching spring (linear or rotational) and mass (lumped or disk) elements
at the ends of the uniform bar to form a simple combination continuous/discrete sys-
tem.Table 7.10 summarizes the dynamics of nine unique cases in terms of the charac-
teristic frequency equation and the form of the mode shape. Example 7.1 for the
configuration in Fig. 7.2B illustrates the Rayleigh-Ritz normal mode formulation
along with estimation of the lowest natural frequency using Rayleigh’s quotient.This
example serves to illustrate use of Table 7.10.

Example 7.1: Longitudinal Vibration of a Fixed-End Bar with a Spring/Mass
Attached to the Free End
SOLUTION. The bar in Fig. 7.2B has displacement/force boundary conditions in
Eq. (7.11) and, for completeness, initial conditions in Eq. (7.12):

u(0,t) = 0 and EA = −ku(l,t) − M (7.11)

u(x,0) = u0(x) and = u̇0(x) (7.12)

where u0(x) and u̇0(x) are specified functions.

∂u(x,0)
�

∂t

∂2u(l,t)
�

∂t2

∂u(l,t)
�

∂x

∂
�
∂x
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Applying the boundary conditions and allowing α = ωl/c, k = EA/l, m = Alρ, and
β = m/m2 provides the following characteristic equation to be solved for α = ωl/c:

α cotα = − (7.13)

and solution

u(x,t) = �
∞

n = 1
�sin (Cn cos ωnt + Dn sin ωnt) for ωn = (7.14)

where Cn and Dn must be determined from the bar initial conditions:

Cn = �l

0
u0(x) sin � 	 dx Dn = �l

0
u̇0 (x) sin � 	 dx for n = 1,2, . . . (7.15)

Since the characteristic equation varies with the end configuration at x = l, four
additional configurations with left end fixed with corresponding characteristic equa-
tions and normal modes are:

k2 and m2 removed (X/R): cos (α) = 0, B̃n sin �  for n = 0,1,2,3, . . .

k2 and m2 removed (X/X): sin (α) = 0, B̃n sin � 	 for n = 1,2,3, . . .

(7.16)
m2 removed, k2 > 0(X/-): αtan (α) = −γ, B̃n sin � 	 for n = 1,2,3, . . .

k2 removed, m2 > 0 (X/-): αtan (α) = β, B̃n sin � 	 for n = 1,2,3, . . .
αnx
�

l

αnx
�

l

nπx
�

l

(2n + 1)πx
��

2l

ωnx
�

c
2

�
ncl

ωnx
�

c
2

�
ncl

αnc
�

l
ωnx
�

c

k2
�
k

α2

�
β
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FIGURE 7.2 Bar with mass and spring boundary conditions: (A) longitudinal vibration for two-
mass/two-spring continuous bar system; (B) longitudinal vibration for continuous bar with mass/
spring boundary condition.

(A)

(B)
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TABLE 7.10 Characteristic Frequencies and Natural Vibration Modes for a Bar Structure System

Configuration Characteristic equation Normal mode shape

- k1 m1 B m2 k2 - tan (α) = Ãn �cos � 	 + sin � 	� n = 1,2,..

- k1 - B - k2 - tan (α) = Ãn �cos � 	 + sin � 	� n = 1,2,..

- - m1 B m2 - - tan (α) = Ãn �cos � 	 + sin � 	� n = 1,2,...

- k1 - B m2 - - tan (α) = Ãn �cos � 	 + sin � 	� n = 1,2,.

- k1 - B m2 k2 - tan (α) = Ãn �cos � 	 + sin � 	� n = 1,2,.

- - - B m2 k2 - αtan (α) = Ãn cos � 	 n = 1,2,..

R - - B - - R sin (α) = 0 Ãn cos � 	 n = 0,1,2,..

R - - B m2 - - tan (α) = −α/β Ãn cos � 	 n = 1,2,..

R - - B - k2 - cot (α) = αδ Ãn cos � 	 n = 1,2,..

Parameters:

α = , ω = , m = ρAl, c2 = , k = , δ = , β = , γ =

from governing equations longitudinal EA ∼ torsional GIp and longitudinal ρA ∼ torsional Io

mω2

�
k2

m
�
m2

k
�
k2

EA
�

l
E
�
ρ

αc
�

l
ωl
�
c

αnx
�

l

αnx
�

l

nπx
�

l

αnx
�

l
k2 − m2ω2

��
k

αnx
�

l
k1
�
kα

αnx
�

l
kα((k1 − k2) − m2ω2)
���
(kα)2 − k1 (k2 − m2ω2)

αnx
�

l
k1
�
kα

αnx
�

l
kα(k1 − m2ω2)
��
(kα)2 + m2k1ω2

αnx
�

l
m1kα2

n
�

m
αnx
�

l
kα(m1 + m2)ω2

��
m1m2ω4 − (kα)2

αnx
�

l
k1

�
kαn

αnx
�

l
kα(k1 + k2)
��
(kα)2 − k1k2

αnx
�

l
k1 − m1ωn

2

��
kα

αnx
�

l
kα[(k1 + k2) − (m1 + m2)ω2]

����
(kα)2 − (k1 − m1ω2)(k2 − m2ω2)



Rayleigh’s method, assuming u(x) ≈ u0 x/l ; 0 ≤ x ≤ l and u(0) = 0, u(l) = u0:

T = �l

0
ρA� 

2
dx + m2 � 

2
→ ω2

nTmax = ω2
n u2

0 + m2ω2
nu2

0 (7.17)

π = �l

0
EA� 	

2
dx + k2u2(l, t) → πmax = + k2u2

0 (7.18)

Rayleigh’s quotient: R(u0 x/l) = = ω2
n → ωn

= �� = ��
(7.19)

In Table 7.10, the leftmost column describes the remaining unique nine structure
system configurations, as illustrated in Fig. 7.2A. For Example 7.1 and Fig. 7.2B, the
structure configuration is denoted [X - - B m2 k2 -] implying a bar (B) with a fixed
end and a mass and spring attached to the other end. The other four configurations
included in this example are not repeated in Table 7.10.The middle column provides
the characteristic equation to be solved for the natural frequencies according to
index n, where it is generally assumed that the denominator in these equations is
bounded away from zero. The rightmost column provides the form of the mode
shape in terms of bar reference u(x,t) or θ(x,t) as a function of coordinate x. Even
though information in Table 7.10 is expressed in terms of the bar’s longitudinal con-
figuration, the table also contains all information necessary for the torsional config-
uration, with torsional springs replacing linear springs and discrete mass moments of
inertia replacing lumped masses.

Stress Versus Particle Velocity. Hamilton’s variational principle leads to the
one-dimensional wave equation and the conclusion that the longitudinal stress in a
bar is proportional to particle velocity.7 Table 7.11 derives the relationship.

Hopkinson Bar.7 A uniform bar, with a longitudinal impact area on one end and a
test item on the opposite end, has dynamics that are governed by the one-dimensional
wave equation. For such a bar, termed a Hopkinson bar, knowing the form of the input

k + k2
��
m/3 + m2

EA/l + k2
��
ρAl/3 + m2

πmax
�
Tmax

1
�
2

u2
0

�
l

EA
�

2
1
�
2

∂u
�
∂x

1
�
2

1
�
2

l
�
3

ρA
�

2
∂u(l,t)
�

∂t
1
�
2

∂u
�
∂t

1
�
2
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TABLE 7.11 Material Particle Velocity Proportional to Longitudinal 
Stress in a Bar

1. Displacement field: u = u (x,t) = G1 (x − c0t) + G2 (x + c0t) for G1 and G2 arbitrary

2. Strain and stress/displacement: εxx = , σxx = E

3. One-dimensional wave equation: E = ρm and = [for u (x,t) = G2 (x + c0t)]

4. Derivation: E = = ρm = ρm �c0 	 = ρmc0 � 	 then integration with 

respect to x provides σxx = ρmc0 for c0 = �E/ρm�
∂u
�
∂t

∂u
�
∂t

∂
�
∂x

∂u
�
∂x

∂
�
∂t

∂2u
�
∂t2

∂σxx
�
∂x

∂2u
�
∂x2

∂u
�
∂t

1
�
c0

∂u
�
∂x

∂2u
�
∂t2

∂2u
�
∂x2

∂u
�
∂x

∂u
�
∂x



pulse, the base input to the test item can be predicted at the opposite end from a
Fourier integral solution of the equation of motion. The wave propagation phenome-
non is discussed in Ref. 7.

Structure degradation from large stress can occur under high material velocity.

SELECTED REFERENCE INFORMATION

Bar propagation of elastic energy in a single linear dimension may be accompanied
by local rotary and shear effects as a result of the material’s Poisson ratio. Displace-
ments in the longitudinal and the cross-sectional axes, that is, u(x,t), v(x,t), and w(x,t),
contribute energy in higher-order theories. The shorter a bar in relation to its lateral
dimensions, the larger the rotary inertia and shear effects. Two extended theories,
Rayleigh and Bishop, for bar longitudinal vibration are discussed in Ref. 8. The
Rayleigh theory considers the effect of rotary inertia, while Bishop’s theory includes
effects of both rotary inertia and shear. Longitudinal vibrations of nonuniform bars
of certain form can have analytical solutions as a result of functional transforma-
tion.40,41 Reference 42 examines the impulsive response of variable cross-section
bars using Green’s function, arriving at an integral equation formulation. Two or
more longitudinal bars coupled in longitudinal vibration to compose a structural sys-
tem with complex modal structure is solved via Green’s function in Ref. 43.

BARS (SHAFTS) WITH ROTATIONAL VIBRATION 

(EXTENDED THEORIES)

Higher-order extended theories of shafts are of greater importance than those for bars
because of the common use of shaft structures for transferring rotary motion. These
theories become complex when noncircular cross sections are considered because of
the difficulty in defining torsional rigidity C (defined by the shaft torque divided by
the angle of twist). In this section it is assumed that external moments act through the
center of twist. The first model comes from St. Venant’s theory, designated Σ and
includes out-of-plane displacement of plane sections normal to the axis of rotation but
neglects inertia due to axial motion. The second model is based upon Love’s theory,
designated Λ, that is, Σ plus rotary inertia attributed to plane sections. Finally, there is
the Timoshenko-Gere theory, designated Τ, that is, Λ plus the effects of torsional shear
for short shafts.Theories Σ, Λ, and Τ are telescoping in terms of equations and bound-
ary conditions, as is noted in Eqs. (7.22) through (7.26). These equations identify the
effect for each term in the equation—for example, the rotary inertia designation rep-
resents the effect of rotary inertia. Higher-order theories result in two coupled partial
differential equations, with the second equation in terms of a warping function. Prac-
tical application requires Prandtl’s membrane analogy, found in the references.6,8

Figure 7.3 provides a schematic of a square shaft with x-axis of rotation and yz-
out of plane deformation. It will be assumed that all material and configuration
parameters are a function of the rotational coordinate θ. With rotation θ(x,t) and an
arbitrary point in the shaft cross section (x,y,z), then cross-section displacement is
defined by a warping function ψ(y,z), where for time implicit in Eq. (7.20)

u(x,y,z) = ψ(y,z) (7.20)

and other displacements for explicit time are given by

v = −zθ(x,t) and w = yθ(x,t) (7.21)

∂θ
�
∂x
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Shaft torsional elastic energy in terms of axial stress or “stretching” and shear is
given by

π = �l

0
��

A ��G���
∂
∂
ψ
y
� − z	 �

∂
∂
θ
x
�

2
+ G���

∂
∂
ψ
z
� + y	 �

∂
∂
θ
x
�

2

� + �E�ψ �
∂
∂

2

x
θ
2�	

2

�	 dAdx (7.22)

while the corresponding shaft kinetic energy is given by

T = �l

0
��

A
ρm��z �

∂
∂
θ
t
�	

2
+ �y �

∂
∂
θ
t
�	

2
+ �ψ �

∂
∂
x

2

∂
θ
t

�	
2 dAdx (7.23)

For an applied external torque mt, the shaft work energy is given as

W = �l

0
[mtθ] dx (7.24)

In both Λ and Τ theories, variables [θ(x,t) and ψ(x,t)] are coupled.

− �
∂
∂
x
� �C��

∂
∂
θ
x
�		 + ρmIp �

∂
∂

2

t
θ
2� − �

∂
∂
t∂

2

x
� �ρmIψ �

∂
∂
t

2

∂
θ
x

�	 + �
∂
∂
x

2

2� �EIψ �
∂
∂

2

x
θ
2�	 = m(x,t) (7.25a)
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l

0
E��

∂
∂

2

x
θ
2�	

2
dxψ = 0 (7.25b)

while the kinematic and natural boundary conditions are likewise coupled

�C �
∂
∂
θ
x
� + ρmIψ �

∂
∂
x

3

∂
θ
t2� − �

∂
∂
x
� �EIψ �

∂
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θ
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0
= 0 (7.26a)
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FIGURE 7.3 Schematic for a square shaft under torsion rotating through
center of twist. (Ref. 8.)

Σ,Λ,Τ—torsional shear T—axial stress

Σ,Λ,Τ—rotary inertia Λ,Τ—axial inertia

Σ,Λ,Τ—external torque

Λ,Τ—axial inertiaΣ,Λ,Τ—rotary
inertia

Σ,Λ,Τ—torsional shear Σ,Λ,Τ—external
torque

Τ—axial stress

Σ,Λ,Τ—torsional shear Λ,Τ—rotary inertia Τ—axial stress

Λ,Τ—rotary
inertia

Τ—axial stressΤ—axial stressΣ,Λ,Τ—torsional
shear



��
∂
∂
ψ
y
� − z	ly + ��

∂
∂
ψ
z
� + y	lz = 0 for ly and lz boundary direction cosines (7.26b)

Solution in terms of θ(x,t) and ψ(y,z) is difficult with regard to the boundary condi-
tion on ψ. St. Venant’s theory for torsion of noncircular shafts [Eqs. (7.25a) and
(7.25b)] replaces C by GIp. The differential equation for ψ is the second-order
Laplace partial differential equation. For practical solution, ψ can be expressed in
terms of the Prandtl stress function and the torsional rigidity computed for noncir-
cular shafts by solving Poisson’s equation (a nonhomogeneous form of Laplace’s
equation). Prandtl’s membrane analogy based upon the Prandtl stress function
relates properties of an inflated membrane of the same plan form as the noncircular
shaft to torsion characteristics of noncircular shafts. For example, in this analogy the
slope at the boundary of the membrane in a given axis is proportional to the shear
stress in the specified axis.8

Table 7.12 provides torsional rigidity estimates along with the maximum shear
stress for several forms of closed cross section. To use this table for determining tor-
sional rigidity defined as C = Tr/θ, the value provided in the second column divided
by the torque Tr and inverted is the torsional rigidity constant C. Reference 8
demonstrates derivation of the torsional rigidity constant C for an elliptic and rect-
angular cross-section shaft.

SELECTED REFERENCE INFORMATION

An early paper examines the effect of warping restraint on torsion of a thin-walled
cantilever tube.44 A simplified time domain model is used in quantifying torsional
vibrations and studying shaft breakage in motor drives during start-up.45 Damping
of shaft vibration is considered in Ref. 46. Additional references are provided under
the beam dynamics section, where coupling of bending and torsional vibration is of
concern.

BEAMS (TRANSVERSE VIBRATION)

Beam structures carry load transverse to the long axis through material bending. As
in the case of a bar, rotary inertia and shear of plane sections can be considerations
for beam bending if the beam transverse dimension is sizable in comparison with the
long axis. Seldom are combined axial and bending vibrations of beam structures a
concern; however, thin-walled beam structures may have coupled vibration modes
in bending and torsion. Beams considered in this section are described in a rectilin-
ear coordinate system (beams in a curvilinear coordinate system are termed arches
and are referenced in a separate section) and include (1) beams with diverse bound-
ary conditions, (2) continuous beams, and (3) beams on elastic foundations. Refer-
ence 8 discusses in detail other beam configurations such as beams with axial forces
(e.g., rotating beams) and beams with combined bending and torsion. Beam dynam-
ics may be expressed in at least 10 theories or variants of major theories.47 The most
common theories of Euler-Bernoulli (designated E), Rayleigh (P), and Timoshenko
(T) will be presented here.These theories do not permit distortion of the beam plane
cross sections such as in the case of torsional bar dynamics with a cross-section warp-
ing function.
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Σ,Λ,Τ—warping function boundary condition



Significant kinematic/dynamic relationships for higher-order theories P and T are
given by rotary inertia dynamics (P) and plane section shear deformation (T) as
depicted in Fig. 7.4. If v = 0 and w = w(x,t), then

u =−z��
∂
∂
w
x
�	 �

∂
∂
u
t
� = −z��

∂
∂
t

2

∂
w
x

�	 u = −z��
∂
∂
w
x
� − β	 � −zφ(x,t) (7.27)
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TABLE 7.12 Torsional Rigidity and Maximum Shear Stress for Shafts 
(Adapted from Ref. 8)

Angle of twist per Maximum shear stress
Cross section unit length θ τmax

1. Thick-walled tube Tr = torque
G = shear modulus

2. Solid elliptic shaft

3. Hollow elliptic tube

4. Solid rectangular shaft

5. Thin-walled tube

S = circumference of the 
centerline of the tube 
(midwall perimeters)

Ã = area enclosed by the 
midwall perimeters

2TrRo
��
π(R4

0 − R4
i )

2Tr
��
πG(R4

0 − R4
i )

2Tr
�
πab2

(a2 + b2)Tr
��

πGa3b3

Tr
�
2πabt

�2(a2 +�b2)Tr�
��

4πGa2b2t

α β

1.0 0.141 0.208
2.0 0.229 0.246
3.0 0.263 0.267
5.0 0.291 0.292

10.0 0.312 0.312
∞ 0.333 0.333

a
�
b

Tr
�
αGab3

Tr
�
βab2

Tr
�
2Ãt

TrS
�
4GÃ2t

E,P,T—pure bending P—rotary inertia T—plane section shear
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FIGURE 7.4 Bending moment and shear force deformation relationships (A) nondeformed; (B)
plane section translation (shear); (C) plane section rotation (bending); (D) combined plane section
translation and rotation. (Adapted from Ref. 8.)

(A)

(B)

(C)

(D)



For a beam, the elastic energy including plane section shear with shear correction
factor k (a function of cross-section shape), accounting for a nonuniform distribution
of shear stress σzx over the plane section such that σzx = Gεzx = kG(∂w/∂x), is given by

π = �l

0 �EIb��
∂
∂
φ
x
�	

2
+ kAG��

∂
∂
w
x
� − φ	

2 dx (7.28)

The expression for beam kinetic energy including plane section rotational inertia is
given as

T = �l

0
ρm�A��

∂
∂
w
t
�	

2
+ Ib��

∂
∂
φ
t
�	

2 dx (7.29)

Work from forces applied transverse to the beam axis is

W = �l

0
( f w) dx (7.30)

From HVP and integration by parts, Lagrange’s differential equations couple dis-
placement w and rotation φ.

− �
∂
∂
x
� �kAG��

∂
∂
w
x
� − φ	 + ρmA �

∂
∂

2

t
w
2� = f (7.31a)

− �
∂
∂
x
� �EIb �

∂
∂
φ
x
�	 − kAG��

∂
∂
w
x
� − φ	 + ρmIb �

∂
∂

2

t
φ
2� = 0 (7.31b)

The w,φ coupled boundary conditions for this particular form of beam dynamics
are given by

�kAG��
∂
∂
w
x
� − φ	 δw


l

0

= 0 and �EI �
∂
∂
φ
x
�	 δφ


l

0

= 0 (7.32)

For governing equation transparency, relative to the three dynamic theories, a
beam with uniform structure and mass properties must be assumed and φ eliminated
from Eqs. (7.31) and (7.32). The resulting equation of motion provides a single
fourth-order partial differential equation in w(x,t), requiring spatial derivatives of
the applied transverse load f(x,t).

EIb �
∂
∂

4

x
w

4� + ρmA�
∂
∂

2

t
w
2� − ρmIb �

∂
∂
x

4

2

w
∂t2� − �

∂
∂
x

4

2

w
∂t2� + �

k
ρ
G

2I
� �

∂
∂

4
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w
4�

(7.33)

= − + +         f
∂2f
�
∂t2

ρI
�
kAG

∂2 f
�
∂x2

EI
�
kAG

ρmIbE
�

kG

1
�
2

1
�
2
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T—shearK,P,T—bending

E,P,T—bending 
inertia

P,T—rotary 
inertia

E,P,T—external 
transverse force

E,P,T—transverse 
mass inertia

T—shear stiffness

E,P,T—
external force

E,P,T—bending stiffness T—shear stiffness P—rotary inertia

T—shear E,P,T—bending

E,P,T—bending stiffness E,P,T—transverse 
mass inertia

P,T—rotary 
inertia strain

T—rotary inertia 
shear strain

T—rotary inertia 
shear strain

T—bending/shear T—inertia/shear E,P,T—force



The moment/slope boundary condition is given by Eq. (7.34):

EIb �
∂
∂

2

x
w

2� δ � 	

l

0
= 0 (7.34)

and the shear/displacement boundary condition is given as follows:

��
∂
∂
x
� �EIb�

∂
∂

2

x
w

2�	 − ρmIb �
∂
∂
x

3

∂
w
t2� δw
l0 = 0 (7.35)

Illustrations that follow are almost exclusively in terms of Euler-Bernoulli beam
theory because of its simplicity. Rayleigh theory, with mixed second-order deriva-
tives in the term ∂4w/∂x2∂t2, is often separable in x and t, resulting in an added term
to the natural frequency. For Timoshenko theory, bending and shear are coupled,
resulting in simultaneously occurring natural frequencies in bending and higher nat-
ural frequencies in shear.

EULER-BERNOULLI BEAM THEORY

Normal Modes. For practical application, Euler-Bernoulli beam theory allows
separation of variables and a first approximation for beam dynamic behavior under
(1) a broad set of kinematic (displacement/slope) and natural (shear/moment)
boundary conditions including mass, damper, and spring end loading elements;
(2) initial conditions; and (3) transverse dynamic loading.8 The form of solution to 
E theory included in Eqs. (7.33) through (7.35) with no external forces is

w(x,t) = W(x)T(t) (7.36)

where W(x) satisfies

− κ4W(x) = 0 for κ4 = and ωn = κ2 �� (7.37)

with solution

W(x) = A(cos κx + cosh κx) + B(cos κx − cosh κx) +
C(sin κx + sinh κx) + D(sin κx − sinh κx) (7.38)

and T(t) satisfies

+ ω2T(t) = 0 (7.39)

with solution

T(t) = Ã cos ωt + B̃ sin ωt (7.40)

Table 7.13 provides typical modal information for a uniform beam under five
kinematic boundary condition configurations. This table illustrates the fact that as
the displacement/slope constraints increase so does the modal frequency.

d2T(t)
�

dt2

EI
�
ρAA

ω2
nρAA

�
EI

d4W(x)
�

dx4

∂w
�
∂x
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E,P,T—bending 
moment

E,P,T—shear P,T—rotary shear



Figure 7.5 displays a uniform, undamped, simply supported beam with an ideal-
ized harmonic point load moving at a constant velocity v0. This example serves to
illustrate some subtleties in the assumed mode solution and necessary assumptions
for a well-defined problem.

Example 7.2: Assumed Mode Solution for a Uniform Simply Supported Beam
with a Harmonic Moving Point Load. For the Euler-Bernoulli beam theory, the
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TABLE 7.13 Natural Frequencies and Normal Modes of Uniform Beams



equation of motion with kinematic/natural boundary conditions and zero initial con-
ditions is

EIb + ρAA = f(x,t) for 0 ≤ x ≤ L and 0 ≤ t ≤ T and t1 = L/v0 < T (7.41)

w(0,t) = w(L,t) = 0 and EI = EI = 0 (7.42)

w(x,0) = 0 and (x,0) = 0 for 0 ≤ x ≤ L (7.43)

Proceeding formally, the assumed modes method solution assumes that

w(x,t) = �
∞

i = 1
Wi(x)ηi(t) for 0 ≤ x ≤ L and 0 ≤ t ≤ T (7.44)

where simply supported boundary conditions allow the eigenvector form

Wi(x) = Ci sin � 	 for 0 ≤ x ≤ L and Ci (a normalizing constant) (7.45)

determined from the orthogonality condition

�L

0
ρAAWi(x)Wj(x) dx = � and Ci = �2/(ρAA�L)� (7.46)

Separating variables, the ith mode natural frequency of vibration is given by

ωi = (iπ)2 �� (7.47)

Integration of Eq. (7.41) over x for the ith mode leads to the following second-
order ordinary differential equation in modal coordinate ηi(t), modal force Qi(t),
and corresponding natural frequency ωi:

+ ωi
2ηi(t) = Qi(t) = �L

0
Wi(x)f(x,t) dx for i = 1,2, . . . (7.48)

Standard solution for this differential equation is superposition of a homoge-
neous solution ηh(t) and a particular solution ηp(t) or expressed in terms of initial
conditions and modal force for the ith mode:

d2ηi(t)
�

dt2

EIb
�
ρAAL4

0 for i ≠ j
1 for i = j

iπx
�
L

∂w
�
∂t

∂2w(L,t)
�

∂x2

∂2w(0,t)
�

∂x2

∂2w
�
∂t2

∂4w
�
∂x4
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FIGURE 7.5 Simply supported beam with a moving harmonic point load.



ηi(t) = cos (ωit)ηi(0) + sin (ωit)η̇i(0) + �t

0
Qi(τ) sin [ωi(t − τ)] dτ (7.49)

where from initial conditions

ηi(0) = η̇i(0) = 0 (7.50)

In consideration of the loading imposed in Fig. 7.5, Ref. 48 discusses additional
assumptions that need to be made for the problem to be well defined. For the case
of P = P0, a constant magnitude point load, after the load has traversed the beam, the
beam is in a state of free vibration, with no work having been performed on the
beam during the transversal. To resolve this Timoshenko paradox, a rolling circular
disk of negligible mass must be assumed, with input torque energy equivalent to the
energy of the vibrating beam once the load has left the rightmost support (this is also
a requirement for the point load to move at constant speed v0). Structural flexibility
may be important but is not considered here. If a finitely distributed load is assumed,
complications arise at the supports and any finite distribution must be accounted for
in higher vibration modes whose wavelengths may be comparable to the length over
which the finite load distribution is defined. The assumption of a time-varying point
load is easily accommodated but leads to complex solutions when any of the natural
frequencies of the beam ωi coincide with either the load transversal frequency ωv =
v0/L or the load harmonic frequency Ω. To simplify the resulting equation, it is
assumed that the loading frequencies do not coincide with any of the beam natural
frequencies, even though the loading is transient over time t1 = L/v0. The harmonic
point load is initially zero, moves at a constant velocity of v0, and is only nonzero
over a finite time interval. That is,

f(x,t) = � (7.51)

Once the moving load has traversed the beam 0 ≤ t ≤ t1, the beam enters free
vibration for t1 < t ≤ T, so the general solution must include a transient load time
interval along with a free vibration time interval.

Determination of the modal force Qi(t) for 0 ≤ t ≤ t1 for the moving harmonic load
could employ either a delta function approach or, as will be illustrated here, a Fourier
series approach (Ref. 8). First, the point load at d = tv0 for 0 ≤ t ≤ t1 is expressed as
follows:

f̃ (x) = � (7.52)

with Fourier expansion

f̃ (x) = �
∞

j = 1
aj sin � 	 where aj = �L

0
f (x) sin � 	 dx (7.53)

that reduces to

aj ≈ �d + Δx

d − Δx
f̃ (x) sin � 	 dx = sin � 	 (7.54)

As Δx approaches zero, aj becomes

aj = sin � 	 (7.55)
jπd
�
L

2P0 sin (Ωt)
��

L

sin (jπΔx/L)
��

jπΔx/L
jπd
�
L

2P0 sin (Ωt)
��

L
jπx
�
L

jπx
�
L

2
�
L

jπx
�
L

0             0 ≤ x < d − Δx
f̃ d − Δx ≤ x ≤ d + x
0 d + Δx < x ≤ L

P0 sin (Ωt)δ(x − tv0) for 0 ≤ t ≤ L/v0, 0 ≤ x ≤ L
0                                for L/v0 < t ≤ T, 0 ≤ x ≤ L

1
�
ωi

1
�
ωi
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and

f(x,t) = �
∞

j = 1
sin � 	 sin � 	 (7.56)

From Eq. (7.48), the ith modal force becomes

Qi(t) = � (7.57)

and substituting this force into Eq. (7.49) defines the ith modal coordinate:

ηi(t) = �t

0
CiP0 sin (Ωτ) sin (iπωvτ) sin [ωi(t − τ)] dτ for 0 ≤ t ≤ t1 (7.58)

An explicit analytical expression for ηi(t) can be obtained by tedious application
of trigonometric identities and integration. Evaluating ηi(t1) and η̇i(t1) provides the
beam free vibration initial conditions that apply once the load passes the rightmost
support. The final solution is given as

w(x,t) =��
∞

i = 1
��

ρA

2
AL
�� sin ��

iπ
L

x
�	ηi(t) for 0 ≤ t ≤ t1 and 0 ≤ x ≤ L

(7.59)
�
∞

i = 1
sin ��

iπ
L

x
�	�cos(ωit)ηi(t1) + �

ω
1

i
� sin (ωit)η̇i(t1) for t1 ≤ t ≤ T and 0 ≤ x ≤ L

Varying v0 and Ω, and examining the resulting beam displacement/velocity/bending
moment in time leads to complex results for evaluation.

Continuous Beams. Continuous beams—beams that have multiple supports along
the axis of the beam—present no technical problems for solution using the Euler-
Bernoulli theory and can be extended to Timoshenko beams.49,50 Figure 7.6 displays
a continuous beam with n − 1 segments and n supports.

Solution for the natural frequencies and mode shapes proceeds by considering
simultaneous solution of n − 1 beam equations for 2n deflection/slope boundary
conditions. A nontrivial solution for the algebraic set of equations leads to the fre-
quency equation having a determinant of order 4(n − 1). Beams with varying prop-
erties between supports can be easily incorporated in the formulation. Table 7.14
provides algorithmic equations for establishing the frequency equation and deter-
mining the mode shapes. The continuous beam solution procedure is related to the
transfer matrix method for complex structures.34

1
�
ωi

�L

0
Wi(x)f(x,t) dx = CiP0 sin (Ωt) sin ��iπL

v0t
�	 for 0 ≤ t ≤ t1

0                                                                         for t1 < t ≤ T

jπx
�
L

jπv0t
�

L
2P0 sin (Ωt)
��

L
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FIGURE 7.6 Continuous beam with n − 1 segments.
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TABLE 7.14 Continuous Beam Relationships

Theory: Euler-Bernoulli

Solution: wi(x) = Ai cos κix + Bi sin κix + Ci cosh κix + Di sinh κix

for κi = � 	
1/4

i = 1,2, . . . ,n − 1

Boundary conditions (at ends i = 1 and i = n):

Moment/slope: EI �
∂
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2

x
w

2� ��
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w
x
�	 and Shear/displacement: �
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x
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∂
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Continuity conditions (at supports):

Moment: Ei − 1Ii − 1 �
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2

x
w

2�

x = li − 1

= EiIi �
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w
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x = li

Slope: �
∂
∂
w
x
�


x = li − 1

= �
∂
∂
w
x
�


x = li
i = 2,3, . . . ,n − 1

Auxiliary condition:

Support displacement: w
x = li
= 0 for i = 2,3, . . . ,n − 1

Conditions provide 4(n − 1) homogeneous algebraic equations in Ai, Bi, Ci, and Di from which
the determinant of the equations must be zero leading to a transcendental equation for an
infinite number of modal frequencies ω.

Parameters (for the ith section):

ρi mass density Ei modulus of elasticity
Ai beam cross-section area Ii bending moment of inertia
ω frequency (rad/sec)

ρiAiω2

�
EiIi

FIGURE 7.7 Free-body diagram of a beam on an undamped elastic foundation with lateral stiff-
ness kfl > 0 and kfscf = 0



Beams on Foundations. Figure 7.7 displays an infinitesimal section of a beam on
an elastic foundation that is one case of a generalized foundation. A generalized
foundation is characterized by a foundation pressure and moment at each point
along the beam. This can be expressed simply as

Pressure: p(x) = kflw(x)

Moment: m(x) = kn �
dw

d
(
n
x)

� (7.60)

(n normal to the beam axis)

There are at least seven major foundation configurations that modify the dynamics
of an elastic beam that rests on any one of them.47 For free vibration of a uniform
Euler-Bernoulli beam on an elastic foundation with foundation modulus kf , the
equation of motion is written as

EIb �
∂
∂

4

x
w

4� + ρAA �
∂
∂

2

t
w
2� + kflw = 0 (7.61)

Relying upon separation of variables, the following solution is provided for a simply
supported set of end conditions:

w(x,t) = �
∞

i = 1
Ci sin κix (7.62)

and the natural frequencies are given by

ωi = ���1 + �
E

k
I�

b

f

i
ll

4

4

π4�� for i = 1,2,3, . . . (7.63)

Addition of the elastic foundation for kfl > 0 generally increases the natural fre-
quencies of a beam, causing the beam to be stiffer in bending. For the Timoshenko
beam, both the shear and the rotary inertia effects should result in higher natural
frequencies. If foundation mass is included in the problem formulation, then the
problem resembles one of a composite beam. This problem can be generalized to
consideration of a beam on an elastic foundation subject to a moving load.8

TIMOSHENKO BEAM THEORY

For an unloaded uniform simply supported Timoshenko beam, the following equa-
tion for natural frequencies can be easily derived.8

ω4
n − ω2

n�1 + + 	 + = 0 (7.64)

For Rayleigh’s theory, Eq. (7.64) reduces to

−ω2
n�1 + 	 + = 0 (7.65)

and for the Euler-Bernoulli theory

−ω2
n + = 0 (7.66)
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Table 7.15 provides natural frequency estimates normalized to the fundamental
mode for a particular configuration of steel beam. Since Eq. (7.64) is fourth order,
two extra roots in the characteristic equation provide an estimate of the shear vibra-
tion frequency that is substantially higher than the bending vibration. Plane section
rotary inertia and shear representing higher-order modeling of internal material
constraints lower the natural bending modal frequency of the beam.

SELECTED REFERENCE INFORMATION

Literature on beam vibration is extensive. Eight modifications to the three beam
theories presented here are described in Ref. 47.Thin-walled beams under combina-
tion loading are examined in Ref. 51. Reference 52 examines beam plane section
warping flexibility and its effects on beam stiffness. A combination of flexural and
torsional vibrations is provided for a uniform spinning beam in Ref. 53. Fundamen-
tal frequency estimates can be made for beams with polynomial form pressure on an
elastic foundation by Rayleigh’s method.54 Coupling in two perpendicular beam
bending axes, along with torsion, is considered in Ref. 55.The power of HVP is illus-
trated for a very general pretwisted Timoshenko beam configuration with time-
dependent boundary conditions in Ref. 56. Stationary stochastic loading is applied to
a Timoshenko thin-walled beam with flexure and torsion coupling in Ref. 57. Refer-
ence 58 considers a general-configuration Euler-Bernoulli beam traversed by a
time-varying concentrated force. Knowing the vibration modes of a beam is of use in
determining both the modulus of elasticity and the shear modulus experimentally.59

Reference 60 illustrates use of continuous structure mechanics and Eringen’s nonlo-
cal constitutive relationship in nanotechnology as in Ref. 1.A cantilever Timoshenko
beam with a rigid mass tip displaying flexural-torsional coupled vibration is ana-
lyzed in Ref. 61.The differential quadrature method is used to solve nonlinear equa-
tions in Ref. 62, and Ref. 63 provides an example of extended application in
consideration of a combination of parametric excitation, a viscoelastic foundation
with random parameters, and a moving load. In Ref. 64, a Timoshenko column is
considered with a compressive follower load at the ends, and this paper discusses a
configuration that has no variational formulation. Reference 65 provides informa-
tion on a variety of beam vibration and buckling configurations. Reference 66 pro-
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TABLE 7.15 Normalized Natural Frequencies of Vibration of a Simply
Supported Rectangular Steel Beam Under Three Theories (Frequency
Normalization Factor of 703.0149, rad/s) (Table adapted from Ref. 8)

Normalized natural frequency (rad/s)

Timoshenko
n Euler-Bernoulli Rayleigh

Bending Shear
1 1.0000 0.9909 0.9643 31.6623
2 4.0000 3.8597 3.5182 34.7119
3 9.0000 8.3328 7.0383 39.0408

l = 39 in (1 m), w = 1.95 in (0.05 m), t = 5.85 in (0.15 m)

E = 30 × 106 lb/in2 (207 × 109 Pa), G = 12 × 106 lb/in2 (79.3 × 109 Pa),

ρV = 489 lbf/ft3 (76.5 × 103 N/m3), k = 5/6 (shear correction factor)



vides MATLAB code for solving a number of thin beam vibration problems based
upon the Euler-Bernoulli formulation.

PLATES (TRANSVERSE VIBRATION)

Thin plates are characterized by two-dimensional in-plane stretching and out-of-
plane bending. In addition to these two sources of energy, thick plates may demon-
strate the effects of transverse shear and rotary inertia. For a thin plate and
rectangular coordinate system, Fig. 7.8A displays in-plane and shear forces resulting
from external load f(x,y,t), while Fig. 7.8B displays the moments.

Classical plate theory considers only plate-bending energy, modification to clas-
sical plate theory includes in-plane forces, and the Mindlin theory accounts for shear
and rotary inertia for thick plates. Generally, the iterated second-order Poisson
operator (i.e., ∇4) governs plate behavior.This operator is easily expressed in a num-
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FIGURE 7.8 Forces and moments (intensities) acting on a plate element: (A) normal and shear
forces with distributed load; (B) bending moments.

(B)

(A)



ber of coordinate systems for determination of governing equations for other plate
shapes. For example, ∇4

r,θ,z governs behavior of circular plates whose geometry is 
in terms of a radial coordinate r, an orthogonal angular coordinate θ, and the 
z-coordinate normal to the plate surface.Transformations in terms of skew and ellip-
tical coordinate systems are available.67

Equations (7.67) through (7.71) provide HVP formulation for classical plate the-
ory in rectangular coordinates. Elastic energy in bending is given as

π = ��
A �� 	

2
+ � 	

2
+ 2v + 2(1 − v)� 	

2

 dA�z = h/2

z = −h/2
z2dz

(7.67)

Corresponding plate kinetic energy is simply

T = ��
A � 	

2
dA (7.68)

while work performed by force f, perpendicular to the plate surface, is given as

W = ��
A

f wdA (7.69)

Application of HVP and integration by parts yields Lagrange’s equation of
motion for the loaded plate:

D∇4w + ρh �
∂
∂

2

t
w
2� = f for ∇4 = + 2 + = ∇2(∇2) (7.70)

The corresponding boundary conditions in edge moment and shear are due to
Kirchoff.

Mx = −D� + v 	, My = −D� + v 	, Mxy = Myx = −(1 − v)
(7.71)

V = Qx + = −D�
∂
∂
x
� � + (2 − v) 	, V = Qy + = −D�

∂
∂
y
� � + (2 − v) 	

For illustrating typical effects of boundary conditions on natural frequencies and
mode shapes,Table 7.16 provides natural frequency and visual nodal lines for square
plates.

Textbooks exhaust the plate configurations that can be solved by separation of
variables; however, researchers using advanced methods do provide useful tables for
estimating natural frequencies and corresponding mode shapes for many plate con-
figurations. Once a mode shape is defined as an explicit function of the spatial coor-
dinates, then internal plate physical quantities such as stress, strain, moments, and
shears can be approximated for the selected mode. Unfortunately, two limitations
affect accuracy. First, most practical problems require an infinite-series form of solu-
tion (modal superposition) for which it may be difficult to decide where to truncate
for practical results. Second, internal plate physical quantities require derivatives of
the mode shape functions that are quite sensitive to the form of the mode shape.
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Table 7.17 summarizes useful plate vibration configuration information from Ref. 67,
and this reference provides the basis of solution for the modal frequencies (e.g., two-
term Galerkin series) and the mode shape explicitly in terms of spatial coordinates.
Generally, the extensive list of references contained in Ref. 67 should be consulted to
fully understand the nature of the approximation and solution. It is well to note that
Ref. 67 is nearly 40 years old, and a number of vibration configurations for structures
have been added to the literature during the intervening years.

Solution of plate vibration under general anisotropic conditions is very difficult,
but results are possible for both rectangular and polar orthotropy using the iterated
Poisson operator. For rectangular orthotropy such as plate stiffeners in an orthogo-
nal grid, the fourth-order bending operator is defined as follows:

∇4
Dw = Dx �

∂
∂

4

x
w

4� + 2Dxy �
∂x

∂
2

4

∂
w
y2� + Dy �

∂
∂

4

y
w

4� (7.72)

for Dx,Dxy, and Dy constant coefficients

Equation (7.72) can be substituted into any governing differential equation that
contains the iterated fourth-order Poisson operator alone, such as a plate on a uni-
form elastic foundation.
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TABLE 7.16 Natural Frequencies and Nodal Lines of Square Plates with Various
Edge Conditions (Adapted from Ref. 67)

ωn = 2πfn h = Plate thickness
D = Eh3/12(1 − v2) α = Plate length
ρ = Mass density

orthotropic bending

ωna2 ���ρ/D��

ωna2 ���ρ/D��

ωna2 ���ρ/D��



Dynamic behavior of a plate on a uniform elastic foundation (constant stiffness
coefficient kp) and a plate with external in-plane forces (Nx, Ny, and Nxy) contribut-
ing to plate bending energy is described by Eqs. (7.73) and (7.74), respectively.

D∇4w + ρh �
∂
∂

2

t
w
2� = − kpw (7.73)
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2
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w
y

� + Ny �
∂
∂

2

y
w

2� (7.74)

7.34 CHAPTER SEVEN

TABLE 7.17 Plate Vibration Configurations Providing Modal Frequencies and
Corresponding Mode Shapes (from Reference 67)

Plate configuration/properties C S F V E D P M I*

Isotropic plates

Circular plate x x x x x x
Annular plate x x x x x
Elliptical plate x x
Rectangular x x x x x x x x x
Parallelogram x x x x x
Trapezoidal x x
Triangular x x x x
Polygonal x
Sectorial x x
Irregular x

Anisotropic (orthotropic) plates

Circular (polar orthotropy) x x
Annular (polar orthotropy) x
Rectangular (rectangular orthotropy) x x x
Circular (rectangular orthotropy) x
Elliptical (rectangular orthotropy) x

Inplane forces

Circular x x x x
Rectangular x x x
Polygonal x
Triangular x x

Plates with variable thickness

Circular x x
Annular x x
Rectangular x x x

Miscellaneous considerations

Sparse results are provided for plates interacting with surrounding media, plates undergoing
large deflections, thick plates with shear deformation and rotary inertia, plates with nonho-
mogeneous properties

* Boundary conditions: C(CCCC)—clamped, S(SSSS)—simply supported, F(FFFF)—free, V—varied
conditions on boundary, E—elastic boundary support, D—discontinuous support, P—point support; M—
added mass; I—internal cutouts.

bending elastic
foundation

transverse mass 
inertia

transverse mass 
inertia

bending in-plane forces



Equation (7.74) for the Mindlin plate with rotary inertia and shear requires spa-
tial derivatives of the applied force f, and substantially complicates the fourth-order
operator form of governing equation of motion.

�∇2 − 	�D∇2 − 	w + ρh = �1 − ∇2 + 	 f (7.75)

A simple isotropic plate with variable thickness, Eq. (7.68), for h = h(x,y), must take
account of the flexible rigidity that also becomes a function of x and y, that is, D =
D(x,y) and derivatives of D.

∇2(D∇2w) − (1 − v)� − 2 + 	 + ρh = 0 (7.76)

SELECTED REFERENCE INFORMATION

Plate vibration literature is prolific. Reference 68 is useful for a general introduction
with discussion on plate loading. Mindlin plate theory related to both rotary inertia
and transverse shear is considered in Refs. 69 and 70. Reference 71 applies a poly-
nomial approximation method for solution of a broad variety of Mindlin plates.

OTHER STRUCTURES

There exist four important structures whose development in the area of structural
vibration can only be referenced.

Strings (Cables). Strings represent one-, two-, and three-dimensional structures
with intractability of equation solution increasing with dimension. Reference 3 pro-
vides two-dimensional equations for a string from equilibrium considerations. Sub-
stantial application in strings research is in the area of cables and transmission line
conductors, reflected in Refs. 72, 73, and 74.

Curved Beams. When the cross-section centerline of a rectilinear beam becomes
either a two- or three-dimensional curve, solution is difficult. For the most general
case, the curvature expressions for a line in space from elementary differential geom-
etry must be used to establish basic kinematic relationships. Moreover, if external
loading of the curved beam is not through the shear center, the kinematic relationships
become very complex, requiring simultaneous solution of more than one high-order
partial differential equation.75 Reference 47 provides a practical guide to vibration of
a number of arch configurations.The use of a director approach has led to insight into
dynamics of complex configurations.76 Elastically coupled concentric rings have been
investigated both analytically and experimentally.77 The effect of simple geometry
change for sinusoidal, parabolic, and elliptic-shaped arches is examined in Ref. 78.

Membranes. Membrane structures are characterized by an in-plane force field
resisting applied external forces perpendicular to the in-plane force field and are
analogous to the one-dimensional string structure with tension force. Membrane
structures are important for (1) providing modal information on submembranes
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delineated by the modal lines of a larger membrane and (2) the Prandtl analogy that
provides information on torsion of noncircular cross-section bars. Reference 79 con-
siders vibration of membranes that are nonhomogeneous in density and thickness.
Rectangular membranes subject to shear stress and nonuniform tensile stresses are
considered in Ref. 80. An integral equation formulation demonstrated in Ref. 81
tends to be more efficient than a variational approach when discontinuous coeffi-
cients arise in differential equations as a result of a stepped radial density. One use-
ful area for membrane analysis is the modeling of cable nets.82

Shells. Shells—particularly thin shells—represent three-dimensional structures
with a well-defined two-dimensional surface having kinematic structure governed
by the second fundamental form for surfaces in differential geometry.83 Because
shells carry external loads by virtue of their geometry, which allows for dispersion of
stress, vibrations of shells have not been studied as extensively as some other aspects
of shell behavior such as stability (buckling) under static or even dynamic load. How-
ever, since shells can be effective radiators of acoustic energy, vibration of shells rel-
ative to acoustic emission has been important in many industries, including the
automotive and aircraft industries. Early shell considerations84,85 and more recent
advanced shell considerations86,87 have laid the foundation for in-depth understand-
ing of shell vibration.

Shell vibration theory is well documented for simple configurations where the
radius of curvature of the shell is constant in space such as cylindrical or spherical
shells or, at most, constant varying in one dimension such as the conical shell. Since
shell local kinematic information is a function of the second fundamental form in the
differential geometry of surfaces, any variation of this fundamental form as a function
of coordinates of a global coordinate system complicates solution of the equations of
motion immensely because the coefficients of the equation operators become func-
tions of the local coordinates.This is analogous to the curved beam in one dimension,
where the local form is the curvature at the point along the axis of the beam. Refer-
ences on the behavior of shells under static loads abound. Reference 88 provides
information on the vibration of circular and noncircular cylindrical shells in addition
to conical and spherical shells and shells of revolution.The appendix to this reference
provides solution of the three-dimensional equations of motion for cylinders. Refer-
ences 89 and 90 provide examples of solution techniques for vibration of a variety of
shell configurations. Mechanical and thermal response of thick spherical and cylin-
drical shells by a generalized Fourier transform method is given in Ref. 91.The effects
of axial stress for a thick cylindrical shell are considered in Ref. 92, while regular
polygonal prismatic shells are considered from the point of view of beam and plate
vibration in Ref. 93. In Ref. 94, not only the vibration dynamics but also the control of
shell structures is discussed. Reference 95 considers both free and forced vibration on
shallow shells.
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CHAPTER 8
TRANSIENT RESPONSE TO

STEP AND PULSE FUNCTIONS

Thomas L. Paez

INTRODUCTION

The design of structures to withstand dynamic environments as well as the need to
characterize structural behavior requires a theory of structural dynamics. Sometimes
the best means for characterizing the behavior of a structure, either an experimental
system or a structure modeled with mathematical equations, is to subject it to a sim-
ple excitation and characterize the system through its response.

This chapter deals with the computation of structural response to step and pulse
functions. The main emphasis of the chapter is to establish the responses of linear
single-degree-of-freedom (SDOF) structures to step and pulse excitations. As well,
response characteristics such as peak responses and shock response spectra (SRS)
are established for various step and pulse inputs. Responses of continuous and mul-
tiple-degree-of-freedom (MDOF) linear structures are considered in Chaps. 1, 2, 7,
9, and 21 through 24. Responses of nonlinear structures are considered in Chap. 4.
Responses of structures to random excitation are considered in Chaps. 1, 21 through
24, and 29 through 32.

LINEAR SINGLE-DEGREE-OF-FREEDOM

STRUCTURES

EQUATION OF MOTION

The system to be considered is a linear single-degree-of-freedom structure.1,2

(Behavior of the linear SDOF structure and its responses to general excitations
are developed, in detail, in Chap. 2 of this handbook.) The SDOF structure may
be an idealization of a very simple real structure or a simplified representation of
one component (mode) in the response of a more complex real structure. The
schematic of an SDOF structure with the forcing excitation applied to the mass is
shown in Fig. 8.1A. The mass is attached to a rigidly fixed boundary through a

8.1



spring and a damper. It is assumed that (1) the
mass in the structure is rigid and is a known posi-
tive constant m; (2) the force in the spring is a lin-
ear function of displacement across the spring, and
the spring is elastic with a known positive constant
k; (3) the force in the damper is a linear function
of velocity across the damper and is a known posi-
tive constant c (we are interested in SDOF struc-
tures for which the damping c is in the interval
[0,2�km�); such structures are called underdamped,
and they execute oscillatory responses; and (4) the

spring and damper act in one dimension, and the force F(t) excites the mass in that
dimension. With these assumptions, Newton’s second law can be written for equi-
librium of the mass as

mẍ = −kx − cẋ + F(t) (8.1a)

The force F(t) is assumed known, along with a time interval over which the equation
is valid.The quantities x,ẋ,ẍ, are the scalar absolute displacement measured from the
equilibrium position, absolute velocity, and absolute acceleration of the SDOF
structure mass in the dimension of its motion, and they are the quantities sought dur-
ing analysis of the response. Equation (8.1a) is the equation of motion of the SDOF
structure; it is a second-order ordinary differential equation (ODE). It can be rewrit-
ten in many forms; two traditional forms are

mẍ + cẋ + kx = F(t) (8.1b)

ẍ + 2ζωnẋ + ω2
nx = (8.1c)

In Eq. (8.1b) the stiffness and damping restoring force terms have simply been
moved to the left side of the equation. Equation (8.1c) divides every term in Eq.
(8.1b) by the mass m and defines

ωn = �� ζ = (8.1d)

The quantity ωn is known as the undamped natural frequency of the SDOF structure
in radians per second, and ζ is known as the damping factor of the SDOF structure.
(We are interested in SDOF structures for which the damping factor ζ is in the inter-
val [0,1).) The rationales behind both names will become clear in the following sec-
tion. The natural period of response of the SDOF structure is Tn = (2π)/ωn.

As stated, the time period for which Eqs. (8.1a) through (8.1c) are valid must be
specified, and this is typically determined by the time period over which the re-
sponse is sought. Before the equation of motion can be solved, the condition of the
SDOF structure must be specified at some time during the response. Normally,
the displacement and velocity are specified at the start of the response and are
known as the initial conditions. Therefore, for example, when the time period over
which the equation of motion is valid is [0, ∞), the initial conditions might be speci-
fied as x(0) = x0, ẋ(0) = ẋ0.

An alternative form of the equation of motion governs the response of the
base-excited SDOF structure of Fig. 8.1B. The mass is attached with a spring and 
a damper to a boundary that can move. The first three assumptions made previ-

c
�
2mωn

k
�
m

F(t)
�

m
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FIGURE 8.1A Force-excited
SDOF structure.



ously also apply here, and the force applied to the
mass comes through the spring and the damper. New-
ton’s second law can be written for equilibrium of the 
mass as

mẍ = −kδ − cδ̇ (8.2a)

where

δ = x − u δ̇ = ẋ − u̇ (8.2b)

are the displacement and velocity of the mass relative
to the base motions u,u̇. The base motions are assumed known, and the relative dis-
placement, velocity, and acceleration, or absolute displacement, velocity, and accel-
eration, are the quantities sought during analysis of the response. This equation of
motion can also be modified in many ways. For example, it can be rewritten in either
of two ways:

mδ̈ + cδ̇ + kδ = −mü (8.2c)

δ̈ + 2ζωnδ̇ + ω2
nδ = −ü (8.2d)

The parameters have the same meanings as previously, and the acceleration of the
mass relative to the base motion is defined as

δ̈ = ẍ − ü (8.2e)

It is important to note that Eqs. (8.2c) and (8.2d), as written, govern motion of the
mass relative to the motion of the base.

As with Eqs. (8.1b) and (8.1c), the time period for which Eqs. (8.2a), (8.2c), and
(8.2d) are valid must be specified, and the condition of the SDOF structure must be
specified at some time during the response. For example, when the time period over
which the equation of motion is valid is [0, ∞), the initial conditions might be speci-
fied as δ(0) = δ0, δ̇(0) = δ̇0.

Although Eqs. (8.2a), (8.2c), and (8.2d) are written for the relative motion of the
SDOF structure, the absolute measures of response of the mass can be obtained
once the relative motions are established. Because the measures of base motion
u,u̇,ü, are assumed known, Eqs. (8.2b) and (8.2e) can be used to establish x,ẋ,ẍ.

Regardless of the particular SDOF structure whose response is to be evaluated
and the appropriate form of the governing equation, the structure shown in Fig. 8.1A
and governed by Eq. (8.1b) or (8.1c), or the structure shown in Fig. 8.1B and gov-
erned by Eq. (8.2c) or (8.2d), the general form of the equation is

a1v̈ + a2v̇ + a3v = s(t) (8.3)

where the parameters a1, a2, and a3 are related to the system mass, damping, and
stiffness and are known, and the term s(t) represents the scaled externally applied
force or the imposed base motion. In view of this fact, the method developed to
solve one form of the governing equation can be used to solve any of the other
forms.

Some methods for solving the governing equation of motion for the SDOF struc-
ture response are presented in the following sections. In addition, some examples of
SDOF structure responses to step and pulse excitations are provided, as well as the
definition and some examples of SRS. Fourier transform and Laplace transform
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FIGURE 8.1B Base-excited
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methods3 can also be used for solving the equations of motion, as well as direct
numerical integration methods.4

SOLUTION OF THE EQUATION OF MOTION—

CLASSICAL APPROACH

It is useful to think of the single-degree-of-freedom structure as a specific, simple
physical structure. Consider an SDOF structure represented by the schematic shown
in Fig. 8.1A, and governed by Eq. (8.1c). In general, there are two things that can
excite a response in the system: (1) nonzero initial conditions of displacement and
velocity and (2) externally applied force. The solution to the governing differential
equation of motion has two parts that correspond to these two factors.5,6 The part of
the solution that corresponds to the response driven by initial conditions is the com-
plementary solution.When a structure responds to initial conditions only, it is said to
be in free vibration. The part of the solution that corresponds to the response driven
by external force or base motion is the particular solution. When a structure
responds to applied force or base motions it is said to execute forced vibrations.

In order to establish the complementary solution, we solve the governing differ-
ential equation with the forcing term (externally applied force or imposed base
motion) set to zero and subject the solution to the SDOF structure initial conditions.
There are several methods for establishing the particular solution, and we will con-
sider two of them in the following paragraphs and sections.The complete solution of
the governing differential equation consists of the sum of the complementary and
the particular solutions if the system under consideration is linear.

It can be shown5,6 that the solutions of all linear ordinary differential equations
with constant coefficients can be expressed in terms of exponential functions, and
some special forms of the exponential functions are the harmonic functions, that is,
sine and cosine functions. Because it can also be shown that the solution to a linear
ODE is unique, any and all solutions to the homogeneous equation governing
motion of an SDOF structure [Eq. (8.1c) with F(t) = 0]

ẍ + 2ζωnẋ + ω2
nx = 0 (8.1e)

can be expressed as

x(t) = e−ζωnt[A cos (ωdt) + B sin (ωdt)] (8.4a)

where ωd = ωn�1 − ζ2� is known as the damped natural frequency of the response,
and the damping factor ζ is in the interval [0,1). The terms A and B are known as
arbitrary constants and can be evaluated based on the initial conditions of the SDOF
structure. The initial conditions can be written x(0) = x0, ẋ(0) = ẋ0. Taking the deriva-
tive of the displacement in Eq. (8.4a) yields the velocity as

ẋ(t) = e−ζωnt[(−ζωnA + ωdB) cos (ωdt) + (−ωdA − ζωnB) sin (ωdt)] (8.4b)

When the absolute displacement, Eq. (8.4a), is evaluated at t = 0 and the result
equated to x0, and the absolute velocity, Eq. (8.4b), is evaluated at t = 0 and the result
equated to ẋ0, two simultaneous linear equations for the constants A and B are
obtained. The equations can be solved to obtain

A = x0 B = x0 + ẋ0 (8.4c)
1

�
ωd

ζ
�
�1 − ζ2�
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The complementary solution for displacement and velocity of the SDOF struc-
ture driven by its initial conditions is obtained by substituting the expressions for A
and B into Eqs. (8.4a) and (8.4b).

x(t) = e−ζωnt�x0 cos (ωdt) + sin (ωdt)	 t ≥ 0 (8.4d)

ẋ(t) = e−ζωnt�ẋ0 cos (ωdt) − sin (ωdt)	 t ≥ 0 (8.4e)

Of course, the SDOF structure response velocity can be differentiated to establish
the structural acceleration. Because the equation governing unforced, relative
motion of the SDOF structure, Eq. (8.2d) with −ü = 0, is identical in form and param-
eters to the equation governing unforced absolute motion, Eq. (8.1c) with F(t)/m = 0,
the complementary solution of the former equation is the same as that provided by
Eqs. (8.4d) and (8.4e).

The appearance of the damped natural frequency of motion ωd in the arguments
of the cosine and sine functions in the solution, Eqs. (8.4d) and (8.4e), makes clear
the rationale for the terminology natural frequency, first introduced in the previous
section.When ζ = 0, the damping is zero and ωd = ωn; the quantity ωn is the undamped
natural frequency. Further, the explicit appearance of the damping factor ζ in the
exponent of the leading term in Eqs. (8.4d) and (8.4e) shows why it is referred to as
the damping factor; it governs how quickly the response amplitude diminishes (or is
damped out) with time.

Equations (8.4d) and (8.4e) are applicable when the initial displacement is
nonzero and the initial velocity is zero, or when the initial displacement is zero and
the initial velocity is nonzero, or when both the initial displacement and the initial
velocity are nonzero. The fact that the response expressions in Eqs. (8.4d) and
(8.4e) equal sums of the responses for the two cases where the initial conditions are
(x0 ≠ 0, ẋ0 = 0) plus (x0 = 0, ẋ0 ≠ 0) indicates that the principle of superposition holds
for linear SDOF structure response to initial conditions.

Example 8.1: Unit Initial Displacement, Unit Initial Velocity, Nonzero Initial Dis-
placement, and Initial Velocity. First, consider the case where the initial displace-
ment is one and the initial velocity is zero.The structure’s natural frequency is ωn = 2π
rad/sec, and the damping factor ζ takes the values 0, 0.01, 0.05, 0.20, for purposes of
comparison. The single-degree-of-freedom structure displacement response is

x(t) = e−ζ(2π)t�cos [(2π)�1 − ζ2� t] + � 	 sin [(2π)�1 − ζ2� t]� t ≥ 0 (8.5a)

The responses are graphed for times in the interval [0,10] sec in Fig. 8.2A.

ζ
�
�1 − ζ2�

(ωnx0 + ζ ẋ0)
��

�1 − ζ2�

(ζωnx0 + ẋ0)
��

ωd
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FIGURE 8.2A Responses of SDOF structures to unit
initial displacement. (——ζ = 0, – –ζ = 0.01, …ζ = 0.05,
––ζ = 0.20.)



Next, the SDOF structure displacement responses to unit initial velocity and zero
initial displacement are computed.The same natural frequency and damping factors
are used. The SDOF structure response is

x(t) = e−ζ(2π)t� sin (2π�1 − ζ2� t) t ≥ 0 (8.5b)

The responses are graphed for times in the interval [0,10] sec in Fig. 8.2B.

1
��
2π�1 − ζ2�

8.6 CHAPTER EIGHT

FIGURE 8.2B Responses of SDOF structures to unit
initial velocity. (——ζ = 0, – –ζ = 0.01, …ζ = 0.05, ––ζ =
0.20.)

FIGURE 8.2C Response of SDOF structure with
damping factor ζ = 0.05 to combined unit initial displace-
ment and initial velocity of 10 units.

Finally, the SDOF structure displacement response to a combined unit initial dis-
placement and initial velocity of 10 units is computed. The same natural frequency
and a damping factor of ζ = 0.05 are used. The SDOF structure response is

x(t) = e−(0.05)(2π)t�cos [(2π)�1 − (0.�05)2� t]

+ � 	 sin [(2π)�1 − (0.�05)2� t]� t ≥ 0 (8.5c)

The response is graphed for times in the interval [0,10] sec in Fig. 8.2C.

(0.05)(2π) + 10
��
(2π)�1 − (0.�05)2�

The effect of the damping factor on the response amplitude is apparent from all
the figures. As the damping factor increases, the response decays with increasing
rapidity. When the damping factor is ζ = 0, the response does not decay at all.
When the damping factor is ζ = 0.01, the response decays about 6.1 percent during
each cycle, for a total of 47 percent (1 − (0.939)10) during 10 cycles of response.
When the damping factor is ζ = 0.05, the response decays about 27 percent during



each cycle of response. When the damping factor is ζ = 0.20, the response decays
about 71.5 percent during each cycle of response. The damping factor must be in
the interval [0,1) in order for the formulas in Eqs. (8.4) and (8.5) to be easily inter-
preted. Damping factors of 1 percent or less are considered low, though some
monolithic structures have damping factors much lower than 1 percent. Damping
factors higher than about 15 percent are considered high for passively damped
structures. When the damping factor is small, it has relatively little effect on the
response frequency.

The second component of any solution to a linear ordinary differential equation
is the particular solution, the response to an applied forcing function or to imposed
base motions.There are several general methods for establishing the particular solu-
tion to an ODE, and one will be developed later. For now, we consider a simple spe-
cial case that is best demonstrated through an example.

Example 8.2: Imposed Step Displacement/Velocity Pulse. The single-degree-
of-freedom structure considered here is shown schematically as the base-excited sys-
tem of Fig. 8.1B. The imposed acceleration excitation is the full sine wave shown in
Fig. 8.3A and given by

ü(t) = � (8.6a)

where a is an amplitude coefficient and ω0 is the frequency of the full-sine pulse. For
the pulse in Fig. 8.3A, a = 1 and ω0 = 2π. The imposed acceleration is a two-sided
pulse.There are imposed velocity and displacement conditions corresponding to the
imposed acceleration.They can be obtained by integrating the imposed acceleration
once, then a second time. They are

u̇(t) = � (8.6b)

u(t) = � (8.6c)

and they are graphed in Figs. 8.3B and 8.3C. The functional form of the velocity is
known as a haversine; it is a one-sided pulse. The imposed displacement is a step
function. It is assumed that the SDOF structure is at rest at the initial time t = 0.
[Because y(0) = 0 and ẏ(0) = 0, this statement implies that both x(0) = 0 and ẋ(0) = 0,
and δ(0) = 0 and δ̇(0) = 0.]

�
ω
a

2
0

� [ω0t − sin (ω0t)] 0 < t < 2π/ω0

0 t ≤ 0
2πa/ω2

0 t ≥ 2π/ω0

�
ω
a

0
� [1 − cos (ω0t)] 0 < t < 2π/ω0

0 t ≤ 0,t ≥ 2π/ω0

a sin (ω0t) 0 < t < 2π/ω0

0 t ≤ 0,t ≥ 2π/ω0
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FIGURE 8.3A Input to a base-excited SDOF structure
for the case where ω0 = 2π: acceleration.



The response to the excitation defined by Eq. (8.6) is obtained by assuming a
form and using it in the governing equation (8.2d). Based on Eq. (8.6a), we choose

δ(t) = C cos (ω0t) + D sin (ω0t) 0 ≤ t ≤ 2π/ω0 (8.7a)

where C and D are arbitrary constants to be determined. When the expression of
Eq. (8.7a) is used in Eq. (8.2d), the result is a coefficient times cos (ω0t) plus a coef-
ficient times sin(ω0t). The two coefficients must be equated to the corresponding
coefficients on the right-hand side. On the right-hand side, the coefficient of cos(ω0t)
is zero, and the coefficient of sin(ω0t) is a. The equation operation described here
yields two linear equations in C and D, and they can be solved to obtain

C = D = (8.7b)

The particular solution to this problem is obtained by using C and D from Eq. (8.7b)
in Eq. (8.7a).

Note, however, that evaluation of Eq. (8.7a) at t = 0 indicates that the initial 
displacement is nonzero, in general. Specifically, from Eq. (8.7a), δ(0) = C and
δ̇(0) = ω0D, but we specified that the initial displacement and velocity must be zero.
To force the solution to have zero initial conditions, it is necessary to superpose a
homogeneous solution on the particular solution. The homogeneous solution
needs to have initial conditions δ(0) = −C and δ̇(0) = −ω0D; these cancel the condi-
tions imposed by the particular solution. Use of δ(0) in place of x0 and δ̇(0) in place
of ẋ0 in Eq. (8.4c) yields the arbitrary constants for the homogeneous solution.
They are

A = −C B = (ζωnC + ω0D) (8.7c)
−1
�
ωd

−a(ω2
n − ω2

0)
���
(ω2

n − ω2
0)2 + (2ζωnω0)2

a2ζωnω0
���
(ω2

n − ω2
0)2 + (2ζωnω0)2
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FIGURE 8.3B Input to a base-excited SDOF structure
for the case where ω0 = 2π: velocity.

FIGURE 8.3C Input to a base-excited SDOF structure
for the case where ω0 = 2π: displacement.



When the constants A and B are used in Eq. (8.4a) and the constants C and D from
Eq. (8.7b) are used in Eq. (8.7a), and the two solutions, homogeneous and particular,
are superposed, the result is the solution to the ordinary differential equation for
times 0 ≤ t ≤ 2π/ω0. At the end of the time period t = 2π/ω0, the excitation ceases, and
the response of the SDOF structure starts a free decay. The initial conditions of the
free decay are the relative displacement and relative velocity obtained from the
solution described previously at t = 2π/ω0.These initial conditions can be used in Eq.
(8.4d) and then time-shifted by replacing every occurrence of t in the equation with
t − 2π/ω0.

The relative displacement response is graphed in Fig. 8.4A for structures with nat-
ural frequency ωn = 2π rad/sec, and damping factors ζ of 0.01 and 0.05.The amplitude
of the acceleration pulse is a = 1, and the frequency of the excitation is ω0 = 2π
rad/sec. The corresponding absolute displacement responses are graphed in Fig.
8.4B; these responses superimpose the base displacement of Fig. 8.3C onto the rela-
tive displacement responses of Fig. 8.4A. Because the frequency and duration of the
excitation equal the natural frequency and period of the SDOF structure, the dynam-
ics of the excitation matches the dynamics of the SDOF structures in some sense, and
this leads to dynamic amplification of the response. To be specific, the value of the
base displacement at the top of the ramp is y = 1/(2π) � 0.159, and the value of the
absolute displacement of the more heavily damped structure at its peak is x � 0.228;
therefore, the dynamic amplification of the response over the excitation is 1.43.
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FIGURE 8.4A Relative displacement responses for base-
excited linear SDOF structures with ω0 = 2π and ——ζ =
0.01, – –ζ = 0.05.

FIGURE 8.4B Corresponding absolute displacement
responses.

The relative displacement responses are graphed in Fig. 8.4C for the same struc-
tures, but an excitation with acceleration amplitude a = 1 and frequency of excitation
ω0 = 20π rad/sec.The corresponding absolute displacement responses are graphed in
Fig. 8.4D. The frequency of the excitation is 10 times the natural frequency of the
SDOF structure, and its duration is 1⁄10 the natural period of the SDOF structure.The



largest value of the imposed displacement is 1/(200π) = 1.58 × 10−3, and the largest
value in the absolute displacement response is 4.25 × 10−3; therefore, the amplifica-
tion of the response over the excitation is 2.69. The response has a dynamic amplifi-
cation. Because the input that excites the responses in Figs. 8.4C and 8.4D has short
duration relative to the natural period of the structure, the direct effect caused by
the excitation ceases when the SDOF structure has just started to move, as seen by
the notch at the start of Fig. 8.4C. The effect is something like the application of a
pair of impulses, to be described in the following section.
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FIGURE 8.4C Relative displacement responses for base-
excited linear SDOF structures with ω0 = 20π and the same
damping factors used in Fig. 8.4A.

FIGURE 8.4D Corresponding absolute displacement
responses.

FIGURE 8.4E Relative displacement responses for base-
excited linear SDOF structures with ω0 = 0.2π and the same
damping factors used in Fig. 8.4A.

The relative displacement responses are graphed in Fig. 8.4E for the same struc-
tures, but an excitation with acceleration amplitude a = 1 and frequency of excitation
ω0 = 0.2π rad/sec. The corresponding absolute displacement responses are graphed in
Fig. 8.4F. The structural responses with different damping factors are so near one
another that they are almost indistinguishable.The frequency of the excitation is 1⁄10 the
natural frequency of the SDOF structure, and its duration is 10 times the natural



FIGURE 8.5 Force pulse.

period of the SDOF structure.The largest value of the imposed displacement is 50/π =
15.92, and the largest value in the absolute displacement response is 15.92; therefore,
the amplification of the response over the excitation is 1.00. The response is quasi-
static. When the frequency content of motion applied at the base of a base-excited
structure lies at frequencies that are low relative to the natural frequency of the struc-
ture, the response displays little dynamic amplification and is quasi-static. This means
that design of such a structure or component can be performed using static analysis.

SOLUTION OF THE EQUATION OF MOTION—

CONVOLUTION INTEGRAL

A general expression for the form of the particular solution of an ordinary differen-
tial equation with constant coefficients is the convolution integral 1,2 (also known as
Duhamel’s integral or the superposition integral). The convolution integral repre-
sents the response of a linear structure as the superposition of the structure
responses to a sequence of impulses or short-duration pulses. To see how the convo-
lution integral is constructed, consider an example that develops one of its building
blocks, the impulse response function (IRF).

Example 8.3: Response of Structure to a Short-Duration Pulse. Consider the
force-excited linear single-degree-of-freedom structure of Fig. 8.1A. It is excited by
the force pulse F(t) = F0w(t − t0,ΔT) shown in Fig. 8.5, and we seek the absolute dis-
placement response. The pulse is a one-sided square pulse, with magnitude F0 and
duration ΔT, and it starts at time t0. We define the pulse function

w(t,ΔT) = � (8.8)
0 t < 0
1 0 ≤ t < ΔT
0 t ≥ ΔT
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FIGURE 8.4F Corresponding absolute displacement
responses.



The use of t − t0 in the definition of F(t) in place of t shifts the function an amount 
t0 to the right. The pulse duration is short compared to the natural period Tn = 2π/ωn

of the structure it will excite, and the pulse is defined to have constant impulse. That
is, the quantity F0ΔT is a constant. Assume that the SDOF structure response starts
from rest.

First, because there is no force prior to time t0, the structure remains at rest until
time t0. During the very brief time period [t0,t0 + ΔT), when the force is applied to the
structure mass, the acceleration of the structure mass is

ẍ(t) = � (8.9a)

(It is assumed that because the duration of application of the force is very short, the
change in displacement and velocity of the mass are very small; therefore, the forces
applied to the mass during this time by the spring and damper are negligible.) The
velocity of the mass is the integral of its acceleration, that is,

ẋ(t) = � (8.9b)

and the displacement of the mass is the integral of its velocity, that is,

x(t) = � (8.9c)

Equations (8.9b) and (8.9c) indicate that the mass motion is zero prior to application
of the load and that the mass velocity and displacement following application 
of the load are F0ΔT/m and F0ΔT 2/(2m), respectively. Because it was assumed that
the force impulse is constant (i.e., F0ΔT = C0, where C0 is the constant) as the load
duration approaches zero, ΔT → 0, the mass velocity at the end of the application of
the force pulse approaches C0/m, and its displacement approaches zero because
F0ΔT 2/(2m) = (F0ΔT)ΔT/(2m) = C0ΔT/(2m), and ΔT → 0 in the final term on the
right-hand side. As ΔT → 0 the motion of the structure is denoted (F0ΔT)h(t − t0),t ≥
t0, where h(t),t ≥ 0 is called the unit impulse response function of the linear SDOF
structure, or simply the impulse response function (IRF).

The function h(t),t ≥ 0 is the response to a unit impulse, a short-duration high-
amplitude pulse, or equivalently, as shown in the preceding, it is the response to the
initial conditions of zero initial displacement and unit initial velocity. Therefore, the
expression for h(t),t ≥ 0 can be obtained from Eq. (8.4d), giving the response of an
SDOF structure to initial conditions.The IRF for absolute displacement response to
a unit impulsive force excitation is

hx(t) = sin (ωdt) t ≥ 0 (8.10)

(The subscript x on the IRF indicates that this is the IRF associated with absolute
displacement response.) The IRF of the linear force-excited SDOF structure is
graphed in Fig. 8.6 for the parameters m = 1,ωn = 2π,ζ = 0.05.
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�
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m

0� (t − t0) t0 ≤ t < t0 + ΔT

0 t < t0

�
F
m

0� t0 ≤ t < t0 + ΔT
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Finally, to complete the example, the response of the linear SDOF structure to
the short-duration pulse F(t) = F0w(t − t0, ΔT) of Fig. 8.5 is

x(t) = � (8.11)

This is the response to an impulse with magnitude F0ΔT.
Consider the response of the linear SDOF structure to a sequence of very short

duration impulses Fjw(t − tj,ΔT), j = 0,1, . . . , applied to the structure at times tj = jΔT,
j = 0,1, . . . , where ΔT is a very short duration time increment. Because the pulses in
the sequence do not overlap, the forcing function can be expressed as

F(t) = �
j = 0,1, . . .

Fjw(t − tj,ΔT) t ≥ 0 (8.12)

That is, the forcing function is the superposition of a sequence of pulses, each with
impulse FjΔT. Because the response of a linear structure can be constructed using
the principle of superposition, the displacement response of the linear SDOF struc-
ture to the sequence of pulses expressed in Eq. (8.12) is

x(t) = �
j = 0,1, . . .

(FjΔT)hx(t − tj) t ≥ 0 (8.13)

where hx(t),t ≥ 0 is the absolute displacement response IRF of Eq. (8.10).
In the sum of Eq. (8.13), we can take the limit as ΔT → 0 and write the sum as an

integral. The absolute displacement response to the arbitrary excitation F(t),t ≥ 0 is

x(t) = �t

0
F(τ)hx(t − τ)dτ t ≥ 0 (8.14)

This is the convolution integral representation of the absolute displacement
response of a linear SDOF structure to the specified force when the system starts
from rest.

The response velocity can be obtained by differentiating the response displace-
ment. (See Ref. 7 for details regarding differentiation of integrals.) The response
velocity is the derivative of the convolution integral of Eq. (8.14), that is,

ẋ(t) = x(t) = ��
t

0
F(τ)hx(t − τ)dτ

(8.15)

= F(t)hx(0) + �t

0
F(τ) [hx(t − τ)]dτ t ≥ 0

d
�
dt

d
�
dt

d
�
dt

0 t < t0

(F0ΔT)hx(t − t0) t ≥ t0
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FIGURE 8.6 Absolute displacement impulse response
function of a force-excited linear SDOF structure.



The rule used to compute the derivative of an integral is known as Leibniz’s rule.
The derivative expressed in Eq. (8.15) can always be computed for linear structures,
and for the case of the force-excited linear SDOF structure it is

hx(t) = sin (ωdt)

= �cos (ωdt) − sin (ωdt) (8.16)

= hẋ(t) t ≥ 0

The function hẋ(t),t ≥ 0 is the IRF associated with the absolute velocity response of
a linear force-excited SDOF structure. Further, for the force-excited linear SDOF
structure, hx(0) = 0, so the velocity response of the structure is

ẋ(t) = �t

0
F(τ)hẋ(t − τ)dτ t ≥ 0 (8.17)

When the initial conditions of the system are nonzero, then the convolution inte-
gral must be augmented with the complementary solution of the equation of motion.
For example, the absolute displacement response would consist of the sum of Eqs.
(8.14) and (8.4d).The arbitrary constants in the complementary solution would need
to be established in terms of the initial displacement and velocity.

Because the form of the equation governing relative motion of the linear base-
excited SDOF structure is essentially the same as the equation governing the force-
excited SDOF structure, the response of the former structure to a base excitation
can be expressed using the convolution integral.The relative displacement response
can be written as

δ(t) = �t

0
[−ü(τ)]hδ(t − τ)dτ t ≥ 0 (8.18)

where hδ(t),t ≥ 0 is the base-excited relative displacement response IRF of a linear
SDOF structure. It is given by

hδ(t) = sin (ωdt) t ≥ 0 (8.19)

The convolution integrals for base-excited relative velocity and relative acceler-
ation responses can be developed by differentiating Eq. (8.18) with respect to time.
The essential operation is the differentiation of hδ(t), t ≥ 0 to obtain the IRFs of the
relative velocity and relative acceleration responses.

Further, the absolute displacement, velocity, and acceleration responses of the
base-excited structures can be developed by adding the appropriate base motion to
the relative motion. For example, the absolute acceleration response of the base-
excited linear SDOF structure can be expressed as

ẍ(t) = �t

0
[−ü(τ)]hẍ(t − τ)dτ t ≥ 0 (8.20)

where hẍ(t),t ≥ 0 is the IRF of the absolute acceleration response of a linear base-
excited SDOF structure. The IRF is given by

hẍ(t) = e−ζωnt�(−2ζωn) cos (ωdt) − sin (ωdt) t ≥ 0 (8.21)
ωn(1 − 2ζ2)
��

�1 − ζ2�

e−ζωnt

�
ωd

ζ
�
�1 − ζ2�

e−ζωnt

�
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�
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Example 8.4: Absolute Displacement Response of a Linear SDF Structure to a
Complex Pulse. Consider the response of a force-excited linear single-degree-of-
freedom structure to the complex input shown in Fig. 8.7. The actual structural exci-
tation is the continuous curve shown in the figure. If we had available a closed-form
expression for the excitation (i.e., an expression that could be written in terms of
standard mathematical functions), then we could use Eq. (8.14) to solve for the
response. In many practical situations, though, only a version of the excitation sam-
pled at discrete times is available. For example, the values of the excitation measured
at the times tj = (0.1)j sec, j = 0,1, . . . are shown by the dots in Fig. 8.7. In those cases,
the pre-integral sum of Eq. (8.13) is used to approximate the response.
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FIGURE 8.7 Complex excitation to a force-excited linear
SDOF structure.

Figure 8.8 shows the absolute displacement response of a linear SDOF structure
computed using Eq. (8.13) with the forcing function that is the sampled version of the
force in Fig. 8.7. The mass of the SDOF structure is m = 1, its natural frequency is 
ωn = 2π rad/sec, and its damping factor is ζ = 0.05. Because a high-resolution version
of the forcing function actually is available in this case, the response computed with a
temporal resolution of ΔT = 0.1 sec can be compared to the response computed using
a temporal resolution of ΔT = 0.001 sec. The latter response is also shown in Fig. 8.8,
but the responses are so close that they are visually indistinguishable. In fact, the max-
imum difference between the two curves is about 1.4 × 10−3 at the time t14 = 1.3 sec.
The difference is about 4 percent and highlights the fact that care must be taken when
discrete approximations to continuous solutions are written.

FIGURE 8.8 Linear SDOF structure response to force
excitation.

It is interesting to note that the SDOF structure response to the complex excita-
tion of Fig. 8.7 is quite smooth and, to a degree, resembles the structure’s impulse
response function. This is true, in general, because linear SDOF structures tend to
amplify input force or motion near their own natural frequencies but not away from
those frequencies.



The convolution integral can also be used to express the response of a structure
excited by a relatively simple pulse.

Example 8.5: Absolute Acceleration Response of a Base-Excited SDF Struc-
ture to a Square Wave. Consider the response of a base motion–excited linear
single-degree-of-freedom structure to the square-wave input shown in Fig. 8.9. In
this case, we have available a closed-form expression for the excitation, so we can
use Eq. (8.14) to solve for the response. The excitation is

ü(t) = � (8.22)
A 0 ≤ t < T/2
− A T/2 ≤ t ≤ T
0 t > T
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FIGURE 8.9 Square-wave excitation.

The function is graphed in Fig. 8.9 for A = 1 and T = 1 sec. When this expression is
used in Eq. (8.20) along with the impulse response function of Eq. (8.21), the
absolute acceleration response of the linear SDOF structure is found to be

ẍ(t) =� (8.23)

Because the excitation following time T is zero, the response is governed by the
complementary solution of Eq. (8.4a).The arbitrary constants in the complementary
solution are established based on the values of ẍ(T) and ¨ẋ(T). The former quantity
is found simply by evaluating Eq. (8.23) at t = T; the latter quantity is found by tak-
ing the derivative of Eq. (8.23) and evaluating it at t = T.

The response excited by the base acceleration input described by Eq. (8.22) is
graphed in Fig. 8.10 for the case in which ωn = 2π rad/sec and ζ = 0.05. The response
beyond time t = 1 sec is in free decay.

A�[1 − e−ζωnt cos (ωdt)] − �
� 1

ζ
- ζ2�
� sin (ωdt)� 0 ≤ t < T/2

A�[1 − e−ζωnt cos (ωdt)] − �
� 1

ζ
- ζ2�
� sin (ωdt)�

−2A�[1 − e−ζωn(t − T/2) cos (ωd(t − T/2))] − �
� 1

ζ
- ζ2�
� sin (ωd(t − T/2))�

T/2 ≤ t ≤ T

FIGURE 8.10 Response of a base-excited linear SDOF
structure to the input of Fig. 8.9.



THE SHOCK RESPONSE SPECTRUM

The subject of this section is an introduction to the shock response spectrum (SRS),
which is discussed in detail in Chap. 20 of this handbook.The SRS is a measure of the
severity of a shock. It is the sequence of peak responses in a collection of linear 
single-degree-of-freedom structures excited by the shock. To define the SRS for-
mally but concisely, let ü(t),t ≥ 0 denote a base excitation shock signal whose SRS is
sought. Let Sẍ(fn,ζ) denote the peak in the absolute value of a response (say, absolute
acceleration) over all time excited by the input ü(t),t ≥ 0 in an SDOF structure with
natural frequency fn = ωn/2π, where ωn is the undamped natural frequency of the
structure, in radians per second, and damping factor ζ. Then the absolute accelera-
tion maximax SRS of the shock ü(t),t ≥ 0 is defined as Sẍ(f,ζ),0 < fmin ≤ f ≤ fmax < ∞.The
SRS is defined as an absolute acceleration SRS because it characterizes peak
absolute acceleration responses. The SRS is defined as a maximax SRS because it
refers to the peak acceleration over all time. SRS values other than the maximax and
based on other measures of response and peak responses that occur within specific
time frames can also be defined as shown in Chap. 20. The frequencies f in the inter-
val [fmin,fmax] where the SRS is defined do not usually constitute a continuous set
because the peak response cannot be computed as a continuous function of the
SDOF structure natural frequency, in general.

The definition makes it clear that a critical element in the computation of an SRS
is the efficient computation of the peak responses of many SDOF structures. The
convolution integral, whose general form is given in Eq. (8.14), can be used to com-
pute SDOF structure responses, but much more efficient approximate methods are
available.8,9 The number of SDOF structure peak responses used to define the SRS
establishes the resolution of the approximation. The SRS is often defined at fre-
quencies that are spaced logarithmically—for example, 6, 8, or 12 samples per
octave.

The absolute acceleration maximax SRS of the one-cycle sine-wave acceleration
shock defined in Eq. (8.6) is shown in Fig. 8.11. The damping factor of the SDOF
structures used to compute the SRS is ζ = 0.05.The specific shock considered here is
the one with amplitude a = 1g and frequency ω0 = 2π rad/sec. The SRS defines the
absolute peak responses of a sequence of SDOF structures. Its highest value is 2.81g,
and that occurs at a frequency of 1.15 Hz.
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FIGURE 8.11 Absolute acceleration maximax SRS of a
one-cycle sine shock. Maximum SRS value is 2.81g and
occurs at 1.15 Hz. SRS ζ = 0.05.

The SRS shown in Fig. 8.11 approaches an asymptote of 1g at high frequencies.
The reasons are that relatively stiff SDOF structures (structures with a high natural
frequency) simply transmit base excitations to the mass of the SDOF structure quasi-
statically, and the amplitude of the shock input is a = 1g. For this reason, the high-



frequency range of an SRS is sometimes called the quasi-static range.The roll-off rate
of the SRS at low frequencies is approximately 12 dB/octave; the reason for this is
explained, in detail, in Ref. 10.The reason that the roll-off at low frequencies takes the
value it does is that the entire excitation appears to the low-frequency SDOF struc-
tures to be a single impulse or a sequence of impulses with alternating signs.The one-
cycle sine-wave pulse whose SRS is plotted in Fig. 8.11 appears to very low frequency
structures to be a sequence of two impulse functions with alternating signs.

Though each shock has a unique SRS, it must be emphasized that the SRS of a
shock is not an invertible function.That is, the specific shock that led to an SRS is not
obtainable from the SRS only. The reason is that the sequence of peak SDOF struc-
tural responses excited by a shock is not unique to a particular shock. In the case of
Fig. 8.11, there are other signals that would lead to the same SRS.

There are amplitude and frequency scaling rules for the SRS. When we obtain the
SRS for a particular shock signal, we can use it with a simple amplitude scaling to
obtain the SRS of any other shock signal that is a constant multiple of the original
shock. For example, if the SRS of the shock ü(t),t ≥ 0 is Sẍ(f,ζ),0 < fmin ≤ f ≤ fmax < ∞, then
the SRS of the shock Cü(t),t ≥ 0 (where C is a constant) is CSẍ(f,ζ),0 < fmin ≤ f ≤ fmax < ∞.
Figures 8.12A, B, and D demonstrate this principle for the full-sine shock pulse. Figure
8.12B is simply Fig. 8.12A multiplied by a factor of 2. Figure 8.12D shows the SRS 
of the two shocks. The upper curve is the SRS of the shock in Fig. 8.12B, and the
lower curve is the SRS of the shock in Fig. 8.12A. The two SRS differ by a factor of
2.All the SRS values in the figures are computed for SDOF structures with damping
factors ζ = 0.05.
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FIGURE 8.12 (A) One-cycle sine shock with unit amplitude and unit
duration. (B) One-cycle sine shock with two-unit amplitude and 
unit duration. (C) One-cycle sine shock with unit amplitude and half-
unit duration. (D) SRS of shocks A and B. (E) SRS of shocks A and C.
SRS ζ = 0.05.

The SRS of a particular shock can be used to obtain the SRS of another shock
that differs from the first by a time/frequency scaling simply by shifting the SRS of

(A) (B) (C)

(D) (E)



the original shock on a log-log graph. For example, if the SRS of the shock ü(t),t ≥ 0
is Sẍ(f,ζ),0 < fmin ≤ f ≤ fmax < ∞, then the SRS of the shock ü(st),t ≥ 0 (where s is a con-
stant) is Sẍ(f/s,ζ),0 < sfmin ≤ f ≤ sfmax < ∞. Figures 8.12A, C, and E demonstrate this
principle for the full-sine shock pulse. Figure 8.12C is simply Fig. 8.12A compressed
in time by a factor of 2; that is, ü(2t),t ≥ 0. Figure 8.12E shows the SRS of the two
shocks. The curve on the left is the SRS of the shock in Fig. 8.12A, and the curve on
the right is the SRS of the shock in Fig. 8.12C. The curves are identical in shape, with
the curve on the right shifted up in frequency by a factor of 2; that is, the curve on the
right is Sẍ(f/2,ζ), 0 < 2fmin ≤ f ≤ 2fmax < ∞, where Sẍ(f,ζ),0 < fmin ≤ f ≤ fmax < ∞ is the curve
on the left. The equivalence of SRS shapes shown, for example, in Fig. 8.12E occurs
only when the curves are plotted above a logarithmically scaled abscissa.

The amplitude and scaling rules for SRS are important because they permit the
specification of the SRS of an arbitrarily amplitude- and/or time/frequency-scaled
shock from the SRS of the basic shock. The ability to scale SRS is important when a
test shock whose SRS is approximately equal to the SRS of shock measured in the
field is sought.

The SRS shown in Figs. 8.11 and 8.12 were all computed for SDOF structures
with a damping factor of ζ = 0.05. All responses of linear structures are dependent
upon structural damping. Therefore, the SRS changes when the damping changes.
Figure 8.13 shows five SRS computed for the one-cycle sine-wave shock pulse with
damping in the SDOF structures set to (0.001, 0.01, 0.05, 0.10, 0.50).The top curve (at
frequency f = 1 Hz) is for the SRS computed with ζ = 0.001, and damping increases
as the peak value of the curve decreases. The SRS for the first two curves are practi-
cally indistinguishable in the graph.

TRANSIENT RESPONSE TO STEP AND PULSE FUNCTIONS 8.19

FIGURE 8.13 Five SRS computed for the one-cycle sine-
wave shock pulse with damping in the SDOF structures set
to (0.001, 0.01, 0.05, 0.10, 0.50), top to bottom.

The SRS computed in the preceding examples are absolute acceleration maxi-
max SRS, and these are used widely for shock signal characterization in the aero-
space community. However, other SRS are also used. One of these is the SRS of
relative displacement response, denoted δ(t) in the previous sections. Its maximax
relative displacement SRS is denoted Sδ(f,ζ),0 < fmin ≤ f ≤ fmax < ∞ and is defined in
terms of peak responses of the absolute value of relative displacements of SDOF
structures with frequencies in the interval [fmin,fmax] and damping factors ζ to the
input ü(t),t ≥ 0. Rearrangement of Eq. (8.2d) and use of Eq. (8.2e) yield the relation

ẍ = −2ζωnδ̇ − ω2
nδ (8.24)

When the damping factor is relatively small or is zero, the relation becomes approx-
imately

ẍ � −ω2
nδ (8.24a)



Based on this relation, relative displacement responses of linear SDOF structures
approximately equal (−1/ω2

n) times their absolute acceleration responses, at all times.
Therefore, the maximum in the absolute value of the relative displacement response
approximately equals (1/ω2

n) times the maximum in the absolute value of the
absolute acceleration response, and the following relation holds for the maximax
relative displacement SRS.

Sδ(f,ζ) � Sẍ(f,ζ) 0 < fmin ≤ f ≤ fmax < ∞ (8.25)

Another response measure, called the pseudo-velocity,11,12 is defined as ωnδ, and
its SRS is frequently sought. Based on the amplitude scaling principle previously
described, its SRS is defined as

Sωnδ( f,ζ) = (2πf )Sδ(f,ζ) � Sẍ( f,ζ) 0 < fmin ≤ f ≤ fmax < ∞ (8.26)

For light damping (ζ < 0.1), the pseudo-velocity SRS provides a close approxima-
tion to the relative velocity SRS, which in turn is directly proportional to the modal
stress imparted to a structure at its natural frequencies.13 Hence, it is widely used as
a measure of the damaging potential of a transient environment for preliminary
design purposes, as detailed in Chap. 40.

We now show the SRS of some acceleration pulse functions. The first pulse is the
half-sine pulse, defined as

ü(t) = � (8.27)

The half-sine pulse with an amplitude of 1g and its corresponding velocity and
displacement are graphed in Fig. 8.14A–C. The absolute acceleration maximax SRS
of the pulse is graphed in Fig. 8.17. The damping in the SDOF structures used to
compute the SRS is ζ = 0.05. (This is the damping factor used in computation of all
the remaining SRS.) The peak value of the SRS is 1.65g, and it occurs at 0.82 Hz.

The haversine pulse is defined by

ü(t) = � (8.28)

The haversine pulse with an amplitude of 1g and its corresponding velocity and dis-
placement are graphed in Fig. 8.15A–C. The absolute acceleration maximax SRS of
the pulse is graphed in Fig. 8.17. The peak value of the SRS is 1.60g, and it occurs at
1.02 Hz.
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� [1 − cos (2πt)] 0 ≤ t ≤ 1

0 t > 1

sin(πt) 0 ≤ t ≤ 1
0 t > 1

1
�
(2πf)

1
�
(2πf)2
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FIGURE 8.14 (A) Half-sine acceleration shock pulse and (B) its
corresponding velocity and (C) displacement, in compatible units.

(A) (B) (C)



The triangle pulse is defined as

ü(t) = � (8.29)

The triangle pulse with an amplitude of 1g and its corresponding velocity and displace-
ment are graphed in Fig.8.16A–C.The absolute acceleration maximax SRS of the pulse
is graphed in Fig. 8.17.The peak value of the SRS is 1.42g, and it occurs at 0.92 Hz.

2t 0 ≤ t < 1/2
2 − 2t 1/2 ≤ t ≤ 1
0 t > 1
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FIGURE 8.15 (A) Haversine acceleration shock pulse and (B) its
corresponding velocity and (C) displacement, in compatible units.

FIGURE 8.16 (A) Triangle acceleration shock pulse and (B) its
corresponding velocity and (C) displacement, in compatible units.

FIGURE 8.17 SRS of half-sine (solid), haversine (dashed),
and triangle (dotted) acceleration shock pulses. Maximum
SRS of sine pulse is 1.65g and occurs at 0.82 Hz. Maximum
SRS of haversine pulse is 1.60g and occurs at 1.02 Hz. Maxi-
mum SRS of triangle pulse is 1.42g and occurs at 0.93 Hz.
SRS ζ = 0.05.

The three acceleration pulses defined in Eqs. (8.27), (8.28), and (8.29) have sev-
eral features in common. First, all the pulses have a single lobe; they rise from zero
to a finite value, then decrease to zero. The slopes from the start to the peak are all
finite.The first integrals of all the pulses are nonzero. For this reason, the pulses rep-
resent shocks with an associated velocity change. The rates of change of the dis-
placements past the ends of the acceleration pulses of all the shocks equal the
velocities at the ends of the acceleration pulses. The three SRS roll off at low fre-
quencies at a rate of 6 dB/octave.

(A) (B) (C)

(A) (B) (C)



Some shocks have both first and second integrals that equal zero. An example is
the wavelet (or wavsyn) pulse, defined as

ü(t) = � (8.30)

where A is an amplitude coefficient and b is an odd integer that establishes the fre-
quency of the shock, in a sense. The wavelet pulse with A = 1g and b = 3, and its cor-
responding velocity and displacement, are graphed in Fig. 8.18A–C. The absolute
acceleration maximax SRS of the pulse is graphed in Fig. 8.18D. The peak value of
the SRS is 2.70g, and it occurs at 1.79 Hz. Both the ending velocity and the displace-
ment are zero. The roll-off of the SRS at very low frequencies is 18 dB/octave.

A sin (πt) sin (bπt) 0 ≤ t ≤ 1
0 t > 1
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FIGURE 8.18 (A) Wavelet acceleration shock pulse and (B) its
corresponding velocity and (C) displacement, in compatible
units. (D) SRS of acceleration pulse. SRS ζ = 0.05.

Finally, we consider a shock idealization with special characteristics. It is the one-
half-cycle square wave, defined by

ü(t) = � (8.31)

The pulse with an amplitude of 1g and its corresponding velocity and displacement
are graphed in Fig. 8.19A–C. The absolute acceleration maximax SRS of the pulse is
graphed in Fig. 8.19D. The peak value of the SRS is 1.86g, and it occurs at 0.5 Hz.The
SRS ordinates at all frequencies greater than 0.5 Hz equal 1.86g. The reason this SRS
does not asymptotically approach the peak value of the input acceleration pulse is
that the SRS has no quasi-static region. The perfectly vertical rise at the start of the
shock pulse excites dynamic response in all SDOF structures with finite natural fre-
quency. It is for this reason that the one-half-cycle square wave is almost always an
unrealistic representation of physical reality. Great care should be taken in using the
square wave in analysis. The reason the greatest magnitude of the SRS equals 1.86 is
that the peak response of a damped SDOF structure to a unit step acceleration is

1 0 ≤ t ≤ 1
0 t > 1

(A) (B)

(D)

(C)



approximately 1 + �1 − ζ2�e−πζ, and this quantity equals 1.86 when the damping factor
is ζ = 0.05. If the damping factor were zero, the SRS peak value would be 2.
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FIGURE 8.19 (A) One-half-cycle square-wave acceleration shock
pulse and (B) its corresponding velocity and (C) displacement, in
compatible units. (D) SRS of acceleration pulse. SRS ζ = 0.05.
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CHAPTER 9
MECHANICAL

IMPEDANCE/MOBILITY

Elmer L. Hixson

INTRODUCTION

Impedance methods allow the modeling, analysis, and measurement of linear mechan-
ical dynamical systems. Systems are represented in the frequency domain to predict
input characteristics and input/output relationships. The Fourier and Laplace trans-
forms allow the results to be expressed in the time domain. Excitation is usually a pure
sinusoid; however, sine sweeps, impulse functions, and random noise can be expressed
in the frequency domain with the fast Fourier transform. In the following sections of
this chapter, the impedance and its inverse mobility of the basic elements that make up
vibratory systems are presented. This is followed by a discussion of combinations of
these elements and methods of analysis.Then, various mechanical circuit theorems are
described. Such theorems can be used as an aid in the modeling of mechanical circuits
and in determining the response of vibratory systems; they are the mechanical equiva-
lents of well-known theorems employed in the analysis of electrical circuits.The analy-
sis of two-port/multiport systems is discussed and some analysis examples are given.

MECHANICAL IMPEDANCE OF VIBRATORY

SYSTEMS

The mechanical impedance Z of a system is the ratio of a sinusoidal driving force F
acting on the system to the resulting velocity v of the system. Its mechanical mobil-
ity � is the reciprocal of the mechanical impedance.

Consider a sinusoidal driving F that has a magnitude F0 and an angular fre-
quency ω:

F = F0 ejωt (9.1)

The application of this force to a linear mechanical system results in a velocity ν:

ν = ν0ej(ωt + φ) (9.2)

where ν0 is the magnitude of the velocity and φ is the phase angle between F and ν.
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Then by definition, the mechanical impedance of the system Z (at the point of
application of the force) is given by

Z = F/ν (9.3)

BASIC MECHANICAL ELEMENTS

The idealized mechanical systems considered in this chapter are considered to be
represented by combinations of basic mechanical elements assembled to form linear
mechanical systems. These basic elements are mechanical resistances (dampers),
springs, and masses. In general, the characteristics of real masses, springs, and
mechanical resistance elements differ from those of ideal elements in two respects:

1. A spring may have a nonlinear force-deflection characteristic; a mass may suffer
plastic deformation with motion; and the force presented by a resistance may not
be exactly proportional to velocity.

2. All materials have some mass; thus, a perfect spring or resistance cannot be made.
Some compliance or spring effect is inherent in all elements. Energy can be dissi-
pated in a system in several ways: friction, acoustic radiation, hysteresis, etc. Such
a loss can be represented as a resistive component of the element impedance.

Mechanical Resistance (Damper). A mechanical resistance is a device in which the
relative velocity between the endpoints is proportional to the force applied to the end-
points. Such a device can be represented by the dashpot of Fig. 9.1A, in which the force
resisting the extension (or compression) of the dashpot is the result of viscous friction.
An ideal resistance is assumed to be made of massless, infinitely rigid elements. The
velocity of point A, v1, with respect to the velocity at point B, v2, is

v = (v1 − v2) = (9.4)

where c is a constant of proportionality
called the mechanical resistance or
damping constant. For there to be a rel-
ative velocity v as a result of force at A,
there must be an equal reaction force at
B. Thus, the transmitted force Fb is
equal to Fa. The velocities v1 and v2 are
measured with respect to the stationary
reference G; their difference is the rela-
tive velocity v between the end points
of the resistance.

With the sinusoidal force of Eq. (9.1)
applied to point A with point B attached
to a fixed (immovable) point, the veloc-
ity v1 is obtained from Eq. (9.4):

v1 = = v0ejωt (9.5)

Because c is a real number, the force
and velocity are said to be “in phase.”

F0ejωt

�
c

Fa�
c
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FIGURE 9.1 Schematic representations of
basic mechanical elements. (A) An ideal mechan-
ical resistance. (B) An ideal spring. (C) An ideal
mass.



The mechanical impedance of the resistance is obtained by substituting from Eqs.
(9.1) and (9.5) in Eq. (9.3):

Zc = = c (9.6)

The mechanical impedance of a resistance is the value of its damping constant c.

Spring. A linear spring is a device for which the relative displacement between its
endpoints is proportional to the force applied. It is illustrated in Fig. 9.1B and can be
represented mathematically as follows:

x1 − x2 = (9.7)

where x1, x2 are displacements relative to the reference point G and k is the spring
stiffness. The stiffness k can be expressed alternately in terms of a compliance C =
1/k. The spring transmits the applied force, so that Fb = Fa.

With the force of Eq. (9.1) applied to point A and with point B fixed, the dis-
placement of point A is given by Eq. (9.7):

x1 = = x0ejωt

The displacement is thus sinusoidal and in phase with the force.The relative velocity
of the end connections is required for impedance calculations and is given by the dif-
ferentiation of x with respect to time:

ẋ = v = = F0ej(ωt + 90°) (9.8)

Substituting Eqs. (9.1) and (9.8) in Eq. (9.3), the impedance of the spring is

Zk = − = (9.9)

Mass. In the ideal mass illustrated in Fig 9.1C, the acceleration ẍ of the rigid body
is proportional to the applied force F:

ẍ1 = (9.10)

where m is the mass of the body. By Eq. (9.10), the force Fa is required to give the
mass the acceleration ẍ1, and the force Fb is transmitted to the reference G. When a
sinusoidal force is applied, Eq. (9.10) becomes

ẍ1 = (9.11)

The acceleration is sinusoidal and in phase with the applied force.
Integrating Eq. (9.11) to find velocity,

ẋ = v =
F

�
jωm

F0ejωt

�
m

Fa�
m

1
�
jωC

jk
�
ω

ω
�
k

jωF0ejωt

�
k

F0ejωt

�
k

Fa�
k

F
�
v
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The mechanical impedance of the mass is the ratio of F to v, so that

Zm = = jωm (9.12)

Thus, the impedance of a mass is an imaginary quantity that depends on the magni-
tude of the mass and on the frequency.

COMBINATIONS OF MECHANICAL ELEMENTS

In analyzing the properties of mechanical systems, it is often advantageous to com-
bine groups of basic mechanical elements into single impedances. Methods for cal-
culating the impedances of such combined elements are described in this section.An
extensive coverage of mechanical impedance theory and a table of combined ele-
ments is given in Ref. 1.

Parallel Elements. Consider the combination of elements shown in Fig. 9.2, a
spring and a mechanical resistance. They are said to be in parallel since the same
force is applied to both, and both are constrained to have the same relative veloci-
ties between their connections.The force Fc required to give the resistance the veloc-
ity v is found from Eqs. (9.6) and (9.9).

Fc = vZc = vc

The force required to give the spring this
same velocity is, from Eqs. (9.9)

Fk = vZk =

The total force F is

F = Fc + Fk

Since Z = F/v,

Z = c − j

Thus, the total mechanical impedance is the sum of the impedances of the two ele-
ments.

By extending this concept to any number of parallel elements, the driving force F
equals the sum of the resisting forces:

F = �
n

i = 1
vZi = v �

n

i = 1
Zi and Zp = �

n

i = 1
Zi (9.13)

where Zp is the total mechanical impedance of the parallel combination of the indi-
vidual elements Zi.

Since mobility is the reciprocal of impedance, when the properties of the parallel
elements are expressed as mobilities, the total mobility of the combination follows
from Eq. (9.13):

k
�
ω

vk
�
jω

F0ejωt

��
F0ejωt/jωm
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FIGURE 9.2 Schematic representation of a
parallel spring-resistance combination.



= �
n

i = 1
(9.14)

Series Elements. In Fig. 9.3 a spring and damper are connected so that the
applied force passes through both elements to the inertial reference.Then the veloc-
ity v is the sum of vk and vc. This is a series combination of elements. The method for
determining the mechanical impedance of the combination follows.

Consider the more general case of three arbitrary impedances shown in Fig. 9.4.
Determine the impedance presented by the end of a number of series-connected
elements. Elements Z1 and Z2 must have no mass, since a mass always has one end
connected to a stationary inertial reference. However, the impedance Z3 may be a
mass. The relative velocities between the end connections of each element are indi-
cated by va, vb, and vc.The velocities of the connections with respect to the stationary
reference point G are indicated by v1, v2, and v3:

v3 = vc v2 = v3 + (v2 − v3) = vc + vb

v1 = v2 + (v1 − v2) = va + vb + vc

The impedance at point 1 is F/v1, and the force F is transmitted to all three elements.
The relative velocities are

va = vb = vc =

Thus, the total impedance is defined by

= = + +

Extending this principle to any number of massless series elements,

= �
n

i = 1
(9.15)

where Zs is the total mechanical imped-
ance of the elements Zi connected in
series.

Since mobility is the reciprocal of
impedance, the total mobility of series
connected elements (expressed as mobil-
ities) is

1
�
Zi

1
�
Zs

1
�
Z3

1
�
Z2

1
�
Z1

F/Z1 + F/Z2 + F/Z3���
F

1
�
Z

F
�
Z3

F
�
Z2

F
�
Z1

1
�
�i

1
�
�p
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�s = �
n

i = 1
�i (9.16)

Using Eqs. (9.15) and (9.16), the mobility and impedance for Fig. 9.3 become:

� = 1/c + jω/k and Z = (ck/jω)/(c + k/jω)

MECHANICAL CIRCUIT THEOREMS

The following theorems are the mechanical analogs of theorems widely used in ana-
lyzing electric circuits. They are statements of basic principles (or combinations of
them) that apply to elements of mechanical systems. In all but Kirchhoff’s laws, these
theorems apply only to systems composed of linear, bilateral elements. A linear ele-
ment is one in which the magnitudes of the basic elements (c, k, and m) are constant,
regardless of the amplitude of motion of the system; a bilateral element is one in
which forces are transmitted equally well in either direction through its connections.

KIRCHHOFF’S LAWS

1. The sum of all the forces acting at a point (common connection of several ele-
ments) is zero:

�
n

i
Fi = 0 (at a point) (9.17)

This follows directly from the considerations leading to Eq. (9.13).
2. The sum of the relative velocities across the connections of series mechanical ele-

ments taken around a closed loop is zero:

�
n

i
vi = 0 (around a closed loop) (9.18)

This follows from the considerations leading to Eq. (9.14).

Kirchhoff’s laws apply to any system, even when the elements are not linear or
bilateral.

Example 9.1. Find the velocity of all the connection points and the forces act-
ing on the elements of the system shown in Fig. 9.5. The system contains two veloc-
ity generators v1 and v6.Their magnitudes are known, their frequencies are the same,
and they are 180° out-of-phase.

A. Using Eq. (9.17), write a force equation for each connection point except 
a and e.
At point b: F1 − F2 − F3 = 0. In terms of velocities and impedances:

(v1 − v2)Z1 − (v2 − v3)Z2 − (v2 − v4)Z4 = 0 (a)

At point c, the two series elements have the same force acting: F2 − F2 = 0. In terms
of velocities and impedances:

(v2 − v3)Z2 − (v3 − v4)Z3 = 0 (b)

At point d: F2 + F3 − F4 − F5 = 0. In terms of velocities and impedances:
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(v3 − v4)Z3 + (v2 − v4)Z4 − (v4 + v6)Z5 − (v4 − v5)Z6 = 0 (c)

Note that v6 is (+) because of the 180° phase relation to v1.
At point f: F5 − F5 = 0. In terms of velocities and impedances:

(v4 − v5)Z6 − v5Z7 = 0 (d)

Since v1 and v6 are known, the four unknown velocities v2, v3, v4, and v5 may be deter-
mined by solving the four simultaneous equations above. After the velocities are
obtained, the forces may be determined from the following:

F1 = (v1 − v2)Z1 F2 = (v2 − v3)Z2 = (v3 − v4)Z3

F3 = (v2 − v4)Z4 F4 = (v4 + v6)Z5

F5 = (v4 − v5)Z6 = v5Z7

B. The method of node forces. Equations (a) through (d) above can be rewritten
as follows:

v1Z1 = (Z1 + Z2 + Z3)v2 − Z2v3 − Z4v4 (a′ )

0 = −Z2v2 + (Z2 + Z3)v3 − Z3v4 (b′ )

0 = −Z4v2 − Z3v3 + (Z3 + Z4 + Z5 + Z6)v4 − Z6v5 (c′ )

−v6Z5 = −Z6v4 + (Z6 + Z7)v5 (d′ )

These equations can be written by inspection of the schematic diagram by the follow-
ing rule: At each point with a common velocity (force node), equate the force generators
to the sum of the impedances attached to the node multiplied by the velocity of the node,
minus the impedances multiplied by the velocities of their other connection points.

When the equations are written so that the unknown velocities form columns, the
equations are in the proper form for a determinant solution for any of the
unknowns. Note that the determinant of the Z’s is symmetrical about the main diag-
onal. This condition always exists and provides a check for the correctness of the
equations.

C. Using Eq. (9.18), write a velocity equation in terms of force and mobility
around enough closed loops to include each element at least once. In Fig. 9.5, note
that

F3 = F1 − F2 and F5 = F1 − F4
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Around loop (1):

F2(�2 + �3) − (F1 − F2)�4 = 0 (e)

The minus sign preceding the second term results from going across the element 4 in
a direction opposite to the assumed force acting on it.

Around loop (2):

F4�5 − v6 − (F1 − F4)(�6 + �7) = 0 (f)

A summation of velocities from A to G along the upper path forms the following
closed loop:

v1 + F1�1 + F2(�2 + �3) + F4�5 − v6 = 0 (g)

Equations (e), ( f ), and (g) then may be solved for the unknown forces F1, F2, and F4.
The other forces are F3 = F1 − F2 and F5 = F1 − F4. The velocities are:

v2 = v1 − F1�1 v3 = v2 − F2�2 v4 = v2 − F3�4 v5 = F5�7

When a system includes more than one source of vibration energy, a Kirchhoff’s
law analysis with impedance methods can be made only if all the sources are oper-
ating at the same frequency. This is the case because sinusoidal forces and velocities
can add as phasors only when their frequencies are identical. However, they may dif-
fer in magnitude and phase. Kirchhoff’s laws still hold for instantaneous values and
can be used to write the differential equations of motion for any system.

RECIPROCITY THEOREM

If a force generator operating at a particular frequency at some point (1) in a system
of linear bilateral elements produces a velocity at another point (2), the generator can
be removed from (1) and placed at (2); then the former velocity at (2) will exist at (1),
provided the impedances at all points in the system are unchanged. This theorem also
can be stated in terms of a vibration generator that produces a certain velocity at its
point of attachment (1), regardless of force required, and the force resulting on some
element at (2).

Reciprocity is an important characteristic of linear bilateral elements. It indicates
that a system of such elements can transmit energy equally well in both directions. It
further simplifies the calculation on two-way energy transmission systems since the
characteristics need be calculated for only one direction.

SUPERPOSITION THEOREM

If a mechanical system of linear bilateral elements includes more than one vibration
source, the force or velocity response at a point in the system can be determined by
adding the response to each source, taken one at a time (the other sources supplying
no energy but replaced by their internal impedances).

The internal impedance of a vibrational generator is that impedance presented at
its connection point when the generator is supplying no energy. This theorem finds
useful application in systems having several sources. A very important application
arises when the applied force is nonsinusoidal but can be represented by a Fourier
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series. Each term in the series can be considered a separate sinusoidal generator.The
response at any point in the system can be calculated for each generator by using 
the impedance values at that frequency. Each response term becomes a term in the
Fourier series representation of the total response function. The overall response as
a function of time then can be synthesized from the series.

Figure 9.6 illustrates an application of superposition.The velocities vc′ and vc″ can
be determined by the methods of Example 9.1. Then the velocity vc is the sum of vc′
and vc″.

THÉVENIN’S EQUIVALENT SYSTEM

If a mechanical system of linear bilateral elements contains vibration sources and
produces an output to a load at some point at any particular frequency, the whole sys-
tem can be represented at that frequency by a single constant-force generator Fc in par-
allel with a single impedance Zi connected to the load. Thévenin’s equivalent-system
representation for a physical system may be determined by the following experi-
mental procedure: Denote by Fc the force which is transmitted by the attachment
point of the system to an infinitely rigid fixed point; this is called the blocked force.
When the load connection is disconnected and perfectly free to move, a free veloc-
ity vf is measured.Then the parallel impedance Zi is Fc/vf.The impedance Zi also can
be determined by measuring the internal impedance of the system when no source

is supplying motional energy.
If the values of all the system ele-

ments in terms of ideal elements are
known, Fc and Zi may be determined
analytically. A great advantage is de-
rived from this representation in that
attention is focused on the characteris-
tics of a system at its output point and
not on the details of the elements of the
system.This allows an easy prediction of
the response when different loads are
attached to the output connection.After
a final load condition has been deter-
mined, the system may be analyzed in
detail for strength considerations.

NORTON’S EQUIVALENT

SYSTEM

A mechanical system of linear bilateral
elements having vibration sources and
an output connection may be represented
at any particular frequency by a single
constant-velocity generator vf in series
with an internal impedance Zi.

This is the series system counterpart
of Thévenin’s equivalent system where
vf is the free velocity and Zi is the
impedance as defined above. The same
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advantages in analysis exist as with Thévenin’s parallel representation. The most
advantageous one depends upon the type of structure to be analyzed. In the experi-
mental determination of an equivalent system, it is usually easier to measure the free
velocity than the blocked force on large heavy structures, while the converse is true
for light structures. In any case, one representation is easily derived from the other.
When vf and Zi are determined, Fc = vfZi.

MECHANICAL 2-PORTS

Consider the “black box” shown in Fig. 9.7. It may have many elements between ter-
minals (ports) (1) and (2). The forces and velocities at the ports can be determined
by the use of 2-port equations in terms of impedances and mobilities.The impedance
parameter equations are

F1 = Z11v1 + Z12v2 and F2 = Z21v1 + Z22v2

The Z parameters can be determined by measurements or from a known circuit
model. These parameters are defined as follows:

1. For v2 = 0 (port 2 blocked), Z11 = F1 /v1 and Z21 = F2 /v1.
2. For v1 = 0 (port 1 blocked), Z12 = F1 /v2 and Z22 = F2 /v2

These can be called the “blocked impedance parameters.”
The mobility parameter equations for this situation are as follows:

v1 = �11F1 + �12F2 and v2 = �12F1 + �22F2

These � parameters can be determined by measurement or from a model. The def-
initions are as follows:

1. For F2 = 0 (port 2 free), �11 = v1/F1 and �12 = v2/F1.
2. For F1 = 0 (port 1 free), �21 = v1/F2 and �22 = v2/F2.

These can be called “free mobility parameters.”
Note that for large, massive structures, it may be difficult to clamp the ports to

measure the impedance parameters. In this case, the mobility parameters requiring
free conditions may be more appropriate. Likewise, for very light structures, the
impedance parameters may be more appropriate. In any case, one set of parameters
can be determined from the other by matrix inversion.
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Every attachment point on a mechanical system can have six degrees of freedom,
transnational and rotational; Reference 2 is a guide to the measurement of the com-
plete mobility matrix of such a system.

MECHANICAL IMPEDANCE MEASUREMENTS

AND APPLICATIONS

MEASUREMENTS

Transducers (Chap. 10), instrumentation (Chap. 13), and spectrum analyzers (Chap.
14) are essential subjects related to impedance measurements. Some special consid-
erations are given here. The measurement of mechanical impedance involves the
application of a sinusoidal force and the measurement of the complex ratio of force
to the resulting velocity. Many combinations of transducers are capable of perform-
ing these measurements. However, the most effective method is to use an impedance
transducer such as that shown in Fig. 9.8. These devices are available from suppliers
of vibration-measuring sensors.As shown in Fig. 9.8, the force supplied by the vibra-
tion exciter passes through a force sensor to the unknown Zx, and the motion is
measured by an accelerometer whose output is integrated to obtain velocity. The
accelerometer measures the true motion, but the force sensor measures the force
required to move the accelerometer and its mounting structure, as well as the force
to Zx. This extra mass is usually called the “mass below the force gage.” The imped-
ance is then as follows:

Zx = jω(Kf /Ka)(Ef /Ea) − jωmo

where Ef and Ea are the force and acceleration phasor potentials, Kf in N/volt is the
force gage sensitivity, Ka in m/s2/volt is the accelerometer sensitivity, and m0 is mass
below the force gage. The ratio Kf /Ka and m0 can be determined by a calibration as
follows:

1. With no attachment, Zx = 0.
Then m0 = (Kf /Ka) (Ef /Ea)0.

MECHANICAL IMPEDANCE/MOBILITY 9.11

FIGURE 9.8 Device for the measurement of mechanical
impedance in which force and acceleration are measured.
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2. Attach a known mass M.
Then M + m0 = (Kf /Ka) (Ef /Ea)1,
which yields m0 = M/[(Ef /Ea)0 /(Ef /Ef /Ea)1] − 1.

3. Thus [Kf /Ka] = m0/(Ef /Ea)0.

With the aid of a two-channel analyzer (see Chap. 14) or appropriate signal process-
ing software (see Chap. 19), forces such as sine sweeps, broad bandwidth random
noise, or impacts can be used for these measurements. The Fourier transform of the
force and acceleration potentials will provide correct sinusoidal terms. The impact
method can be implemented with a hammer equipped with a force gage and
accelerometer, as detailed in Chap. 21.

References 3 and 4 are standards for impact transducers and for measurement
methods for translational excitation.

APPLICATIONS

The impedance concept is widely used in the study of mechanical systems. Three
practical applications are presented here. See Ref. 5.

Application 1. Assume one wishes to determine the free motion at a point on a
structure that would be altered by the attachment of a sensor such as an accelerom-
eter. The procedure is illustrated in Fig. 9.9, and involves the following steps.

1. Turn off the source causing the vibration vf .

2. Measure the internal impedance Z0 at a point A over the expected frequency
range.

3. Attach the measuring device whose known impedance is Zm and measure vm.

4. Draw the Norton equivalent circuit at point A with Zm attached. Note that Z0 is
attached to the reference since it may be masslike.

5. Calculate the free velocity from

vf = vmZm /(Z0 + Zm)

Application 2. Assume one wishes to choose a vibration isolator between a
vibrating machine and a flexible structure. The criteria are to reduce the ratio of the
velocity of the structure to the free velocity of the machine below some desired
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value, or to reduce the ratio of the force transmitted to the structure to the blocked
force of the machine below some desired value. The procedure is as follows:

1. Model the system as shown in Fig. 9.10, where Fcm is the blocked force and Zm is
the impedance at the attachment point. The structural impedance at the attach-
ment point is Zst and “Z” is a set of the blocked Z parameters of the isolator that
satisfy

F1 = Z11v1 + Z12v2 and F2 = Z21v1 + Z22v2

2. Add the source and structure to obtain

F1 = Fcm − Zmv1 and F2 = −Zstv2

The system equations then become

Fcm = (Z11 + Zm)v1 + Z12v2 and 0 = Z21v1 + (Z22 + Zst)v1

3. Solve for the force to the structure Fst = F2 from

Fst /Fcm = Z12Zst / [(Z11 + Zm)(Z22 + Zst) − Z12Z21]

This result follows from vst = Fst /Zst and vfm = Fcm /Zm.

4. The ratio of the velocity of the structure to the free velocity of the machine is
then given by

vst /vfm = Z21Zm / [(Z11 + Zm)(Z22 + Zst) − Z12Z21]

Typical vibration isolators can be modeled as shown in Fig. 9.11, where the Z param-
eters are given by
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FIGURE 9.10 Vibration isolation application.
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Z11 = c + jωm1 + k /jω ; Z22 = c + jωm2 + k /jω ; Z12 = Z21 = c + k /jω

The values of c, k, m1, and m2 should be available from the manufacturer, or they can
be measured. Using the measured values of Zm and Zst, the transmissibilities of the
force and velocity can be computed from the expression above, and plots of these
functions versus frequency can be compared to the desired criteria.

Application 3. Assume one wishes to isolate a piece of equipment from a vibrat-
ing structure. The procedure is essentially the same as detailed in Application 2.
Specifically, measure the blocked force Fst, or the free velocity vst, of the structure.
Then in Fig. 9.10, replace the Fcm and Zm with Fst and Zst, and replace Zst with Zm.
Proceed to write the system 2-port equations and solve for the force or velocity
transmissibility.
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CHAPTER 10
SHOCK AND VIBRATION

TRANSDUCERS

Anthony S. Chu

INTRODUCTION

This chapter on vibration transducers is the first in a group of seven chapters on the
measurement of shock and vibration. Chapter 13 describes typical instrumentation
used in making measurements with such devices; Chap. 15 covers the mounting of
vibration transducers and how they may be calibrated under field conditions; more
precise calibration under laboratory conditions is described in detail in Chap. 11. The
selection of vibration transducers is treated in Chap. 15 and this chapter. This chapter
defines the terms and describes the general principles of the most common transduc-
ers; it also sets forth the mathematical basis for the use of shock and vibration trans-
ducers and includes a brief description of piezoelectric accelerometers, piezoresistive
accelerometers, piezoelectric force and impedance gages, and piezoelectric drivers,
along with a review of their performance and characteristics. Finally, the following var-
ious special types of transducers are considered: laser Doppler vibrometers, fiber-optic
reflective displacement sensors, electrodynamic (velocity coil) pickups, differential-
transformer (LVDT) pickups, and capacitance-type transducers.

Certain solid-state materials are electrically responsive to mechanical force; they
often are used as the mechanical-to-electrical transduction elements in shock and
vibration transducers. Generally exhibiting high elastic stiffness, these materials can
be divided into two categories: the self-generating type, in which electric charge is
displaced as a direct result of applied force, and the passive-circuit type, in which
applied force causes a change in the electrical characteristics of the material.

A piezoelectric material is one which displaces an electric charge proportional to
the stress applied to it, within its linear elastic range. Piezoelectric materials are of
the self-generating type. A piezoresistive material is one whose electrical resistance
depends upon applied force. Piezoresistive materials are of the passive-circuit type.

A transducer (sometimes called a pickup or sensor) is a device which converts
shock or vibratory motion into an optical, a mechanical, or, most commonly, an elec-
trical signal that is proportional to a parameter of the experienced motion.

A transducing element is the part of the transducer that accomplishes the conver-
sion of motion into the signal.

A measuring instrument or measuring system converts shock and vibratory
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motion into an observable form that is directly proportional to a parameter of the
experienced motion. It may consist of a transducer with transducing element, signal-
conditioning equipment, and device for displaying the signal. An instrument con-
tains all of these elements in one package, while a system utilizes separate packages.

An accelerometer is a transducer whose output is proportional to the acceleration
input. The output of a force gage is proportional to the force input; an impedance
gage contains both an accelerometer and a force gage.

CLASSIFICATION OF MOTION TRANSDUCERS

In principle, shock and vibration motions are measured with reference to a point
fixed in space by either of two fundamentally different types of transducers:

1. Fixed-reference transducer. One terminal of the transducer is attached to a
point that is fixed in space; the other terminal is attached (e.g., mechanically, elec-
trically, optically) to the point whose motion is to be measured.

2. Mass-spring transducer (seismic transducer). The only terminal is the base of a
mass-spring system; this base is attached at the point where the shock or vibra-
tion is to be measured.The motion at the point is inferred from the motion of the
mass relative to the base.

MASS-SPRING TRANSDUCERS (SEISMIC TRANSDUCERS)

In many applications, such as moving vehicles or missiles, it is impossible to establish
a fixed reference for shock and vibration measurements.Therefore, many transducers
use the response of a mass-spring system to measure shock and vibration. A mass-
spring transducer is shown schematically in Fig. 10.1; it consists of a mass m sus-
pended from the transducer case a by a spring of stiffness k. The motion of the mass

within the case may be damped by a vis-
cous fluid or electric current, symbolized
by a dashpot with damping coefficient c.
It is desired to measure the motion of the
moving part whose displacement with
respect to fixed space is indicated by u.
When the transducer case is attached to
the moving part, the transducer may be
used to measure displacement, velocity,
or acceleration, depending on the por-
tion of the frequency range which is 
utilized and whether the relative dis-
placement or relative velocity dδ/dt is
sensed by the transducing element. The
typical response of the mass-spring sys-
tem is analyzed in the following para-
graphs and applied to the interpretation
of transducer output.

Consider a transducer whose case
experiences a displacement motion u,
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FIGURE 10.1 Mass-spring type of vibration-
measuring instrument consisting of a mass m
supported by spring k and viscous damper c. The
case a of the instrument is attached to the mov-
ing part whose vibratory motion u is to be mea-
sured. The motion u is inferred from the relative
motion δ between the mass m and the case a.1



and let the relative displacement between the mass and the case be δ. Then the
motion of the mass with respect to a reference fixed in space is δ + u, and the force
causing its acceleration is m[d 2(δ + u)/dt 2].Thus, the force applied by the mass to the
spring and dashpot assembly is −m[d 2(δ + u)/dt 2]. The force applied by the spring is 
−kδ, and the force applied by the damper is −c(dδ/dt), where c is the damping coeffi-
cient. Adding all force terms and equating the sum to zero,

−m − c − kδ = 0 (10.1)

Equation (10.1) may be rearranged:

m + c + kδ = −m (10.2)

Assume that the motion u is sinusoidal, u = u0 cos ωt, where ω = 2πf is the angular
frequency in radians per second and f is expressed in cycles per second. Neglecting
transient terms, the response of the instrument is defined by δ = δ0 cos (ωt − θ); then
the solution of Eq. (10.2) is

ω2

=

�� − ω2	2
+ �ω 	2

(10.3)

ω
θ = tan−1

− ω2

(10.4)

The undamped natural frequency fn of the instrument is the frequency at which

= ∞

when the damping is zero (c = 0), or the frequency at which θ = 90°. From Eqs. (10.3)
and (10.4), this occurs when the denominators are zero:

ωn = 2πfn = �� rad/sec (10.5)

Thus, a stiff spring and/or light mass produces an instrument with a high natural fre-
quency. A heavy mass and/or compliant spring produces an instrument with a low
natural frequency.

The damping in a transducer is specified as a fraction of critical damping. Critical
damping cc is the minimum level of damping that prevents a mass-spring transducer
from oscillating when excited by a step function or other transient. It is defined by

cc = 2 �k�m� (10.6)

Thus, the fraction of critical damping ζ is

ζ = = (10.7)

It is convenient to define the excitation frequency ω for a transducer in terms of
the undamped natural frequency ωn by using the dimensionless frequency ratio
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ω/ωn. Substituting this ratio and the relation defined by Eq. (10.7), Eqs. (10.3) and
(10.4) may be written

=
� 	2

(10.8)

���1 − � 	22�+ �2ζ 	2

θ = tan−1

2ζ
(10.9)

1 − � 	2

The response of the mass-spring transducer given by Eq. (10.8) may be expressed
in terms of the acceleration ü of the moving part by substituting ü0 = −u0ω2.Then the
ratio of the relative displacement amplitude δ0 between the mass m and transducer
case a to the impressed acceleration amplitude ü0 is

1= − ����1 − � 	22�+ �2ζ 	2 (10.10)

The relation between δ0/u0 and the frequency ratio ω/ωn is shown graphically in
Fig. 10.2 for several values of the fraction of critical damping ζ. Corresponding
curves for δ0/ü0 are shown in Fig. 10.3. The phase angle θ defined by Eq. (10.9) is
shown graphically in Fig. 10.4, using the scale at the left side of the figure. Corre-
sponding phase angles between the relative displacement δ and the velocity u̇ and
acceleration ü are indicated by the scales at the right side of the figure.

ACCELERATION-MEASURING TRANSDUCERS

As indicated in Fig. 10.3, the relative displacement amplitude δ0 is directly propor-
tional to the acceleration amplitude ü0 = −u0ω2 of the sinusoidal vibration being
measured, at small values of the frequency ratio ω/ωn. Thus, when the natural fre-
quency ωn of the transducer is high, the transducer is an accelerometer. If the trans-
ducer is undamped, the response curve of Fig. 10.3 is substantially flat when ω/ωn <
0.2, approximately. Consequently, an undamped accelerometer can be used for the
measurement of acceleration when the vibration frequency does not exceed approx-
imately 20 percent of the natural frequency of the accelerometer.The range of mea-
surable frequency increases as the damping of the accelerometer is increased, up to
an optimum value of damping. When the fraction of critical damping is approxi-
mately 0.65, an accelerometer gives accurate results in the measurement of vibration
at frequencies as great as approximately 60 percent of the natural frequency of the
accelerometer.

As indicated in Fig. 10.3, the useful frequency range of an accelerometer
increases as its natural frequency ωn increases. However, the deflection of the spring
in an accelerometer is inversely proportional to the square of the natural frequency;
i.e., for a given value of ü0, the relative displacement is directly proportional to 1/ωn

2

[see Eq. (10.10)]. As a consequence, the electrical signal from the transducing ele-
ment may be very small, thereby requiring a large amplification to increase the sig-
nal to a level at which recording is feasible. For this reason, a compromise usually is
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made between high sensitivity and the highest attainable natural frequency, depend-
ing upon the desired application.

ACCELEROMETER REQUIREMENTS FOR SHOCK

High-Frequency Response. The capability of an accelerometer to measure
shock may be evaluated by observing the response of the accelerometer to acceler-
ation pulses. Ideally, the response of the accelerometer (i.e., the output of the trans-
ducing element) should correspond identically with the pulse. In general, this result
may be approached but not attained exactly. Three typical pulses and the corre-
sponding responses of accelerometers are shown in Figs. 10.5 to 10.7. The pulses are
shown in dashed lines. A sinusoidal pulse is shown in Fig. 10.5, a triangular pulse in
Fig. 10.6, and a rectangular pulse in Fig. 10.7. Curves of the response of the
accelerometer are shown in solid lines. For each of the three pulse shapes, the
response is given for ratios τn/τ of 1.014 and 0.203, where τ is the pulse duration and
τn = 1/fn is the natural period of the accelerometer.These response curves, computed
for the fraction of critical damping ζ = 0, 0.4, 0.7, and 1.0, indicate the following gen-
eral relationships:

1. The response of the accelerometer follows the pulse most faithfully when the
natural period of the accelerometer is smallest relative to the period of the pulse. For
example, the responses at A in Figs. 10.5 to 10.7 show considerable deviation
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FIGURE 10.2 Displacement response δ0 /u0 of a mass-spring system sub-
jected to a sinusoidal displacement ü = u0 sin ωt. The fraction of critical damp-
ing ζ is indicated for each curve.
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FIGURE 10.4 Phase angle of a mass-spring transducer when used to
measure sinusoidal vibration. The phase angle θ on the left-hand scale
relates the relative displacement δ to the impressed displacement, as
defined by Eq. (10.9).The right-hand scales relate the relative displacement
δ to the impressed velocity and acceleration.

FIGURE 10.3 Relationship between the relative displacement amplitude δ0 of a mass-spring sys-
tem and the acceleration amplitude ü0 of the case. The fraction of critical damping ζ is indicated for
each response curve.
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FIGURE 10.5 Acceleration response to a half-sine pulse of accelera-
tion of duration τ (dashed curve) of a mass-spring transducer whose
natural period τn is equal to: (A) 1.014 times the duration of the pulse
and (B) 0.203 times the duration of the pulse. The fraction of critical
damping ζ is indicated for each response curve. (Levy and Kroll.1)

FIGURE 10.6 Acceleration response to a triangular pulse of acceler-
ation of duration τ (dashed curve) of a mass-spring transducer whose
natural period is equal to: (A) 1.014 times the duration of the pulse and
(B) 0.203 times the duration of the pulse. The fraction of critical damp-
ing ζ is indicated for each response curve. (Levy and Kroll.1)



between the pulse and the response; this occurs when τn is approximately equal to τ.
However, when τn is small relative to τ (Figs. 10.5B to 10.7B), the deviation between
the pulse and the response is much smaller. If a shock is generated by metal-to-metal
impact or by a pyrotechnic device such as that described in Chap. 28, and the
response accelerometer is located in close proximity to the excitation source(s), the
initial pulses of acceleration may have an extremely fast rise time and high ampli-
tude. In such cases, any type of mass-spring accelerometer may not accurately follow
the leading wavefront and characterize the shock inputs faithfully. For example,
measurements made in the near field of a high-g shock show that undamped
piezoresistive accelerometers having resonance above 1 MHz were excited at reso-
nance, thereby invalidating the measured responses. To avoid this effect, accelerom-
eters should be placed as far away as possible, or practical, from the source of
excitation. Other considerations related to accelerometer resonance are discussed
below in the sections entitled “Zero Shift” and “Survivability.”

2. Damping in the transducer reduces the response of the transducer at its own
natural frequency; i.e., it reduces the transient vibration superimposed upon the
pulse, which is sometimes referred to as ringing. For this reason, an accelerometer
with internal fluid or gas damping may be ideal for shock measurements when the
area of interest lies not in the transient behavior but in the rigid-body motion of the
test object. The ringing produced by an undamped accelerometer may induce non-
linear output characteristics internal to the sensing element or drive the signal-
conditioning electronics to saturation unknowingly, generating distortion as a by-
product.2 Internal damping effectively isolates the sensing element from unwanted
high-frequency inputs which are responsible for setting the element into resonance.
It should be noted that the physical protection provided by internal damping cannot
be achieved by using electronic postfiltering.

Low-Frequency Response. The measurement of shock requires that the
accelerometer and its associated equipment have good response at low frequencies
because pulses and other types of shock motions characteristically include low-
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FIGURE 10.7 Acceleration response to a rectangular pulse of accel-
eration of duration τ (dashed curve) of a mass-spring transducer
whose natural period τn is equal to: (A) 1.014 times the duration of the
pulse and (B) 0.203 times the duration of the pulse.The fraction of crit-
ical damping ζ is indicated for each response curve. (Levy and Kroll.1)



frequency components. Such pulses can be measured accurately only with an instru-
mentation system whose response is flat down to the lowest frequency of the spec-
trum; in general, this lowest frequency is zero for pulses.

The response of an instrumentation system is defined by a plot of output voltage
versys excitation frequency. For purposes of shock measurement, the decrease in
response at low frequencies is significant.The decrease is defined quantitatively by the
frequency fc , at which the response is down 3 dB or approximately 30 percent below
the flat response which exists at the higher frequencies.The distortion which occurs in
the measurement of a pulse is related to the frequency fc, as illustrated in Fig. 10.8.
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FIGURE 10.8 Response of an accelerometer to a half-sine accelera-
tion pulse for RC time constants equal to τ, 5τ, 10τ, 50τ, and ∞, where τ is
equal to the duration of the half-sine pulse.1

This is particularly important when acceleration data are integrated to obtain
velocity, or integrated twice to obtain displacement. A small amount of undershoot
shown in Fig. 10.8 may cause a large error after integration.A dc-coupled accelerom-
eter (such as a piezoresistive accelerometer, described later in this chapter) is rec-
ommended for this type of application.

Zero Shift. Zero shift is the displacement of the zero-reference line of an
accelerometer after it has been exposed to a very intense shock.This is illustrated in
Fig. 10.9.The loss of zero reference and the apparent dc components in the time his-
tory cause a problem in peak-value determination and induce errors in shock
response spectrum calculations.Although the accelerometer is not the sole source of
zero shift, it is the main contributor.

All piezoelectric shock accelerometers, under extreme stress load (e.g., a sensing
element at resonance), will exhibit zero-shift phenomena due either to crystal
domain switching or to a sudden change in crystal preload condition.3 A mechanical
filter may be used to protect the crystal element(s) at the expense of a limitation in
bandwidth or possible nonlinearity.4 Piezoresistive shock accelerometers typically
produce negligible zero shift.

Survivability. Survivability is the ability of an accelerometer to withstand
intense shocks without affecting its performance. An accelerometer is usually rated
in terms of the maximum value of acceleration it can withstand. Accelerometers
used for shock measurements may have a range of well over many thousands of gs.
In piezoresistive accelerometers which are excited at resonance, the stress buildup
due to high magnitudes of acceleration may lead to fracture of the internal compo-



nents. In contrast, piezoelectric accelerometers are more robust than their piezo-
resistive counterparts due to lower internal stress.

IMPORTANT CHARACTERISTICS OF

ACCELEROMETERS

SENSITIVITY

The sensitivity of a shock- and vibration-measuring instrument is the ratio of its elec-
trical output to its mechanical input.The output usually is expressed in terms of volt-
age per unit of displacement, velocity, or acceleration. This specification of
sensitivity is sufficient for instruments which generate their own voltage independ-
ent of an external voltage power source. However, the sensitivity of an instrument
requiring an external voltage usually is specified in terms of output voltage per unit
of voltage supplied to the instrument per unit of displacement, velocity, or accelera-
tion, e.g., millivolts per volt per g of acceleration. It is important to note the terms in
which the respective parameters are expressed, e.g., average, rms, or peak. The rela-
tion between these terms is shown in Fig. 10.10.

RESOLUTION

The resolution of a transducer is the smallest change in mechanical input (e.g., accel-
eration) for which a change in the electrical output is discernible.The resolution of an
accelerometer is a function of the transducing element and the mechanical design.

Recording equipment, indicating equipment, and other auxiliary equipment used
with accelerometers often establish the resolution of the overall measurement sys-
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FIGURE 10.9 A time history of an accelerometer that has been exposed to
a pyrotechnic shock. Note that there is a shift in the baseline (i.e., the zero ref-
erence) of the accelerometer as a result of this shock; the shift may either be
positive or negative.



tem. If the electrical output of an instru-
ment is indicated by a meter, the resolu-
tion may be established by the smallest
increment that can be read from the
meter. Resolution can be limited by
noise levels in the instrument or in the
system. In general, any signal change
smaller than the noise level will be
obscured by the noise, thus determining
the resolution of the system.

TRANSVERSE SENSITIVITY

If a transducer is subjected to vibration
of unit amplitude along its axis of maxi-
mum sensitivity, the amplitude of the
voltage output emax is the sensitivity. The
sensitivity eθ along the X axis, inclined at
an angle θ to the axis of emax, is eθ = emax

cos θ, as illustrated in Fig. 10.11. Simi-
larly, the sensitivity along the Y axis is 

et = emax sin θ. In general, the sensitive axis of a transducer is designated. Ideally, the
X axis would be designated the sensitive axis, and the angle θ would be zero. Practi-
cally, θ can be made only to approach zero because of manufacturing tolerances
and/or unpredictable variations in the characteristics of the transducing element.
Then the transverse sensitivity (cross-axis sensitivity) is expressed as the tangent of
the angle, i.e., the ratio of et to eθ:

= tan θ (10.11)

In practice, tan θ is between 0.01 and 0.05 and is expressed as a percentage. For
example, if tan θ = 0.05, the transducer is said to have a transverse sensitivity of 5 per-

cent. Figure 10.12 is a typical polar plot
of transverse sensitivity.

ZERO ACCELERATION 

OUTPUT (ZAO)

The electrical output indicated by an
accelerometer at zero acceleration is
commonly referred to as zero accelera-
tion output (ZAO), zero-offset, or zero out-
put bias. With an accelerometer whose
output is electrically ac-coupled, such as
the piezoelectric type, the zero accelera-
tion reference is at ground potential or
some reference dc level called zero out-
put bias. With an accelerometer that is
capable of responding to static accelera-
tion, such as the piezoresistive type, the

et�
eθ
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FIGURE 10.10 Relationships between aver-
age, rms, peak, and peak-to-peak values for a
simple sine wave. These values are used in speci-
fying sensitivities of shock and vibration trans-
ducers (e.g., peak millivolts per peak g, or rms
millivolts per peak-to-peak displacement).
These relationships do not hold true for other
than simple sine waves.

FIGURE 10.11 The designated sensitivity eθ

and cross-axis sensitivity et that result when the
axis of maximum sensitivity emax is not aligned
with the axis of eθ.



zero acceleration reference should ide-
ally be at zero output unit or some spec-
ified dc level. But this is technically
impractical due to component toler-
ances. Sensor manufacturers typically
specify the ZAO to be within a range,
i.e., ±50 mV, and the measured ZAO fig-
ure is supplied with the accelerometer
as calibration data. ZAO changes with
temperature.This will be described later
in the chapter in “Environmental
Effects.”

AMPLITUDE LINEARITY 

AND LIMITS

When the ratio of the electrical output
of a transducer to the mechanical input
(i.e., the sensitivity) remains constant
within specified limits, the transducer is
said to be “linear” within those limits, as

illustrated in Fig. 10.13.A transducer is linear only over a certain range of amplitude
values. The lower end of this range is determined by the electrical noise of the mea-
surement system.

The upper limit of linearity may be imposed by the electrical characteristics of
the transducing element and by the size or the fragility of the instrument. Gener-
ally, the greater the sensitivity of a transducer, the more nonlinear it will be. Simi-
larly, for very large acceleration values, the large forces produced by the spring of
the mass-spring system may exceed the yield strength of a part of the instrument,
causing nonlinear behavior or complete failure.3

FREQUENCY RANGE

The operating frequency range is the
range over which the sensitivity of the
transducer does not vary more than a
stated percentage from the rated sensitiv-
ity.This range may be limited by the elec-
trical or mechanical characteristics of the
transducer or by its associated auxiliary
equipment. These limits can be added to
amplitude linearity limits to define com-
pletely the operating ranges of the instru-
ment, as illustrated in Fig. 10.14.

Low-Frequency Limit. The mechani-
cal response of a mass-spring transducer
does not impose a low-frequency limit
for an acceleration transducer because
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FIGURE 10.12 Plot of transducer sensitivity
in all axes normal to the designated axis eθ plot-
ted according to axes shown in Fig. 10.11. Cross-
axis sensitivity reaches a maximum et along the
Y axis and a minimum value along the Z axis.

FIGURE 10.13 Typical plot of sensitivity as a
function of amplitude for a shock and vibration
transducer.The linear range is established by the
intersection of the sensitivity curve and the spec-
ified limits (dashed lines).



the transducer responds to vibration
with frequencies less than the natural
frequency of the transducer.

However, it is necessary to consi-
der the electrical characteristics of both
the transducer and the associated elec-
tronic equipment in evaluating the low-
frequency limit. An accelerometer that
is capable of sensing static acceleration
is commonly referred to as a dc accel-
erometer. In general, an accelerometer
that utilizes external power or a carrier
voltage, such as the piezoresistive or
variable capacitive designs, is a dc accel-
erometer, which has no low-frequency
limit, whereas a self-generating trans-
ducer type, such as the piezoelectric
design, is not operative at zero fre-
quency.The low-frequency response of a
piezoelectric accelerometer is deter-
mined solely by the connecting charge
amplifier.

High-Frequency Limit. An accelera-
tion transducer (accelerometer) has an
upper usable frequency limit because it

responds to vibration whose frequency is less than the natural frequency of the
transducer. The limit is a function of (1) the natural frequency and (2) the damping
of the transducer, as discussed with reference to Fig. 10.3. An attempt to use such a
transducer beyond this frequency limit may result in distortion of the signal, as illus-
trated in Fig. 10.15.

The upper frequency limit for slightly damped vibration-measuring instruments
is important because these instruments exaggerate the small amounts of harmonic
content that may be contained in the motion, even when the operating frequency is

well within the operating range of the
instrument. The result of exciting an
undamped instrument at its natural fre-
quency may be to either damage the
instrument or obscure the desired mea-
surement. Figure 10.15 shows how a
small amount of harmonic distortion in
the vibratory motion may be exagger-
ated by an undamped transducer.

Phase Shift. Phase shift is the time
delay between the mechanical input 
and the electrical output signal of the
instrumentation system. Unless the
phase-shift characteristics of an instru-
mentation system meet certain require-
ments, a distortion may be introduced
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FIGURE 10.15 Distorted response (solid line)
of a lightly damped (ζ < 0.1) mass-spring ac-
celerometer to vibration (dashed line) containing
a small harmonic content of the small frequency
as the natural frequency of the accelerometer.

FIGURE 10.14 Linear operating range of a
transducer.Amplitude linearity limits are shown
as a combination of displacement and accelera-
tion values. The lower amplitude limits usually
are expressed in acceleration values as shown.



that consists of the superposition of vibration at several different frequencies. Con-
sider first an accelerometer, for which the phase angle θ1 is given by Fig. 10.4. If the
accelerometer is undamped, θ1 = 0 for values of ω/ωn less than 1.0; thus, the phase of
the relative displacement δ is equal to that of the acceleration being measured, for
all values of frequency within the useful range of the accelerometer. Therefore, an
undamped accelerometer measures acceleration without distortion of phase. If the
fraction of critical damping ζ for the accelerometer is 0.65, the phase angle θ1

increases approximately linearly with the frequency ratio ω/ωn within the useful fre-
quency range of the accelerometer. Then the expression for the relative displace-
ment may be written

δ = δ0 cos (ωt − θ) = δ0 cos (ωt − aω) = δ0 cos ω(t − a) (10.12)

where a is a constant. Thus, the relative motion δ of the instrument is displaced in
phase relative to the acceleration ü being measured; however, the increment along
the time axis is a constant independent of frequency. Consequently, the waveform of
the accelerometer output is undistorted but is delayed with respect to the waveform
of the vibration being measured. As indicated by Fig. 10.4, any value of damping in
an accelerometer other than ζ = 0 or ζ = 0.65 (approximately) results in a nonlinear
shift of phase with frequency and a consequent distortion of the waveform.

ENVIRONMENTAL EFFECTS

Temperature. The sensitivity, natural frequency, and damping of a transducer
may be affected by temperature.The specific effects produced depend on the type of
transducer and the details of its design.The sensitivity may increase or decrease with
temperature, or remain relatively constant. The temperature characteristics of an
accelerometer may be measured as a function of temperature, if necessary, and

appropriate compensations
can then be applied to the
measured data in real time
or after the fact. The com-
pensations in real time can
be accomplished passively
or actively. To passively
compensate a piezoelectric
type, a parallel capacitor
with opposite temperature
characteristics of the piezo-
electric element is inserted
in the circuit at the factory.
For the piezoresistive type,
one or multiple resistors are
connected to the bridge 
circuit in various fashions
to lessen the temperature
effects. Figure 10.16 shows 
an example of a zero com-
pensation circuit for a pi-
ezoresistive accelerometer.
Several modern acceler-
ometer designs have incor-
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FIGURE 10.16 Typical temperature compensation circuit for
zero offset in a piezoresistive full-bridge sensor.5 Rzb1, Rzb2,
Rztc1, and Rztc2 adjust the zero offset and compensate the off-
set error due to temperature.



porated built-in temperature sensors and microprocessor integrated circuits for
active temperature compensation.

Humidity. Humidity may affect the characteristics of certain types of vibration
instruments. In general, a transducer which operates at a high electrical imped-
ance is affected by humidity more than a transducer which operates at a low elec-
trical impedance. It usually is impractical to correct the measured data for
humidity effects. However, instruments that might otherwise be adversely
affected by humidity often are sealed hermetically to protect them from the
effects of moisture.

Acoustic Noise. High-intensity sound waves often accompany high-amplitude
vibration. If the case of an accelerometer can be set into vibration by acoustic exci-
tation, error signals may result. In general, a well-designed accelerometer will not
produce a significant electrical response except at extremely high sound pressure
levels. Under such circumstances, it is likely that vibration levels also will be very
high, so that the error produced by the accelerometer’s exposure to acoustic noise
usually is not important.

Strain Sensitivity. An accelerometer may generate a spurious output when its
case is strained or distorted. Typically this occurs when the transducer mounting is
not flat against the surface to which it is attached, and so this effect is often called
base-bend sensitivity or strain sensitivity. It is usually reported in equivalent g per
micro-strain, where 1 microstrain is 1 × 10−6 inch per inch. The Instrument Society of
America recommends a test procedure that determines strain sensitivity at 250
microstrain.6

An accelerometer with a sensing element which is tightly coupled to its base
tends to exhibit large strain sensitivity. An error due to strain sensitivity is most
likely to occur when the accelerometer is attached to a structure which is subject to
large amounts of flexure. In such cases, it is advisable to select an accelerometer with
low strain sensitivity.

PHYSICAL PROPERTIES

Size and weight of the transducer are very important considerations in many vibra-
tion and shock measurements.A large instrument may require a mounting structure
that will change the local vibration characteristics of the structure whose vibration is
being measured. Similarly, the added mass of the transducer may also produce sub-
stantial changes in the vibratory response of such a structure. Generally, the natural
frequency of a structure is lowered by the addition of mass; specifically, for a simple
spring-mass structure:

= �� (10.13)

where fn = natural frequency of structure
Δfn = change in natural frequency
m = mass of structure

Δm = increase in mass resulting from addition of transducer

In general, for a given type of transducing element, the sensitivity increases
approximately in proportion to the mass of the transducer. In most applications, it is

m
�
m + Δm

fn − Δfn�
fn
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more important that the transducer be small in size than that it have high sensitivity
because amplification of the signal increases the output to a usable level.

Mass-spring-type transducers for the measurement of displacement usually are
larger and heavier than similar transducers for the measurement of acceleration. In
the former, the mass must remain substantially stationary in space while the instru-
ment case moves about it; this requirement does not exist with the latter.

For the measurement of shock and vibration in aircraft or missiles, the size and
weight of not only the transducer but also the auxiliary equipment are important. In
these applications, self-generating instruments that require no external power may
have a significant advantage.

PIEZOELECTRIC ACCELEROMETERS

PRINCIPLE OF OPERATION

An accelerometer of the type shown in Fig. 10.17A is a linear seismic transducer uti-
lizing a piezoelectric element in such a way that an electric charge is produced which
is proportional to the applied acceleration. This “ideal” seismic piezoelectric trans-
ducer can be represented (over most of its frequency range) by the elements shown
in Fig. 10.17B. A mass is supported on a linear spring which is fastened to the frame
of the instrument. The piezoelectric crystal which produces the charge acts as the
spring.Viscous damping between the mass and the frame is represented by the dash-
pot c. In Fig. 10.17C the frame is given an acceleration upward to a displacement of
u, thereby producing a compression in the spring equal to δ.The displacement of the
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FIGURE 10.17 (A) Schematic diagram of a linear seismic piezoelectric
accelerometer. (B) A simplified representation of the accelerometer shown in
(A) which applies over most of the useful frequency range.A mass m rests on the
piezoelectric element, which acts as a spring having a spring constant k. The
damping in the system, represented by the dashpot, has a damping coefficient c.
(C) The frame is accelerated upward, producing a displacement u of the frame,
moving the mass from its initial position by an amount x, and compressing the
spring by an amount δ.

(B)

(A)

(C)



mass relative to the frame is dependent upon the applied acceleration of the frame,
the spring stiffness, the mass, and the viscous damping between the mass and the
frame, as indicated in Eq. (10.10) and illustrated in Fig. 10.3.

For frequencies far below the resonance frequency of the mass and spring, this
displacement is directly proportional to the acceleration of the frame and is inde-
pendent of frequency. At low frequencies, the phase angle of the relative displace-
ment δ, with respect to the applied acceleration, is proportional to frequency. As
indicated in Fig. 10.4, for low fractions of critical damping which are characteristic of
many piezoelectric accelerometers, the phase angle is proportional to frequency at
frequencies below 30 percent of the resonance frequency.

In Fig. 10.17, inertial force of the mass causes a mechanical strain in the piezo-
electric element, which produces an electric charge proportional to the stress and,
hence, proportional to the strain and acceleration. If the dielectric constant of the
piezoelectric material does not change with electric charge, the voltage generated is
also proportional to acceleration. Metallic electrodes are applied to the piezoelectric
element, and electrical leads are connected to the electrodes for measurement of the
electrical output of the piezoelectric element.

In the ideal seismic system shown in Fig. 10.17, the mass and the frame have infinite
stiffness, the spring has zero mass, and viscous damping exists only between the mass
and the frame. In practical piezoelectric accelerometers, these assumptions cannot be
fulfilled. For example, the mass may have as much compliance as the piezoelectric ele-
ment. In some seismic elements, the mass and spring are inherently a single structure.
Furthermore, in many practical designs where the frame is used to hold the mass and
piezoelectric element, distortion of the frame may produce mechanical forces upon
the seismic element.All these factors may change the performance of the seismic sys-
tem from those calculated using equations based on an ideal system. In particular, the
resonance frequency of the piezoelectric combination may be substantially lower than
that indicated by theory. Nevertheless, the equations for an ideal system are useful in
both design and application of piezoelectric accelerometers.

Figure 10.18 shows a typical frequency response curve for a piezoelectric
accelerometer. In this illustration, the electrical output in millivolts per g accelera-
tion is plotted as a function of frequency. The resonance frequency is denoted by fn.
If the accelerometer is properly mounted on the device being tested, then the upper
frequency limit of the useful frequency range usually is taken to be fn/3 for a devia-
tion of 12 percent (1 dB) from the mean value of the response. For a deviation of 6
percent (0.5 dB) from the mean value, the upper frequency limit usually is taken to
be fn/5.As indicated in Fig. 10.1, the type of mounting can have a significant effect on
the value of fn.

The decrease in response at low frequencies (i.e., the “roll-off”) depends prima-
rily on the characteristics of the preamplifier that follows the accelerometer. The
low-frequency limit also is usually expressed in terms of the deviation from the
mean value of the response over the flat portion of the response curve, being the fre-
quency at which the response is either 12 percent (1 dB) or 6 percent (0.5 dB) below
the mean value.

PIEZOELECTRIC MATERIALS

A polarized ceramic called lead zirconate titanate (PZT) is most commonly used in
piezoelectric accelerometers. It is low in cost, high in sensitivity, and useful in the tem-
perature range from −180° to +550°F (−100° to +288°C). Polarized ceramics in the bis-
muth titanate family have substantially lower sensitivities than PZT, but they also have
more stable characteristics and are useful at temperatures as high as 1000°F (538°C).
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Quartz, the single-crystal material most widely used in accelerometers, has a sub-
stantially lower sensitivity than polarized ceramics, but its characteristics are very
stable with time and temperature; it has high resistivity.Tourmaline is a single-crystal
material that can be used in accelerometers at high temperatures up to 1400°F
(760°C). The upper limit of the useful range is usually set by the thermal character-
istics of the structural materials rather than by the characteristics of these two crys-
talline materials.

Polarized polyvinylidene fluoride (PVDF), an engineering plastic similar to
Teflon and known as Piezofilm, is used as the sensing element in accelerometers as
well as for direct measurement of dynamic strain. It is inexpensive, but it is generally
less stable with temperature (and limited in the upper temperature range, normally
to around 85 to 125°C) than ceramics or single-crystal materials. It has low mechan-
ical Q and is highly resistant to shock, and thin Piezofilm in compression mode
allows very high frequency measurements.

TYPICAL PIEZOELECTRIC ACCELEROMETER CONSTRUCTIONS

Piezoelectric accelerometers utilize a variety of seismic element configurations.
Their methods of mounting are described in Chap. 15. See also Ref. 8. Most are con-
structed of polycrystalline ceramic piezoelectric materials because of their ease 
of manufacture, high piezoelectric sensitivity, and excellent time and temperature
stability. These seismic devices may be classified in two modes of operation:
compression- or shear-type accelerometers.

Compression-type Accelerometer. The compression-type seismic accelerome-
ter, in its simplest form, consists of a piezoelectric disc and a mass placed on a frame
as shown in Fig. 10.17. Motion in the direction indicated causes compressive (or ten-
sile) forces to act on the piezoelectric element, producing an electrical output pro-
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FIGURE 10.18 Typical response curve for a piezoelectric accelerometer. The reso-
nance frequency is denoted by fn. The useful range depends on the acceptable devia-
tion from the mean value of the response over the “flat” portion of the response curve.



portional to acceleration. In this exam-
ple, the mass is cemented with a con-
ductive material to the piezoelectric
element which, in turn, is cemented to
the frame. The components must be
cemented firmly so as to avoid being
separated from each other by the
applied acceleration.

In the typical commercial accelerom-
eter shown in Fig. 10.19, the mass is held
in place by means of a stud extending
from the frame through the ceramic.
Accelerometers of this design often use
quartz, tourmaline, or ferroelectric ce-
ramics as the sensing material.

This type of accelerometer must be attached to the structure with care in order to
minimize distortion of the housing and base, which can cause an electrical output. See
the section entitled “Strain Sensitivity.”

The temperature characteristics of compression-type accelerometers have been
improved greatly in recent years; it is now possible to measure acceleration over a

temperature range of −425 to +1400°F
(−254 to +760°C). This wider range has
been primarily a result of the use of two
piezoelectric materials: tourmaline and
lithium niobate.

Shear-Type Accelerometers. Shear-
type accelerometer utilizes flat-plate
shear-sensing elements. Manufacturers
preload these against a flattened post ele-
ment in several ways. Two methods are
shown in Fig. 10.20 (A, B). Accelerom-
eters of this style have low cross-axis
response, excellent temperature char-
acteristics, and negligible output from
strain sensitivity or base bending. The
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FIGURE 10.20 Piezoelectric accelerometers:
(A) delta-shear type (courtesy of Brüel & Kjear),
(B) isoshear type (courtesy of Endevco), (C)
annular shear type (courtesy of Measurement Spe-
cialties, Inc.).

FIGURE 10.19 A typical compression-type
piezoelectric accelerometer.The piezoelectric ele-
ment(s) must be preloaded (biased) to produce
an electrical output under both tension forces and
compression forces. (Courtesy of Endevco Corp.)

(C)



temperature range of the bolted shear design can be from −425 to +1400°F (−254 to
+760°C).

The annular shear type of accelerometer, illustrated in Fig.10.20C, employs a hollow
cylindrically shaped piezoelectric element fitted around a middle mounting post; a
loading ring (or mass) is affixed to the outer diameter of the piezoelectric element.The
ceramic piezoelectric element is polarized along its length; the output voltage of the
accelerometer is taken from its inner and outer walls. This type of design allows a 
mounting screw to be inserted through the center of the accelerometer, which offers a
360-degree connector orientation.

Beam-Type Accelerometers. The beam-type accelerometer is a variation of the
compression-type accelerometer. It is usually made from two piezoelectric plates
which are rigidly bonded together to form a beam supported at one end, as illus-
trated in Fig. 10.21. As the beam flexes, the bottom element compresses, so that it
increases in thickness. In contrast, the upper element expands, so that it decreases in
thickness. Accelerometers of this type generate high electrical output for their size,
but are more fragile and have a lower resonance frequency than most other designs.

Piezofilm-Type Accelerometers. Piezofilm is used in compression mode to pro-
duce very sensitive and wide-bandwidth accelerometers. For a device with 10 mV/g
open-circuit sensitivity, the resonance frequency may exceed 75 kHz. Because the
PVDF sensor element tends to have lower capacitance and, therefore, higher elec-
trical impedance than equivalent piezoceramic designs, an impedance buffer is usu-
ally integrated into the device. Piezofilm accelerometers are generally used in
low-cost applications where calibration accuracy is not critical. (See Fig. 10.22.)

PHYSICAL CHARACTERISTICS OF PIEZOELECTRIC

ACCELEROMETERS

Shape, Size, and Weight. Commercially available piezoelectric accelerometers
usually are cylindrical in shape. They are available with both attached and detach-
able mounting studs at the bottom of the cylinder. A coaxial cable connector is pro-
vided at either the top or side of the housing.

Most commercially available piezoelectric accelerometers are relatively light in
weight, ranging from approximately 0.005 to 4.2 oz (0.14 to 120 g). Usually, the
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FIGURE 10.21 Configurations of piezoelectric elements in a beam-type accelerometer. (A) A
series arrangement, in which the two elements have opposing directions of polarization. (B) A paral-
lel arrangement, in which the two elements have the same direction of polarization.

(B)(A)



larger the accelerometer, the higher its sensitivity and the lower its resonance fre-
quency. The smallest units have a diameter of less than about 0.2 in. (5 mm); the
larger units have a diameter of about 1 in. (25.4 mm) and a height of about 1 in.
(25.4 mm).

Resonance Frequency. Typical resonance frequency of an accelerometer may be
above 40,000 Hz.The higher the resonance frequency, the lower will be the sensitivity.
A typical piezoelectric accelerometer offers flat response (±1 dB) up to 10 kHz.

Damping. Most piezoelectric accelerometers are essentially undamped, hav-
ing amplification ratios between 20 and 100, or a fraction of critical damping less
than 0.1.

ELECTRICAL CHARACTERISTICS OF PIEZOELECTRIC

ACCELEROMETERS

Dependence of Voltage Sensitivity on Shunt Capacitance. The sensitivity of an
accelerometer is defined as the electrical output per unit of applied acceleration. The
sensitivity of a piezoelectric accelerometer can be expressed as either a charge sensitiv-
ity q/ẍ or a voltage sensitivity e/ẍ. Charge sensitivity usually is expressed in units of
coulombs generated per g of applied acceleration; voltage sensitivity usually is
expressed in volts per g (where g is the acceleration of gravity). Voltage sensitivity
often is expressed as open-circuit voltage sensitivity, i.e., in terms of the voltage pro-
duced across the electrical terminals per unit acceleration when the electrical load
impedance is infinitely high. Open-circuit voltage sensitivity may be given either with
or without the connecting cable.

An electrical capacitance often is placed across the output terminals of a piezo-
electric transducer. This added capacitance (called shunt capacitance) may result
from the connection of an electrical cable between the pickup and other electrical
equipment (all electrical cables exhibit interlead capacitance). The effect of shunt
capacitance in reducing the sensitivity of a pickup is shown in Fig. 10.23.

The charge equivalent circuits, with shunt capacitance CS, are shown in Fig.
10.23A. The charge sensitivity is not changed by addition of shunt capacitance. The
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FIGURE 10.22 Piezofilm can be used in length-extension
mode as a bimorph cantilever structure, detecting acceleration by
inertial response of the free beam.The cantilever length, and seis-
mic mass if deployed, can be varied to achieve a wide continuum
of sensitivity and resonant frequency results.



total capacitance CT of the pickup
including shunt is given by

CT = CE + CS (10.14)

where CE is the capacitance of the trans-
ducer without shunt capacitance.

The voltage equivalent circuits are
shown in Fig. 10.23B. With the shunt
capacitance CS, the total capacitance is
given by Eq. (10.14) and the open-circuit
voltage sensitivity is given by

= (10.15)

where qs /ẍ is the charge sensitivity.The voltage sensitivity without shunt capacitance
is given by

= (10.16)

Therefore, the effect of the shunt capacitance is to reduce the voltage sensitivity by
a factor

= (10.17)

Piezoelectric accelerometers are used with both voltage-sensing and charge-sensing
signal conditioners, although charge sensing is by far the most common because the
sensitivity does not change with external capacitance (up to a limit). These factors
are discussed in Chap. 13. In addition, electronic circuitry can be placed within the
case of the accelerometer, as discussed below.

LOW-IMPEDANCE PIEZOELECTRIC ACCELEROMETERS

CONTAINING INTERNAL ELECTRONICS

Piezoelectric accelerometers are available with simple electronic circuits internal to
their cases to provide signal amplification and low-impedance output. For example,
see the charge preamplifier circuit shown in Fig. 13.2. Some designs operate from
low-current dc voltage supplies and are designed to be intrinsically safe when cou-
pled by appropriate barrier circuits. Other designs have common power and signal
lines and use coaxial cables.

The principal advantages of piezoelectric accelerometers with integral electron-
ics are that they are relatively immune to cable-induced noise and spurious
response, they can be used with lower-cost cable, and they have a lower signal con-
ditioning cost. In the simplest case the power supply might consist of a battery, a
resistor, and a capacitor. Some such accelerometers provide a velocity or displace-
ment output. These advantages do not come without compromise.9 Because the
impedance-matching circuitry is built into the transducer, gain cannot be adjusted to
utilize the wide dynamic range of the basic transducer. Ambient temperature is lim-
ited to that which the circuit will withstand, and this is considerably lower than that
of the piezoelectric sensor itself. In order to retain the advantages of small size, the
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FIGURE 10.23 Equivalent circuits which in-
clude shunt capacitance across a piezoelectric
pickup. (A) Charge equivalent circuit. (B) Volt-
age equivalent circuit.

(A) (B)



integral electronics must be kept relatively simple.This precludes the use of multiple
filtering and dynamic overload protection and thus limits their application.

All other things being equal, the reliability factor (i.e., the mean time between
failures) of any accelerometer with internal electronics is lower than that of an
accelerometer with remote electronics, especially if the accelerometer is subject to
abnormal environmental conditions. However, if the environmental conditions are
fairly normal, accelerometers with internal electronics can provide excellent signal
fidelity and immunity from noise. Internal electronics provides a reduction in over-
all system noise level because it minimizes the cable capacitance between the sensor
and the signal-conditioning electronics.

Velocity-Output Piezoelectric Devices. Piezoelectric accelerometers are avail-
able with internal electronic circuitry which integrates the output signal provided by
the accelerometer, thereby yielding a velocity or displacement output. These trans-
ducers have several advantages not possessed by ordinary velocity pickups. They are
smaller, have a wider frequency response, have no moving parts, and are relatively
unaffected by magnetic fields where measurements are made.

CHARACTERISTICS OF PIEZOELECTRIC ACCELEROMETER

Measurement Range. Piezoelectric accelerometers are generally useful for the
measurement of acceleration of magnitudes of from 10−6g to more than 105g.The low-
est value of acceleration which can be measured is approximately that which will pro-
duce an output voltage equivalent to the electrical input noise of the coupling
amplifier connected to the accelerometer when the pickup is at rest. Over its useful
operating range, the output of a piezoelectric accelerometer is directly and continu-
ously proportional to the input acceleration.A single accelerometer often can be used
to provide measurements over a dynamic amplitude range of 90 dB or more, which is
substantially greater than the dynamic range of some of the associated transmission,
recording, and analysis equipment. Commercial accelerometers generally exhibit
excellent linearity of electrical output versus input acceleration under normal usage.
In fact, the upper dynamic ranges of many piezoelectric accelerometers are actually
determined by their output (charge) sensitivities and not by their nonlinearity charac-
teristics. When such an accelerometer is used with a charge amplifier with high-input
charge capacity (i.e., over 50,000 pC), the usable dynamic range of the system can eas-
ily exceed 110 dB. This is, however, not true with piezoelectric accelerometers with
built-in electronics in which the maximum output swing has been predetermined by
the internal amplifier at the factory.

Temperature Range. Piezoelectric accelerometers are available which may be
used in the temperature range from −425°F (−254°C) to above +1400°F (+760°C)
without the aid of external cooling. The voltage sensitivity, charge sensitivity, ca-
pacitance, and frequency response depend upon the ambient temperature of the
transducer. This temperature dependence is due primarily to variations in the char-
acteristics of the piezoelectric material, but it also may be due to variations in the
insulation resistance of cables and connectors—especially at high temperatures.

Effects of Temperature on Charge Sensitivity. The charge sensitivity of a
piezoelectric accelerometer is directly proportional to the d piezoelectric constant of
the material used in the piezoelectric element. The d constants of most piezoelectric
materials vary with temperature.
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Effects of Temperature on Voltage Sensitivity. The open-circuit voltage sensi-
tivity of an accelerometer is the ratio of its charge sensitivity to its total capacitance
(Cs + CE). Hence, the temperature variation in voltage sensitivity depends on the
temperature dependence of both charge sensitivity and capacitance. The voltage
sensitivity of most piezoelectric accelerometers decreases with temperature.

Effects of Transient Temperature Changes. A piezoelectric accelerometer that
is exposed to transient temperature changes may produce outputs as large as several
volts, even if the sensitivity of the accelerometer remains constant. These spurious
output voltages arise from

1. Differential thermal expansion of the piezoelectric elements and the structural
parts of the accelerometer, which may produce varying mechanical forces on the
piezoelectric elements, thereby producing an electrical output.

2. Generation of a charge in response to a change in temperature because the
piezoelectric material is inherently pyroelectric. In general, the charge generated
is proportional to the temperature change.

Such thermally generated transients tend to generate signals at low frequencies
because the accelerometer case acts as a thermal low-pass filter.Therefore, such spu-
rious signals often may be reduced significantly by adding thermal insulation around
the accelerometer to minimize the thermal changes and by electrical filtering of low-
frequency output signals from the accelerometer.

PIEZORESISTIVE ACCELEROMETERS

PRINCIPLE OF OPERATION

A piezoresistive accelerometer differs from the piezoelectric type in that it is not self-
generating. In this type of transducer a semiconductor material, usually silicon, is used
as the strain-sensing element. Such a material changes its resistivity in proportion to an
applied stress or strain. The equivalent electric circuit of a piezoresistive transducing
element is a variable resistor. Piezoresistive elements are almost always arranged in
pairs; a given acceleration places one element in tension and the other in compression.
This causes the resistance of one element to increase while the resistance of the other
decreases. Often two pairs are used and the four elements are connected electrically in
a Wheatstone-bridge circuit, as shown in Fig. 10.24B. This is called a full-bridge config-
uration.When only one pair is used, it forms half of a Wheatstone bridge (a half-bridge
configuration), the other half being made up of fixed-value resistors, either in the
transducer or in the signal-conditioning equipment. The use of transducing elements
by pairs not only increases the sensitivity, but also cancels zero-output errors due to
temperature changes, which occur in each resistive element.

Silicon elements are often used as the transducing elements because of their high
sensitivity. (Metallic gages made of foil or wire change their resistance with strain
because the dimensions change. The resistance of a piezoresistive material changes
because the material’s electrical nature changes.) Sensitivity is a function of the gage
factor; the gage factor is the ratio of the fractional change in resistance to the frac-
tional change in length that produced it.The gage factor of a typical wire or foil strain
gage is approximately 2.5; the gage factor of silicon is approximately 100.

A major advantage of piezoresistive accelerometers is that they are capable of
responding down to dc (0 Hz) along with a relatively good high-frequency response.
Today, most piezoresistive accelerometers are constructed using micromachining
technology.
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DESIGN PARAMETERS

Many different configurations are possible for an accelerometer of this type. For
purposes of illustration, the design parameters are considered for a piezoresistive
accelerometer which has a cantilever arrangement as shown in Fig. 10.24A. This uni-
formly stressed cantilever beam is loaded at its end with mass m. In this arrange-
ment, four identical piezoresistive elements are used—two on each side of the beam,
whose length is L in. These elements, whose resistance is R, form the active arms of
the balanced bridge shown in Fig. 10.24B. A change of length L of the beam pro-
duces a change in resistance R in each element.The gage factor K for each of the ele-
ments [defined by Eq. (12.1)] is

K = = (10.18)

where ε is the strain induced in the beam, expressed in inches/inch, at the surface
where the elements are cemented. If the resistances in the four arms of the bridge
are equal, then the ratio of the output voltage Eo of the bridge circuit to the input
voltage Ei is

= = �K (10.19)

TYPICAL PIEZORESISTIVE ACCELEROMETER CONSTRUCTIONS

Figure 10.25 shows two basic piezoresistive accelerometer designs.

Bonded Strain Gage, Fluid Damped Type. To provide high output sensitivities
and resonance frequencies, discrete semiconductor piezoresistors are bonded firmly
to the seismic mass where the strain is most concentrated. This is described by 
Fig. 10.25A. This approach is used to provide sensitivities more suitable for the
measurement of acceleration below 1000g. To provide environmental shock resis-
tance, overtravel stops are added.To extend the usable frequency range and enhance
shock survivability, damping is added by surrounding the mechanism with silicone
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FIGURE 10.24 (A) Schematic drawing of a piezoresistive accelerometer of the cantilever-
beam type. Four piezoresistive elements are used—two are either cemented to each side of the
stressed beam or are diffused or ion implanted into a silicon beam. (B) The four piezoresistive
elements are connected in a bridge circuit as illustrated.

(A) (B)
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FIGURE 10.25 Two basic types of piezoresistive accelerometers. (A) Bonded strain gage type:
the thin section on the neutral axis acts as a hinge of the seismic mass. Under dynamic condition,
the strain energy is concentrated in the discrete piezoresistive gages on top and on the bottom 
of the mass. Viscous fluid typically encapsulates the seismic subassembly to provide the necessary
damping. (B) Microelectro-mechanical systems (MEMS) type: the entire mechanism (seismic mass,
hinges/piezoresistors) is etched from a single piece of silicon. The thin sections on the neutral axis
near the top of the mass act as hinges; the microns-thick gaps between the mass and the top and
bottom caps provide the squeezed-film damping. (C) A SEM cross-section view of the accelerom-
eter shown in (B), where the mass has a thickness of ~300 μm. (Courtesy of Measurement Specialties
Inc..)

(C)

(A) (B)

oil. The advantages of these designs are high sensitivity, broad frequency response
for the sensitivity, and overrange protection. The disadvantages are complexity and
limited temperature range. Overrange protection is almost mandatory in sensitive
piezoresistive accelerometers; without it they would not survive ordinary shipping
and handling.The viscosity of the damping fluid does change with temperature; as a
result, the damping coefficient changes significantly with temperature.

Microelectro-Mechanical Systems (MEMS), Gas Damped Type. Also known
as a micromachined accelerometer, the entire working mechanism (mass, spring, and
support) of a MEMS-type accelerometer is etched from a single crystal of silicon, a
process known as micromachining. This produces a very tiny and rugged device,
shown in Fig. 10.25C. The advantages of the MEMS type are very small size, very
high resonance frequency, ruggedness, and high range. Accelerometers of such
design are used to measure a wide range of accelerations, from below 10g to over
200,000g. No adhesive is required to bond a strain gage of this type to the structure,
which helps to make it a very stable device from a thermal and hysteresis point of



view. For shock applications, see the section entitled “Survivability.” A few modern
MEMS accelerometer designs offer squeezed-film gas damping as an alternative to
silicone oil damping. Squeezed-film damping can be observed when a plate moves in
close proximity to another solid surface, in effect alternately stretching and squeez-
ing any fluid that may be present in the space between the moving plate and the
solid surface. Depending on the range of frequency, this fluid motion can be a signif-
icant effect on the damping behaviors of the moving plate.

ELECTRICAL CHARACTERISTICS OF PIEZORESISTIVE

ACCELEROMETERS

Excitation. Piezoresistive transducers require an external power supply to provide
the necessary current or voltage excitation in order to operate. These energy sources
must be well regulated and stable since they may introduce sensitivity errors and sec-
ondary effects at the transducer which will result in error signals at the output.

Traditionally, the excitation has been provided by a battery or a constant voltage
supply. Other sources of excitation, such as constant current supplies or ac excitation
generators, may be used. The sensitivity and temperature response of a piezoresis-
tive transducer may depend on the kind of excitation applied.Therefore, it should be
operated in a system which provides the same source of excitation as used during
temperature compensation and calibration of the transducer. A common excitation
source ranges from 2 to 10 V dc.

Sensitivity. The sensitivity of an accelerometer is defined as the ratio of its elec-
trical output to its mechanical input. Specifically, in the case of piezoresistive
accelerometers, it is expressed as voltage per unit of acceleration at the rated excita-
tion (i.e., mV/g or peak mV/peak g at 10 volts dc excitation). Most piezoresistive
accelerometers are designed in full- or half-bridge configuration, as shown in Fig.
10.24B. Their sensitivity is therefore ratiometric, which refers to the output voltage
as a ratio of the supply voltage. For example, if the input voltage is doubled, the out-
put voltage is doubled. This relationship is not perfectly linear in practice, but it is a
close approximation.

Loading Effects. An equivalent cir-
cuit of a piezoresistive accelerometer,
for use when considering loading effects,
is shown in Fig. 10.26. Using the equiva-
lent circuit and the measured output
resistance of the transducer, the effect of
loading may be directly calculated:

EoL = Eo (10.20)

where Ro = output resistance of accelerometer, including cable resistance
Eo = sensitivity into an infinite load

EoL = loaded output sensitivity
RL = load resistance

Because the resistance of the strain-gage elements varies with temperature, output
resistance should be measured at the operating temperature.

RL�
Ro + RL
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Effect of Cable on Sensitivity. Long cables may result in the following effects:

1. A reduction in sensitivity because of resistance in the input wires. The fractional
reduction in sensitivity is equal to

(10.21)

where Ri is the input resistance of the transducer and Rci is the resistance of one
input (excitation) wire.This effect may be overcome by using remote sensing leads.

2. Signal attenuation resulting from resistance in the output wires. This fractional
reduction in signal is given by

(10.22)

where Rco is the resistance of one output wire between transducer and load.
3. Attenuation of the high-frequency components in the data signal as a result of

R-C filtering in the shielded instrument leads. The stray and distributed capaci-
tance present in the transducer and a short cable are such that any filtering
effect is negligible to frequencies well beyond the usable range of the
accelerometer. However, when long leads are connected between transducer
and readout equipment, the frequency response at higher frequencies may be
affected significantly.

Warmup Time. The excitation voltage across the piezoresistive elements causes
a current to flow through each element. The I 2R heating results in an increase in
temperature of the elements above ambient, which slightly increases the resistance
of the elements. Differentials in this effect may cause the zero acceleration output
voltage to vary slightly with time until the temperature is stabilized. Therefore,
resistance measurements and shock and vibration data should not be taken until
stabilization is reached. In a half-bridge configuration, due to the differences in
thermal characteristics between the piezoresistors and the fixed completion resis-
tors, the I 2R heating differentials may cause long warmup time before stabilization
can be reached.

Input and Output Resistance. For an equal-arm Wheatstone bridge, the input
and output resistances are equal. However, temperature-compensating and zero-
balance resistors may be internally connected in series with the input leads or in
series with the sensing elements. These additional resistors will usually result in
unequal input and output resistance. The resistance of piezoresistive transducers
varies with temperature much more than the resistance of metallic strain gages, usu-
ally having resistivity temperature coefficients between about 0.17 and 0.95 percent
per degree Celsius.

Zero Balance. Although the resistance elements in the bridge of a piezoresistive
accelerometer may be closely matched during manufacture, slight differences in
resistance will exist. These differences result in a small offset or residual dc voltage
at the output of the bridge at zero acceleration. Circuitry within associated signal-
conditioning instruments may provide compensation or adjustment of the electrical
zero.

RL��
Ro + RL + 2Rco

Ri�
Ri + 2Rci
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Insulation. The case of the accelerometer acts as a mechanical and electrical
shield for the sensing elements. Sometimes it is electrically insulated from the ele-
ments but connected to the shield of the cable. If the case is grounded at the struc-
ture, the shield of the connecting cable may be left floating and should be connected
to ground at the end farthest from the accelerometer. When connecting the cable
shield at the end away from the accelerometer, care must be taken to prevent
ground loops.

Thermal Sensitivity Shift. The sensitivity of a piezoresistive accelerometer
varies as a function of temperature. This change in the sensitivity is caused by
changes in the gage factor and resistance and is determined by the temperature
characteristics of the modulus of elasticity and piezoresistive coefficient of the sens-
ing elements. The sensitivity deviations are minimized by installing compensating
resistors in the bridge circuit within the accelerometer.

Thermal Zero Shift. Because of small differences in resistance change of the
sensing elements as a function of temperature, the bridge may become slightly
unbalanced when subjected to temperature changes. This unbalance produces small
changes in the dc voltage output of the bridge.Transducers are usually compensated
during manufacture to minimize the change in dc voltage output (zero balance) of
the accelerometer with temperature. Adjustment of external balancing circuitry
should not be necessary in most applications.

Damping. The frequency response characteristics of piezoresistive accelerome-
ters having damping near zero are similar to those obtained with piezoelectric
accelerometers. Viscous damping is provided in accelerometers having relatively
low resonance frequencies to increase the useful high-frequency range of the
accelerometer and to reduce the output at resonance. At room temperature this
damping is usually 0.7 of critical damping or less.With damping, the sensitivity of the
accelerometer is “flat” to greater than one-fifth of its resonance frequency.

The piezoresistive accelerometer using fluid damping is intended for use in a lim-
ited temperature range, usually +20 to +200°F (−7 to +94°C). At high temperatures
the viscosity of the oil decreases, resulting in low damping; and at low temperatures
the viscosity increases, which causes high damping. Accordingly, the frequency
response characteristics change as a function of temperature. Piezoresistive acceler-
ometers using gas damping have a wider operating temperature range due to signifi-
cantly less viscosity variation over temperature.

FORCE GAGES AND IMPEDANCE HEADS

MECHANICAL IMPEDANCE MEASUREMENT

Mechanical impedance measurements are made to relate the force applied to a
structure to the motion of a point on the structure. If the motion and force are
measured at the same point, the relationship is called the driving-point impedance;
otherwise it is called the transfer impedance. Any given point on a structure has six
degrees of freedom: translations along three orthogonal axes and rotations around
the axes, as explained in Chap. 2. A complete impedance measurement requires
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measurement of all six excitation forces and response motions. In practice, rota-
tional forces and motions are rarely measured, and translational forces and motions
are measured in a single direction, usually normal to the surface of the structure
under test.

Mechanical impedance is the ratio of input force to resulting output velocity.
Mobility is the ratio of output velocity to input force, the reciprocal of mechanical
impedance. Dynamic stiffness is the ratio of input force to output displacement.
Receptance, or admittance, is the ratio of output displacement to input force, the
reciprocal of dynamic stiffness. Dynamic mass, or apparent mass, is the ratio of input
force to output acceleration.All of these quantities are complex and functions of fre-
quency. All are often loosely referred to as impedance measurements. They all
require the measurement of input force obtained with a force gage (an instrument
which produces an output proportional to the force applied through it). They also
require the measurement of output motion. This is usually accomplished with an
accelerometer; if velocity or displacement is the desired measure of motion, either
can be determined from the acceleration.

Impedance measurements usually are made for one of these reasons:

1. To determine the natural frequencies and mode shapes of a structure (see Chap.21)
2. To measure a specific property, such as stiffness or damping, of a material or

structure
3. To measure the dynamic properties of a structure in order to develop an analyti-

cal model of it

The input force (excitation) applied to a structure under test should be capable
of exciting the structure over the frequency range of interest.This excitation may be
either a vibratory force or a transient impulse force (shock). If vibration excitation
is used, the frequency is swept over the range of interest while the output motion
(response) is measured. If shock excitation is used, the transient input excitation and
resulting transient output response are measured.The frequency spectra of the input
and output are then calculated by Fourier analysis.

FORCE GAGES

A force gage measures the force which is being applied to a structural point. Force
gages used for impedance measurements use mostly piezoelectric transducing ele-
ments, although piezoresistive gages can also be used. A force gage is, in principle, very
similar to an accelerometer in operation.The transducing element generates an output
charge or voltage proportional to the applied force. Piezoelectric and piezoresistive
transducing elements are discussed in detail earlier in this chapter.

TYPICAL FORCE-GAGE AND IMPEDANCE-HEAD CONSTRUCTIONS

Force Gages for Use with Vibration Excitation. Force gages for use with vibra-
tion excitation are designed with provision for attaching one end to the structure and
the other end to a force driver (vibration exciter).A thin film of oil or grease is often
used between the gage and the structure to improve the coupling at high frequencies.
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Force Gages for Use with Shock Excitation. Force gages for use with shock
excitation are usually built into the head of a hammer. Excitation is provided by
striking the structure with the hammer. The hammer is often available with inter-
changeable faces of various materials to control the waveform of the shock pulse
generated. Hard materials produce a short-duration, high-amplitude shock with fast
rise and fall times; soft materials produce longer, lower-amplitude shocks with
slower rise and fall times. Short-duration shocks have a broad frequency spectrum
extending to high frequencies. Long-duration shocks have a narrower spectrum with
energy concentrated at lower frequencies.

Shock excitation by a hammer with a built-in force gage requires less equipment
than sinusoidal excitation and requires no special preparation of the structure.

Impedance Heads. Impedance heads combine a force gage and an accelerometer
in a single instrument. They are convenient for measuring driving-point impedance
because only a single instrument is required and the force gage and accelerometer
are mounted as nearly as possible at a single point.

FORCE-GAGE CHARACTERISTICS

Amplitude Response, Signal Conditioning, and Environmental Effects. The
amplitude response, signal conditioning requirements, and environmental effects asso-
ciated with force gages are the same as those associated with piezoelectric accelerom-
eters.They are described in detail earlier in this chapter.The sensitivity is expressed as
charge or voltage per unit of force, e.g., picocoulomb/newton or millivolt/lb.

Near a resonance, usually a point of particular interest, the input force may be
quite low; it is important that the force-gage sensitivity be high enough to provide
accurate readings, unobscured by noise.

Frequency Response. A force gage, unlike an accelerometer, does not have an
inertial mass attached to the transducing element. Nevertheless, the transducing ele-
ment is loaded by the mass of the output end of the force gage.This is called the end
dynamic mass. Therefore, it has a frequency response that is very similar to that of an
accelerometer, as described earlier in this chapter.

Effect of Mass Loading. The dynamic mass of a transducer (force gage,
accelerometer, or impedance head) affects the motion of the structure to which the
transducer is attached. Neglecting the effects of rotary inertia, the motion of the
structure with the transducer attached is given by

A = Ao (10.23)

where a = amplitude of motion with transducer attached
Ao = amplitude of motion without transducer attached
ms = dynamic mass of structure at point of transducer attachment in direc-

tion of sensitive axis of transducer
mt = dynamic mass of the transducer in its sensitive direction

These are all complex quantities and functions of frequency. Near a resonance the
dynamic mass of the structure becomes very small; therefore, the mass of the trans-
ducer should be as small as possible.The American National Standards Institute rec-

ms�
ms + mt
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FIGURE 10.27 Typical operating range for a laser Doppler vibrometer.
(Courtesy of Polytec Pi, Inc.)

ommends that the dynamic mass of the transducer be less than 10 times the dynamic
mass of the structure at resonance.

OPTICAL-ELECTRONIC TRANSDUCER SYSTEMS

LASER DOPPLER VIBROMETERS

The laser Doppler vibrometer (LDV) uses the Doppler shift of laser light which has
been backscattered from a vibrating test object to produce a real-time analog signal
output that is proportional to instantaneous velocity. The velocity measurement
range, typically between a minimum peak value of 0.5 μm/sec and a maximum peak
value of 10 m/sec, is illustrated in Fig. 10.27.

An LDV is typically employed in an application where other accelerometers or
other types of conventional sensors cannot be used. LDVs’ main features are

● There are no transducer mounting or mass loading effects.
● There is no built-in transverse sensitivity or other environmental effects.
● They measure remotely from nearly any standoff distance.
● There is ultra-high spatial resolution with small measurement spot (5 to 100 μm

typically).
● They can be easily fitted with fringe-counter electronics for producing absolute

calibration of dynamic displacement.
● The laser beam can be automatically scanned to produce full-field vibration pat-

tern images.
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Caution must be exercised in the installation and calibration of laser Doppler
vibrometers (LDVs). In installing such an optical-electronic transducer system,
care must be given to the location unit relative to the location of the target; in
many applications, optical alignment can be difficult. Although absolute calibra-
tion of the associated electronic system can be carried out, an absolute calibration
of the optical system usually cannot be.Thus, the calibration is usually restricted to
the range of the secondary standard accelerometer used, which is only a small por-
tion of the dynamic range of the LDV; the secondary standard accelerometer
should be calibrated against a National Institute of Standards and Technology
(NIST) traceable reference, at least once a year, in compliance with MIL-STD-
45662A. Since the application of LDV technology is based on the reflection of
coherent light scattered by the target surface, ideally this surface should be flat rel-
ative to the wavelength of the light used in the laser. If it is not, the nonuniform
surface can result in spurious reflectivity (resulting in noise) or complete loss of
reflectivity (signal dropout).

Types of Laser Doppler Vibrometers Four types of laser Doppler vibrometers
are illustrated in Fig. 10.28.

Standard (Out of Plane). The standard LDV measures the vibrational compo-
nent vz(t) which lies along the laser beam.Triaxial measurements can be obtained by
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approaching the same measurement point from three different directions.This is the
most common type of LDV system.

Scanning. An extension of the standard out-of-plane system, the scanning
LDV uses computer-controlled deflection mirrors to direct the laser to a user-
selected array of measurement points. The system automatically collects and
processes vibration data at each point; scales the data in standard displacement,
velocity, or acceleration engineering units; performs fast Fourier transform (FFT) or
other operations; and displays full-field vibration pattern images and animated
operational deflection shapes.

In-plane. A special optics probe emitting two crossed laser beams is directed at
normal incidence to the test surface and measures in-plane velocity. By rotating the
probe by 90°, vx(t) or vy(t) can be measured.

Rotational. Two parallel laser beams from an optics probe measure angular
vibration in units of degrees per second. Rotational systems are commonly used for
torsional vibration analysis.

FIBER-OPTIC REFLECTIVE DISPLACEMENT SENSOR

A fiber-optic reflective displacement
sensor measures the amount of light
normal to, and vibrating along, the opti-
cal axis of the device. The amount of
reflected light is related to the distance
between the surface and the fiber-optic
transmitting/receiving element, as illus-
trated in Fig. 10.29. The sensor is com-
posed of two bundles of single optical
fibers. One of these bundles transmits
light to the reflecting target; the other
traps reflected light and transmits it to a
detector. The intensity of the detected
light depends on how far the reflecting
surface is from the fiber-optic probe.
Light is transmitted from the bundle of

fibers in a solid cone defined by a numerical aperture. Since the angle of reflection is
equal to the angle of incidence, the size of the spot that strikes the bundle after
reflection is twice the size of the spot that hits the target initially. As the distance
from the reflecting surface increases, the spot size increases as well. The amount of
reflected light is inversely proportional to the spot size. As the probe tip comes
closer to the reflecting target, there is a position in which the reflected light rays are
not coupled to the receiving fiber bundle. At the onset of this occurrence, a maxi-
mum forms which drops to zero as the reflecting surface contacts the probe. The
output-current sensitivity can be varied by using various optical configurations.

While sensitivities approaching 1 microinch are possible, such extreme sensitiv-
ities limit the corresponding dynamic range. If the sensor is used at a distance from
the reflecting target, a lens system is required in conjunction with a fiber-optic
probe. With available lenses, the instruments have displacement measurement
ranges from 0 to 0.015 in. (0 to 0.38 mm) and 0 to 5.0 in. (0 to 12.7 cm). Resolution
typically is better than 1⁄100 of the full-scale range. The sensor is sensitive to rota-
tion of the reflecting target. For rotations of ±3° or less, the error is less than 
±3 percent.
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ELECTRODYNAMIC TRANSDUCERS

ELECTRODYNAMIC (VELOCITY COIL) PICKUPS

The output voltage of the electrodynamic pickup is proportional to the relative veloc-
ity between the coil and the magnetic flux lines being cut by the coil. For this reason

it is commonly called a velocity coil. The
principle of operation of the device is
illustrated in Fig. 10.30. A magnet has an
annular gap in which a coil wound on a
hollow cylinder of nonmagnetic material
moves. Usually a permanent magnet is
used, although an electromagnet may be
used. The pickup also can be designed
with the coil stationary and the magnet
movable. The open-circuit voltage e gen-
erated in the coil is2,3

e = −Blv(10−8) volts

where B is the flux density in gausses; l is
the total length in centimeters of the conductor in the magnetic field; and v is the rel-
ative velocity in centimeters per second between the coil and magnetic field. The
magnetic field decreases sharply outside the space between the pole pieces; there-
fore, the length of coil wire outside the gap generates only a very small portion of the
total voltage.

One application of the electrodynamic principle is the velocity-type seismic
pickup. Usually the pickup is used only at frequencies above its natural frequency,
and it is not very useful at frequencies above several thousand hertz. The sensitivity
of most pickups of this type is quite high, particularly at low frequencies where their
output voltage is greater than that of many other types of pickups. The coil imped-
ance is low even at relatively high frequencies, so that the output voltage can be
measured directly with a high-impedance voltmeter. This type of pickup is designed
to measure quite large displacement amplitudes.

LINEAR VARIABLE DIFFERENTIAL TRANSFORMER (LVDT) PICKUPS

The output of a linear variable differential transformer (LVDT) depends on the mutual
inductance between a primary and a secondary coil. It is an electromechanical
device that produces an electrical output proportional to the displacement of a sep-
arate movable core. The device consists of a primary coil and two secondary coils
symmetrically spaced on a cylindrical form. A free-moving, rod-shaped magnetic
core inside the coil assembly provides a path for the magnetic flux linking the coils.
See Fig. 10.31A. When the primary coil is energized by an external ac source, voltages
are induced in the two secondary coils. These are connected series opposing so the
two voltages are of opposite polarity. Therefore, the net output of the transducer is
the difference between these voltages, which is zero when the core is at the center or
null position. When the core is moved from the null position, the induced voltage in
the coil toward which the core is moved increases, while the induced voltage in the
opposite coil decreases.This action produces a differential voltage output that varies
linearly with changes in core position. See Fig. 10.31B.
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FIGURE 10.31 Operation of a linear variable differential transformer (LVDT). (A) Cross section of
an LVDT showing the primary and secondary coils and the moving core. (B) The phase of this output
voltage changes abruptly by 180° as the core in moved from one side of null to the other.The core must
always be fully within the coil assembly during operation of the LVDT; otherwise, gross nonlinearity
will occur. (Courtesy of Measurement Specialties Inc.)

LVDT is used for low-frequency measurements. The sensitivity varies with the
carrier frequency of the current in the primary coil. The carrier frequency should be
at least 10 times the highest frequency of the motion to be measured. Modern LVDT
has a carrier frequency at 10 kHz and a usable bandwidth from 0 to 1 kHz.10

CAPACITANCE-TYPE TRANSDUCERS

DISPLACEMENT TRANSDUCER (PROXIMITY PROBE)

The capacitance-type transducer is basically a displacement-sensitive device. Its out-
put is proportional to the change in capacitance between two plates caused by the
change of relative displacement between them as a result of the motion to be mea-
sured. Appropriate electronic equipment is used to generate a voltage correspon-
ding to the change in capacitance.

The capacitance-type displacement transducer’s main advantages are (1) its sim-
plicity in installation, (2) its negligible effect on the operation of the vibrating system
since it is a proximity-type pickup which adds no mass or restraints, (3) its extreme
sensitivity, (4) its wide displacement range, due to its low background noise, and (5)
its wide frequency range, which is limited only by the electric circuit used.

The capacitance-type transducer often is applied to a conducting surface of a
vibrating system by using this surface as the ground plate of the capacitor. In this
arrangement, the insulated plate of the capacitor should be supported on a rigid
structure close to the vibrating system. Figure 10.32A shows the construction of a
typical capacitance pickup; Fig. 10.32B, C, D, and E show a number of possible
methods of applying this type of transducer. In each of these, the metallic vibrating
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system is the ground plate of the capacitor. Where the vibrating system at the point
of instrumentation is an electrical insulator, the surface can be made slightly con-
ducting and grounded by using a metallic paint or by rubbing the surface with
graphite.

The maximum operating temperature of the transducer is limited by the insula-
tion breakdown of the plate supports and leads. Bushings made of alumina are com-
mercially available and provide adequate insulation at temperatures as high as
2000°F (1093°C).

VARIABLE-CAPACITANCE-TYPE ACCELEROMETER

Silicon micromachined variable-capacitance technology is utilized to produce
miniaturized accelerometers suitable for measuring low-level accelerations (2g to
100g) and capable of withstanding high-level shocks (5000g to 20,000g).

Acceleration sensing is accomplished by using a half-bridge variable-capacitance
microsensor. The capacitance of one circuit element increases with applied acceler-
ation, while that of the other decreases. With the use of signal conditioning, the
accelerometer provides a linearized high-level output.
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pickup for torsional vibration.
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In the following example, the microsensor is fabricated in an array of three
micromachined single-crystal silicon wafers bonded together using an anodic

bonding process (see exploded view in
Fig. 10.33). The top and bottom wafers
contain the fixed capacitor plates (the
lid and base, respectively), which are
electrically isolated from the middle
wafer. The middle wafer contains the
inertial mass, the suspension, and the
supporting ringframe. The stiffness of
the flexure system is controlled by
varying the shape, cross-sectional
dimensions, and number of suspension
beams. Damping is controlled by vary-
ing the dimensions of grooves and ori-
fices on the parallel plates. Overrange
protection is extended by adding over-
travel stops.

The full-scale displacement of the
seismic mass of the microsensor ele-
ment is slightly more than 10 micro-
inches. To detect minor capacitance

changes in the microsensor due to acceleration, high-precision supporting elec-
tronic circuits are required. One approach applies a triangle wave to both capaci-
tive elements of the microsensor. This produces currents through the elements
which are proportional to their capacitances. A current detector and subtractor
full-wave rectifies the currents and outputs their difference. An operational ampli-
fier then converts this current difference to an output voltage signal. A high-level
output is provided that is proportional to input acceleration.
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CHAPTER 11
CALIBRATION OF SHOCK AND

VIBRATION TRANSDUCERS

Jeffrey Dosch

INTRODUCTION

This chapter describes various methods of calibrating shock and vibration transduc-
ers, commonly called vibration pickups. The objective of calibrating a transducer is
to determine its sensitivity or calibration factor, as defined below. The chapter is
divided into three major parts, which discuss comparison methods of calibration,
absolute methods of calibration, and calibration methods that employ high acceler-
ation and shock. Field calibration techniques are described in Chap. 15.

PICKUP SENSITIVITY, CALIBRATION FACTOR,

AND FREQUENCY RESPONSE

As defined in Chap. 10, the sensitivity of a vibration pickup is the ratio of electrical
output to mechanical input applied along a specified axis.1,2 The sensitivity of all
pickups is a function of frequency, containing both amplitude and phase informa-
tion, as illustrated in Fig. 11.1, and therefore is usually a complex quantity. If the sen-
sitivity is practically independent of frequency over a range of frequencies, the value
of its magnitude is referred to as the calibration factor for that range, but it is speci-
fied at a discrete frequency.The phase component of the sensitivity function likewise
has a constant value in that range of frequencies, usually equal to zero or 180°, but it
may also be proportional to frequency, as explained in Chap. 10.

The frequency response of a pickup is shown by plotting the magnitude and phase
components of its sensitivity versus frequency. This information is usually presented
relative to the value of sensitivity at a reference frequency within the flat range. A
preferred frequency, internationally accepted, is 160 Hz.

Displacements are usually expressed as single-amplitude (peak) or double-
amplitude (peak-to-peak) values, while velocities are usually expressed as peak,
root-mean-square (rms), or average values. Acceleration and force generally are
expressed as peak or rms values. The electrical output of the vibration pickup may
be expressed as peak, rms, or average value.The sensitivity magnitude or calibration
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factor is commonly stated in similarly expressed values, i.e., the numerator and
denominator are both peak or both rms values. Examples of typical sensitivity spec-
ifications for an accelerometer: 2 pC/m/s2, 10 mV/m/s2, 5 mV/g (where C is the sym-
bol for coulomb, V is the symbol for volt, and g is the standard acceleration due to
gravity equal to 9.80665 m/s2). For some special applications it may be desirable to
express the sensitivity in mixed values, such as rms voltage per peak acceleration.

CALIBRATION TRACEABILITY

In calibrating an instrument, one measures the instrument’s error relative to a refer-
ence which is traceable to the national standard of a country.A calibration is said to be
traceable4 to a national or international standard if it can be related to the standard
through an unbroken chain of comparisons—all having stated uncertainties. In the
U.S.A., for example, national vibration standards are maintained at the National Insti-
tute of Standards and Technology in Gaithersburg, Maryland. A number of other
national metrology laboratories having known capabilities for maintaining national
vibration standards are listed in Table 11.1. Countries whose national laboratories do
not provide a national vibration standard may belong to a regional international asso-
ciation, such as NORAMET (North American Metrology Cooperation), EUROMET
(European Metrology Cooperation), or OIML (Organization for Legal Metrology)
that can assist transducer manufacturers in setting up steps necessary for establishing
traceability to a national standard.

Vendors of transducers must be able to show that calibrations of their instru-
ments are traceable to a national standard by means of calibration reports stating

11.2 CHAPTER ELEVEN

–180°
0.05 0.1 0.2 0.3 0.4 0.5

PROPORTION OF MOUNTED RESONANCE FREQUENCY fm

1 21.5 543

–150°

–120°

R
E

LA
T

IV
E

 P
H

A
S

E
 R

E
S

P
O

N
S

E

–90°
AMPLITUDE (SENSITIVITY)

RESPONSE

PHASE RESPONSE

–60°

–30°

0°

–30

–20

–10

R
E

LA
T

IV
E

 A
M

P
LI

T
U

D
E

 R
E

S
P

O
N

S
E

0

10

20

dB

30

FIGURE 11.1 Pickup amplitude and phase response as functions of frequency. (After M. Ser-
ridge and T.R. Licht.3)



the value(s) of sensitivity, measurement uncertainty, environmental conditions, and
identification of the standard(s) used in the calibration procedure. Depending on
the application, there may be one or more links to the national standard.

Primary and Secondary Standards. Primary standards,5,6 maintained at national
metrology institutes, are derived from absolute measurements of the transducer’s sen-
sitivity, measured in terms of seven basic units. For example, the absolute measure-
ment of “speed” must be made in terms of measurements of distance and time, not by
a speedometer. Thus, the word absolute implies nothing about precision or accuracy.
An example of a laboratory setup for the calibration of primary standard accelerom-
eters, derived from absolute measurements, is shown in Fig. 11.2.7 A vibration exciter
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TABLE 11.1 National Standards Laboratories Responsible for the Calibration 
of Vibration Pickups

Institution Laboratory Location Country

CSIRO Natl. Measurement Laboratory Lindfield Australia
INMETRO Laboratório de Vibrações Rio de Janeiro Brazil
NRC-CNRC Inst. Natl. Meas. Stds. Ottawa Canada
NIM Vibrations Laboratory Beijing China
CMU Primary Stds. of Kinematics Prague Czech Repub.
B&K Danish Prim. Lab. for Acoustics Naerum Denmark
BNM CEA/CESTA Belin-Beliet France
PTB Fachlabor. Beschleunigung Braunschweig Germany
IMGC Sezione Meccanica Torino Italy
NRLM Mechanical Metrology Dept. Tsukuba Japan
KSRI Division of Appl. Metrology Daedeog Danji Rep. of Korea
NMC SIRIM Berhad Malaysia
CENAM Div. Acustica y Vibraciones Queretaro Mexico
DSIR Measurement Stds. Laboratory Lower Hutt New Zealand
VNIIM Mendeleyev Inst. for Metrology St. Petersburg Russia
ITRI Center for Measurement Stds. Hsinchu Taiwan
NIST Manufacturing Metrology Div. Gaithersburg U.S.A.

AIRBORNE
ACCELERATION EXCITER

INTERFEROMETER

INDICATING
INSTRUMENT
(STANDARD)

SIGNAL-
PROCESSING

SYSTEM

DUMMY
MASS

LASER

LIGHT
DETECTOR

ACCELEROMETER
STANDARD

FIGURE 11.2 Primary (absolute) calibration of an accelerometer standard using laser interferom-
etry. (After von Martens.7)



generates sinusoidal motion which is measured by a Michelson interferometer
(described later in this chapter). The vibration is applied to the base of the standard
accelerometer whose output is measured. A dummy mass, mounted on its top sur-
face, simulates the conditions when this standard accelerometer is used to calibrate
a secondary standard 8 accelerometer by the comparison method described in the
next section. Secondary standards (also referred to as transfer standards or working
standards) are maintained at various government laboratories and industrial labora-
tories. A secondary standard accelerometer may be calibrated either from absolute
measurements or from a comparison with a primary standard accelerometer. Such
secondary standards are usually used for purposes of comparisons of calibrations
between laboratories or for checking production and field units.

COMPARISON METHODS OF CALIBRATION

A rapid and convenient method of measuring the sensitivity of a vibration pickup to
be tested is by direct comparison of the pickup’s electrical output with that of a sec-
ond pickup (used as a “reference” standard) that has been calibrated by one of the
methods described in this chapter. A comparison method is used in most shock and
vibration laboratories, which periodically send their standards to a primary stan-
dards laboratory for recalibration. This procedure should be followed on a yearly
basis in order to establish a history of the accuracy and quality of its reference stan-
dard pickup.

In this method of calibration the two
pickups usually are mounted back-to-
back on a vibration exciter as shown in
Fig. 11.3. It is essential to ensure that
each pickup experiences the same
motion. Any angular rotation of the
table should be small to avoid any dif-
ference in excitation between the two
pickup locations. The error due to rota-
tion may be reduced by carefully locat-
ing the pickups firmly on opposite faces
with the center of gravity of the pickups
located at the center of the table. Rela-
tive differences in pickup excitation may
be observed by reversing the pickup
locations and observing if the voltage
ratio is the same for both positions.

Calibration by the comparison method is limited to the range of frequencies and
amplitudes for which the reference standard pickup has been previously calibrated.
If both pickups are linear, the sensitivity of the test pickup can be calculated in both
magnitude and phase from

St = Sr (11.1)

where St = sensitivity of test pickup
Sr = sensitivity of reference standard pickup
et = output voltage from test pickup
er = output voltage from reference standard pickup

et�
er
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FIGURE 11.3 Comparison method of calibra-
tion: Pickup 2 is calibrated against Pickup 1 (the
reference standard).The two pickups may be ex-
cited by any of the means described in this chap-
ter. (After ANSI Standard S2.2-1959, R 2006.1)



Several calibration methods described below are variations on the implementation
of Eq. (11.1); they differ mainly in the manner of vibration excitation.

USING THE COMPARISON METHOD

A simple and convenient way of performing a comparison calibration is to fix the
test pickup and reference standard pickup so they experience identical motion, as in
Fig. 11.3.Then, set the frequency of the vibration exciter at a desired value, adjust the
amplitude of vibration of the vibration exciter to a desired value, and then compare
the electrical outputs of the pickups. Often, instead of making a comparison at a
fixed frequency, a graphical plot of the sensitivity versus frequency is obtained by
incorporating a swept-frequency signal generator in the calibration system.

RANDOM-EXCITATION-TRANSFER-FUNCTION METHOD

The use of random-vibration-excitation and transfer-function analysis techniques
can provide quick and accurate comparison calibrations.9 The reference standard
pickup and the test pickup are mounted back-to-back on a suitable vibration exciter.
Their outputs are usually fed into a spectrum analyzer through a pair of low-pass
(antialiasing) filters. The bandwidth of the random signal which drives the exciter is
determined by settings of the analyzer.

This method provides a nearly continuous calibration over a desired frequency
spectrum, with the resulting sensitivity function having both amplitude and phase
information. Since purely sinusoidal motion is not a requirement as in the other cal-
ibration methods, this lessens the requirements for the power amplifier and exciter
to maintain low values of harmonic distortion. A very useful measure of process
quality is obtained by computing the input/output coherence function, which
requires knowledge of the input and output power spectra, the cross-power spec-
trum, and the transfer function.

CALIBRATION BY ABSOLUTE METHODS

RECIPROCITY METHOD

The reciprocity calibration method is an absolute means for calibrating vibration
exciters that have a velocity coil or reference accelerometer.This method relates the
pickup sensitivity to measurements of voltage ratio, resistance, frequency, and mass.
For this method to be applicable, it is necessary that the vibration exciter system be
linear (e.g., that the displacement, velocity, acceleration, and current in the driver
coil each increase linearly with force and driver-coil voltage). The reciprocity
method is used chiefly with electrodynamic exciters11 but also with piezoelectric
vibration exciters.11

The reciprocity method is applied only under controlled laboratory condi-
tions. Many precautions must be taken, and the process is time-consuming. Sev-
eral variations of the basic approach have been developed at national standards
laboratories.12,13 The method described here has been used at the National Insti-
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tute of Standards and Technology.14–17 The method consists of two laboratory
experiments:

1. The measurement of the transfer admittance between the exciter’s driver coil
and the attached velocity coil or accelerometer.

2. The measurement of the voltage ratio of the open-circuit velocity coil or
accelerometer and the driving coil while the exciter is driven by a second exter-
nal exciter. The use of a piezoelectric accelerometer is assumed here. The electri-
cal connections for the transfer admittance and voltage ratio measurements are
shown in Fig. 11.4.
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FIGURE 11.4 Transfer-admittance and voltage-ratio-measurement circuit connections
for the reciprocity calibration method in the Levy-Bouche realization.12

The relationship defining the transfer admittance is

Y = (11.2)

where Y = transfer admittance
e12 = voltage generated in standard accelerometer and amplifier

I = current in driver coil

and the bold letters denote phasor (complex) quantities.The current is determined by
measuring the voltage drop across a standard resistor.The phase, ψY, of Y is measured
with a phase meter having an uncertainty of �0.1° or better. Transfer admittance
measurements are made with a series of masses attached, one at a time, to the table

I
�
e12



of the exciter.Also, a zero-load transfer admittance measurement is made before and
after attaching each mass. This zero-load measurement is denoted by Y0. Using the
measured values of Y and Y0, graphs of the real and imaginary values of the ratio

Tn = (11.3)

are plotted versus Mn for each frequency, where Mn is the value of the mass attached
to the table.The zero intercepts, Ji and Jr, of the resulting nominally straight lines and
their slopes, Qi and Qr, are computed by a weighted least-squares method.10 The val-
ues of Y0 used in the calculations are obtained by averaging the values of the Y0

measurements before and after each measurement of Y using different masses.
These computed values are used in determining the sensitivity of the standard.

The ratio of two voltages, measured while the exciter is driven with an external
exciter, is given by

R = (11.4)

where e14 = voltage generated in standard accelerometer and amplifier, and e15 =
open-circuit voltage in driving coil.

After R, Jr, Ji, Qr, and Qi have been determined for a number of frequencies, f, the
sensitivity of the exciter is calculated from the following relationship:10

S = � 1/2�1 +  (11.5)

where j = unit imaginary vector
J = Jr + jJi

Q = Qr + jQi

M =

The sensitivity of the exciter is, therefore, determined from the measured quantities
Q, J, T, and f and from the masses Mn which are attached to the exciter table. The
sensitivity as computed from Eq. (11.5) has the units of volts per meter per second
squared if the values of the measurements are in the SI system. If the masses Mn are
not in kilograms, appropriate conversion factors must be applied to the quantities J,
Q, and M. A commonly used engineering formula,10 with the mass expressed in
pounds and the sensitivity in millivolts per g, is

S = 2635 � 1/2
(11.6)

which also assumes that MQ/J � 1, a condition usually satisfied in practice but which
should be verified experimentally.The use of a computer greatly facilitates the appli-
cation of the reciprocity calibration process.

Assuming the errors to be uncorrelated, a typical estimate of uncertainty
expected from a reciprocity calibration method is ±0.5 percent in the frequency
range 100 to 1000 Hz. This is a twofold improvement over the earlier systems.16

The critical component in a reciprocity-based calibration system is the vibration
exciter. Electrodynamic exciters utilizing an air bearing are generally superior to
other types, for this application.

RJ
�
jf

J(Y − Y0)��
1 − Q(Y − Y0)

MQ
�

J
RJ
�
j2πf

e14�
e15

Mn�
Y − Y0
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CALIBRATION USING THE EARTH’S GRAVITATIONAL FIELD

The earth’s gravitational field provides a convenient means of applying a small con-
stant acceleration equal to the local value for gravitational deceleration gl. It is par-
ticularly useful in calibrating accelerometers whose frequency range extends down
to 0 Hz. A 2g l change in acceleration may be obtained by first aligning the sensitiv-
ity axis of the transducer in one direction of the earth’s gravitational field, as shown
in Fig. 15.5A, and then inverting it so the sensitive axis is aligned in the opposite
direction. This method of calibration is particularly useful in field work.

Accelerations in the 1–10g range can be generated by several methods, which have
been largely replaced by the structural gravimetric calibrator described in the next sec-
tion. In the tilting-support calibrator1 the pickup is fastened to one end of an arm
attached to a platform. The arm may be set at any angle between 0° and 180° relative
to the vertical, thus yielding different values of acceleration.The pendulum calibrator1

generates transient accelerations as great as 10g for a duration of about one second. In
the rotating-table calibrator 18,19 the disk on which the test pickup is mounted rotates at
a uniform angular rate about a horizontal axis in such a way that the pickup’s axis of
sensitivity rotates in a vertical plane.This method makes it possible to obtain both the
static and dynamic responses of the pickup in the same test setup.

Structural-Gravimetric Calibration. This technique provides a simple, robust, and
low-cost method of calibrating pickups.20,21 The structural-gravimetric-calibration (SGC)
method is applicable over a broad frequency range because it relies on a quartz force
transducer as the reference pickup and the behavior of the simplest of structures (i.e., a
mass behaving as a rigid body). It references the acceleration of gravity and allows the
measurement of sensitivity magnitude and phase. The results of calibration using this
method agree within a fraction of 1 percent with those obtained by laser interferometry
and reciprocity methods.The following steps are the procedure of SGC method:

Step 1. Determine the acceleration sensitivity Sr of the reference force transducer.
Mount the reference force transducer, reference mass (can be built-in or external),
and the test pickup to be calibrated on a drop-test fixture, as shown in Fig. 11.5. (For
use at higher frequencies it is important to make the reference mass small in size in
order to satisfy the rigid-body assumption.) Then subject the mass and the two pick-
ups to a free fall of 1gl by striking the junction of line, which causes the line to relax
momentarily and impart a step-function gravitational acceleration to the assembly
by allowing it to fall freely. Measure the output of the reference force transducer, eg;
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FIGURE 11.5 Gravimetric free-fall calibrator for scaling reference force gage. (After D. Corelli
and R. W. Lally.20)



in order to reduce the effect of measurement noise, curve fitting may be used to esti-
mate the step value. Equation (11.7) shows how the sensitivity of the reference force
transducer is related to the other parameters of the system.

Sr � SrfM � M � (11.7)

where Sr = acceleration sensitivity of the reference force transducer, in mV/ms�2

Srf = force sensitivity of the reference force transducer, in mV/N
M = total mass on the force transducer, in kg
eg = output of the force transducer, in mV
gl = local gravitational acceleration in ms�2

Step 2. Measure the voltage ratio et /er . Remove the reference force transducer,
reference mass, and the pickup being calibrated from the drop-test fixture; then
mount them on the vibration exciter, as shown in Fig. 11.6. By measuring the trans-
fer function et /er (i.e., the ratio of the voltage output of the signal conditioner from
the test pickup to the voltage output of the signal conditioner from the reference
force transducer, shown in Fig. 11.6) the frequency response of the test pickup can be

eg
�
gl

eg
�
glM
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FIGURE 11.6 System configuration for frequency response calibration by measuring acceleration-
to-force ratio.

measured over 0.1 to 100,000 Hz, depending upon frequency range of the vibration
exciter and signal-to-noise ratio of the system. For use at low frequencies, the dis-
charge time constant of the reference force transducer should be ten times greater
than that of the test pickup.

Step 3. Calculate the sensitivity St of the test pickup. If the reference force trans-
ducer and the test pickup are linear, the acceleration sensitivity of the test pickup St,
expressed in the same units as Sr, can be calculated from Eq. 11.1. If either velocity
or displacement sensitivity of the test pickup is required, it can be obtained by divid-
ing the acceleration sensitivity by 2�f or (2�f )2, respectively.

CENTRIFUGE CALIBRATOR

A centrifuge provides a convenient means of applying constant acceleration to a
pickup. Simple centrifuges can be obtained readily for acceleration levels up to 100g



981 m/s2and can be custom-made for use at much higher values because of the light
load requirement by this application.They are particularly useful in calibrating recti-
linear accelerometers whose frequency range extends down to 0 Hz and whose sensi-
tivity to rotation is negligible. Centrifuges are mounted so as to rotate about a vertical
axis. Cable leads from the pickup, as well as power leads, usually are brought to the
table of the centrifuge through specially selected low-noise slip rings and brushes.

To perform a calibration, the accelerometer is mounted on the centrifuge with its
axis of sensitivity carefully aligned along a radius of the circle of rotation. If the cen-
trifuge rotates with an angular velocity of ω rad/sec, the acceleration a acting on the
pickup is

a = ω2r (11.8)

where r is the distance from the center of gravity of the mass element of the pickup
to the axis of rotation. If the exact location of the center of gravity of the mass in the
pickup is not known, the pickup is mounted with its positive sensing axis first out-
ward and then inward; then the average response is compared with the average
acceleration acting on the pickup as computed from Eq. (11.8), where r is taken as
the mean of the radii to a given point on the pickup case. The calibration factor is
determined by plotting the output e of the pickup as a function of the acceleration a
given by Eq. (11.8) for successive values of ω and then determining the slope of the
straight line fitted through the data.

INTERFEROMETER CALIBRATORS

A primary (absolute) method of calibrating an accelerometer using standard laser
interferometry is shown in Fig. 11.2.All systems in the following category of calibra-
tors consist of three stages: modulation, interference, and demodulation. The differ-
ences are in the specific type of interferometer that is used (for example, a
Michelson or Mach-Zehnder) and in the type of signal processing, which is usually
dictated by the nature of the vibration. The vibratory displacement to be measured
modulates one of the beams of the interferometer and is consequently encoded in
the output signal of the photodetector in both magnitude and phase.

Figure 11.7 shows the principle of operation of the Michelson interferometer.
One of the mirrors, D in Fig. 11.7A, is attached to the plate on which the device to be
calibrated is mounted. Before exciting vibrations, it is necessary to obtain an inter-
ference pattern similar to that shown in Fig. 11.7B. The relationship underlying the
illustrations to be presented is the classical interference formula for the time aver-
age intensity I of the light impinging on the photodetector surface.22,23

I = A + B cos 4πδ/λ (11.9)

where A and B are system constants depending on the transfer function of the detec-
tor, the intensities of the interfering beams, and alignment of the interferometer.The
vibration information is contained in the quantity δ, 2δ being the optical-path differ-
ence of the interfering beams. The absoluteness of the measurement comes from λ,
the wavelength of the illumination, in terms of which the magnitude of vibratory dis-
placement is expressed. Velocity and acceleration values are obtained from dis-
placement measurements by differentiation with respect to time.

Fringe-Counting Interferometer. An optical interferometer is a natural instru-
ment for measuring vibration displacement.The Michelson and Fizeau interferome-

11.10 CHAPTER ELEVEN



ters are the most popular configurations. A modified Michelson interferometer is
shown in Fig. 11.8.24 A corner cube reflector is mounted on the vibration-exciter
table. A helium-neon laser is used as a source of illumination. The photodiode and
its amplifier must have sufficient bandwidth (as high as 10 MHz) to accommodate
the Doppler frequency shift associated with high velocities. An electrical pulse is
generated by the photodiode for each optical fringe passing it. The vibratory dis-
placement amplitude is directly proportional to the number of fringes per vibration
cycle. For sinusoidal motion, the peak acceleration can be calculated from

a = (11.10)

where λ = wavelength of light
ν = number of fringes per vibration cycle
f = vibration frequency

Interferometric fringe counting is useful for vibration-displacement measurement in
the lower frequency ranges, perhaps to several hundred hertz depending on the
characteristics of the vibration exciter.25,26 At the low end of the frequency spectrum,
conventional procedures and commercially available equipment are not able to
meet all the present requirements. Low signal-to-noise ratios, cross-axis components
of motion, and zero-drifts are some of the problems usually encountered. In re-
sponse to those restrictions an electrodynamic exciter for the frequency range 0.01
to 20 Hz has been developed. It features a maximum displacement amplitude of 0.5
meter, a transverse sensitivity less than 0.01 percent, and a maximum uncorrected
distortion of 2 percent. These characteristics have been achieved by means of a spe-
cially designed air bearing, an electro-optic control, and a suitable foundation.

Figure 11.9 shows the main components of a computer-controlled low-frequency
calibration system which employs this exciter. Its functions are (1) generation of sinu-
soidal vibrations, (2) measurement of rms and peak values of voltage and charge, (3)
measurement of displacement magnitude and phase response, and (4) control of non-
linear distortion and zero correction for the moving element inside a tubelike mag-
net. Position of the moving element is measured by a fringe-counting interferometer.
Uncertainties in accelerometer calibrations using this system have been reduced to
about 0.25 to 0.5 percent, depending on frequency and vibration amplitude.

λνπ2f 2

�
2
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FIGURE 11.7 The principle of operation of a Michelson interferometer: (A) Optical system.
(B) Observed interference pattern. (C) Variation of the light intensity along the X axis.

(A) (C)

(B)



Fringe-Disappearance Interferometer. The phenomenon of the interference
band disappearance in an optical interferometer can be used to establish a precisely
known amplitude of motion. Figure 11.7 shows the principle of operation of the
Michelson interferometer employed in this technique. One of the mirrors D, in Fig.
11.7A, is attached to the mounting plate of the calibrator. Before exciting vibrations
it is necessary to obtain an interference pattern similar to that shown in Fig. 11.7B.

When the mirror D vibrates sinusoidally28 with a frequency f and a peak dis-
placement amplitude d, the time average of the light intensity I at position x, mea-
sured from a point midway between two dark bands, is given by

I = A + BJ0 � 	 cos � 	 (11.11)

where J0 = zero-order Bessel function of the first kind
A and B = constants of measuring system

h = distance between fringes, as shown in Fig. 11.11B and C

For certain values of the argument, the Bessel function of zero order is zero; then the
fringe pattern disappears and a constant illumination intensity A is present. Elec-
tronic methods for more precisely establishing the fringe disappearance value of the
vibratory displacement have been successfully used at the National Institute of Stan-
dards and Technology15,29 and elsewhere. The latter method has been fully auto-
mated using a desktop computer.

The use of piezoelectric exciters is common for high-frequency calibration of
accelerometers.30 They provide pistonlike motion of relatively high amplitude and

2πx
�

h
4πd
�

λ

11.12 CHAPTER ELEVEN

FIGURE 11.8 Typical laboratory setup for interferometric measurement of vibratory
displacement by fringe counting. (After R. S. Koyanagi.24)



FIGURE 11.9 Simplified block diagram of a low-frequency vibration standard. (After H. J. von Martens.27)
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are structurally stiff at the lower frequencies, where displacement noise is bother-
some. When electrodynamic exciters are used with fringe disappearance methods, it
is generally necessary to stiffen the armature suspensions to reduce the background
displacement noise.

Signal-Nulling Interferometer. This method, although mathematically similar to
fringe disappearance, relies on finding the nulls in the fundamental frequency compo-
nent of the signal from a photodetector.9,23,31 The instrumentation is, therefore, quite
different, except for the interferometer. One successful arrangement is shown in Fig.
11.10. Laboratory environmental restrictions are much more severe for this method.

FIGURE 11.10 Interferometric measurement of displacement d as given by
J1(4πd/λ) = 0.

The interferometer apparatus should be well-isolated to ensure stability of the pho-
todetector signals.Air currents in the room may contribute to noise problems by phys-
ically moving the interferometer components and by changing the refractive index of
the air.An active method of stabilization has also been successfully employed.32

To make displacement amplitude measurements, a wave analyzer tuned to the
frequency of vibration can be used to filter the photodetector signal.The filtered sig-
nal amplitude will pass through nulls as the vibration amplitude is increased, accord-
ing to the following relationship:

I = 2BJ1� 	 (11.12)

where J1 is the first-order Bessel function of the first kind, and the other terms are as
previously defined. The signal nulls may be established using a wave analyzer. The
null amplitude will generally be 60 dB below the maximum signal level of the pho-
todetector output.

The accelerometer output may be measured by an accurate voltmeter at the
same time that the nulls are obtained. The sensitivity is then calculated by dividing
the output voltage by the displacement. Because the filtered output of the photode-
tector is a replica of the vibrational displacement, a phase calibration of the pickup
can also be obtained with this arrangement.

4πd
�

λ
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Heterodyne Interferometer. A homodyne interferometer is an interferometer in
which interfering light beams are created from the same beam by a process of beam
splitting. All illumination is at the same optical frequency. In contrast, in the hetero-
dyne interferometer,33 light from a laser-beam source containing two components,
each with a unique polarization, is separated into (1) a measurement beam and (2) a
reference beam by a polarized beam splitter. When the mounting surface of the
device under test is stationary, the interference pattern impinging on the photode-
tector produces a signal of varying intensity at the beat frequency of the two beams.
When surface moves, the frequency of the measurement beam is shifted because of
the Doppler effect, but that of the reference beam remains undisturbed. Thus, the
photodetector output can be regarded as a carrier that is frequency modulated by
the velocity waveform of the motion.

The main advantages of the heterodyne interferometer are greater measurement
stability and lower noise susceptibility. Both advantages occur because displacement
information is carried on ac waveforms; hence, a change in the average value of
beam intensity cannot be interpreted as motion. Digitization and subsequent phase
demodulation of the interferometer output reduce measurement uncertainties.34

This can yield significant improvements in calibration results at high frequencies,
where the magnitude of displacement typically is only a few nanometers. As in the
case of homodyning, variations of the heterodyning technique have been developed
to meet specific needs of calibration laboratories. Reference 35 describes an
accelerometer calibration system, applicable in the frequency range from 1 mHz to
25 kHz and at vibration amplitudes from 1 nanometer to 10 meters. The method
requires the acquisition of instantaneous position data as a function of the phase
angle of the vibration signal and the use of Fourier analysis.

HIGH-ACCELERATION METHODS 

OF CALIBRATION

Some applications in shock or vibration measurement require that high amplitudes
be determined accurately. To ensure that the pickups used in such applications meet
certain performance criteria, calibrations must be made at these high amplitudes.
The following methods are available for calibrating pickups subject to accelerations
in excess of several hundred g.

SINUSOIDAL-EXCITATION METHODS

The use of a metal bar, excited at its fundamental resonance frequency, to apply
sinusoidal accelerations for calibration purposes has several advantages: (1) an
inherently constant frequency, (2) very large amplitudes of acceleration (as much as
4000g, and (3) low waveform distortion. A disadvantage of this type of calibrator is
that calibration is limited to the resonance frequencies of the metal bar.

The bar can be supported at its nodal points, and the pickup to be calibrated can
be mounted at its mid-length location. The bar can be energized by a small electro-
magnet or can be self-excited. Acceleration amplitudes of several thousand g can
thus be obtained at frequencies ranging from several hundred to several thousand
hertz.The bar also may be calibrated by clamping it at its midpoint and mounting the
pickup at one end.36 The displacement at the point of attachment of the pickup can be
measured optically since displacements encountered are adequately large.
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The resonant-bar calibrator shown
in Fig. 11.11 is limited in amplitude 
primarily by the fatigue resistance of
the bar.36 Accelerations as much as
500g have been attained using alu-
minum bars without special designs.
Peak accelerations as large as 4000g
have been attained using tempered
vanadium steel bar. The bar is mounted
at its mid-length on a conventional
electrodynamic exciter. The acceler-
ometer being calibrated is mounted at
one end of the bar, and an equivalent
balance weight is mounted at the oppo-
site end in the same relative position.

Axial resonances of long rods have
been used to generate motion for accu-
rate calibration of vibration pickups
over a frequency range from about 1 

to 20 kHz and at accelerations up to 12,000g.37,38 The use of axially driven rods has
an advantage over the beams discussed above in that no bending or lateral motion
is present. This minimizes errors from the pickup response to such unwanted
modes and also from the direct measurement of the displacement having nonrec-
tilinear motion.

SHOCK-EXCITATION METHODS

There are several methods by which a sudden velocity change may be applied to
pickups designed for high-frequency acceleration measurement, for example, the
ballistic pendulum, drop-test, and drop-ball calibrators, described below. Any
method which generates a reproducible velocity change as function of time can be
used to obtain the calibration factor.1 Impact techniques can be employed to
obtain calibrations over an amplitude range from a few g to over 100,000g. An
example of the latter is the Hopkinson bar, in which the test pickup is mounted at
one end and stress pulses are generated by an air gun firing projectiles impacting
at the other end, described below.

An accurate determination of shock performance of an accelerometer depends
not only upon the mechanical and electrical characteristics of the test pickup but
also upon the characteristics of the instrumentation and recording equipment. It is
often best to perform system calibrations to determine the linearity of the test
pickup as well as the linearity of the recording instrumentation in the range of
intended use. Several of the following methods make use of the fact that the veloc-
ity change during a transient pulse is equal to the time integral of acceleration:

v = �t2

t1

a dt (11.13)

where the initial or final velocity is taken as reference zero, and the integration is
performed to or from the time at which the velocity is constant. If the output closely
resembles a half-sine pulse, the area is equal to approximately 2h(t2 − t1)/π, where h
is the height of the pulse, and (t2 − t1) is its width.

FIGURE 11.11 Resonant-bar calibrator with
the pickup mounted at end and a counterbalanc-
ing weight at the other. (After E. I. Feder and 
A. M. Gillen.36)
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In this section, several methods for applying known velocity changes v to a
pickup are presented. The voltage output e and the acceleration a of the test pickup
are related by the following linear relationship:

S = (11.14)

where S is the pickup calibration factor.
After Eq. (11.14) is substituted into Eq. (11.13), the calibration factor for the test

pickup can be expressed as

S = (11.15)

where

A = �t2

t1

e dt (11.16)

the area under the acceleration-versus-time curve.
The calibration factor assumes that no significant spectral energy exists beyond

the frequency region in which the test pickup has nominally constant complex sensi-
tivity (uniform magnitude and phase response as functions of frequency). In general,
this assumption becomes less valid with decreasing pulse duration resulting in
increasing bandwidth in the excitation signal.

Sometimes it is convenient to express acceleration as a multiple of g. The corre-
sponding calibration factor S1 is in volts per g:

S1 = = (11.17)

In either case, the integrals representing A and v must first be evaluated. The lin-
ear range of a pickup is determined by noting the magnitude of the velocity change
v at which the calibration factor S or S1 begins to deviate from a constant value. The
minimum pulse duration is similarly found by shortening the pulse duration and not-
ing when S changes appreciably from previous values.

Hopkinson Bar Calibrator. An apparatus called a Hopkinson bar39–41 provides
very high levels of acceleration for use in the calibration and acceptance testing of
shock accelerometers. As shown in Fig. 11.12, a controlled-velocity projectile strikes
one end of the bar, at x = 0; a strain gage is placed at the middle of the bar, at x = L/2;
and the accelerometer under test is mounted at the other end of the bar, at x = L.
When the projectile strikes the bar, a strain wave is initiated at x = 0.This wave trav-
els along the bar, producing a large acceleration at the accelerometer. The duration
and shape of the strain wave can be controlled by varying the geometry and mate-

Ag
�

v
e

�
(a/g)

A
�
v

e
�
a

FIGURE 11.12 A Hopkinson bar, showing a projectile striking the bar at x = 0; a strain gage
mounted on the bar at x = L/2; and the accelerometer under test is attached to the bar at x = L.
Impact of the projectile on the bar generates a strain wave which travels down the bar.



rial of the projectile. And, to a limited extent, the duration of the pulse can be con-
trolled by placing a piece of soft metal or rubber on the bar at the position where the
projectile strikes the bar, x = 0. The acceleration at the accelerometer may be deter-
mined from equations given in Ref. 41, using measured values of strain.

Ballistic Pendulum Calibrator. A ballistic pendulum calibrator provides a means
for applying a sudden velocity change to a test pickup.The calibrator consists of two
masses which are suspended by wires or metal ribbons. These ribbons restrict the
motion of the masses to a common vertical plane.42 This arrangement, shown in Fig.
11.13, maintains horizontal alignment of the principal axes of the masses in the
direction parallel to the direction of motion at impact. The velocity attained by the
anvil mass as the result of the sudden impact is determined.
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FIGURE 11.13 Components arrangement of the ballistic pendu-
lum with photodetector and light grating to determine the anvil-
velocity change during impact. (After R.W. Conrad and I.Vigness.42)

The accelerometer to be calibrated is mounted to an adapter which attaches to the
forward face of the anvil.The hammer is raised to a predetermined height and held in
the release position by a solenoid-actuated clamp. Since the anvil is at rest prior to
impact, it is necessary to record the measurement of the change in velocity of anvil
and transient waveform on a calibrated time base. One method of measurement of
velocity change is performed by focusing a light beam through a grating attached to
the anvil, as shown in Fig. 11.13. The slots modulate the light beam intensity, thus
varying the photodetector output, which is recorded with the pickup output. Since the
distance between grating lines is known, the velocity of the anvil is calculated directly,
assuming that the velocity is essentially constant over the distance between succes-
sive grating lines.The velocity of the anvil in each case is determined directly; the time
relation between initiation of the velocity and the pulse at the output of the pickup is
obtained by recording both signals on the same time base. The most frequently used
method infers the anvil velocity from its vertical rise by measuring the maximum hor-
izontal displacement and making use of the geometry of the pendulum system.

The duration of the pulse, which is the time during which the hammer and anvil
are in contact, can be varied within close limits.42 In Fig. 11.13 the hammer nosepiece



is a disc with a raised spherical surface. It develops a contact time of 0.55 millisecond.
For larger periods, ranging up to 1 millisecond, the stiffness of the nosepiece is
decreased by bolting a hollow ring between it and the hammer. A pulse longer than
1 millisecond may be obtained by placing various compliant materials, such as lead,
between the contacting surfaces.

Drop-Test Calibrator. In the drop-test
calibrator, shown in Fig. 11.14, the test
pickup is attached to the hammer using a
suitable adapter plate. An impact is pro-
duced as the guided hammer falls under
the influence of gravity and strikes the
fixed anvil. To determine the velocity
change, measurement is made of the time
required for a contactor to pass over a
known region just prior to and after
impact.The pickup output and the contac-
tor indicator are recorded simultaneously
in conjunction with a calibrated time base.
The velocity change also may be deter-
mined by measuring the height h1 of ham-
mer drop before rebound and the height
h2 of hammer rise after rebound.The total
velocity is calculated from the following
relationship:

v = (2gh1)1/2 + (2gh2)1/2 (11.18)

A total velocity change of 40 ft/sec (12.2
m/sec) is typical.

Drop-Ball Shock Calibrator. Figure
11.15 shows a drop-ball shock calibra-
tor.10,43 The accelerometer is mounted on
an anvil which is held in position by a
magnet assembly. A large steel ball is

dropped from the top of the calibrator, striking the anvil.The anvil (and mounted test
pickup) are accelerated in a short free-flight path. A cushion catches the anvil and
accelerometer. Shortly after impact, the anvil passes through an optical timing gate of
a known distance. From this, the velocity after impact can be calculated. Acceleration
amplitudes and pulse durations can be varied by selecting the mass of the anvil, mass
of the impacting ball, and resilient pads on top of the anvil where the ball strikes. Com-
mon accelerations and durations are 100g at 33 milliseconds, 500g at 1 millisecond,
1000g at 1 millisecond, 5000g at 2 milliseconds, and 10,000g at 0.1 millisecond.43 With
experience and care, shock calibrations can be performed with an uncertainty of about
±5 percent.

INTEGRATION OF ACCELEROMETER OUTPUT

Change-of-velocity methods for calibrating an accelerometer at higher accelerations
than obtainable by the methods discussed above have been developed using spe-
cially modified ballistic pendulums, air guns, inclined troughs, and other devices.
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FIGURE 11.14 Component of a conventional
drop tester used to apply a sudden velocity
change to a vibration pickup. (After R. W. Con-
rad and I. Vigness.42)



Regardless of the device employed to generate the mechanical acceleration or the
method used to determine the change of velocity, it is necessary to compare the
measured velocity and the velocity derived from the integral of the acceleration
waveform as described by Eq. (11.13). Electronic digitizers can be used to capture
the waveform and produce a recording. Care must be exercised in selecting the time
at which the acceleration waveform is considered complete, and its integral should
be compared with the velocity.The calibration factor for the test pickup is computed
from Eq. (11.15) or (11.17).

IMPACT-FORCE SHOCK CALIBRATOR

The impact-force shock calibrator has a free-fall carriage and a quartz load cell. The
accelerometer to be calibrated is mounted onto the top of the carriage, as shown in
Fig. 11.16. The carriage is suspended about 1⁄2 to 1 meter above the load cell and
allowed to fall freely onto the cell.44 The carriage’s path is guided by a plastic tube.
Cushion pads are attached at the top of the load cell to lengthen the impulse duration
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FIGURE 11.15 Diagram of a drop-ball shock calibrator. The accelerometer
being calibrated is mounted on an anvil which is held in place by a small mag-
net. (After R. R. Bouche.43)



and to shape the pulse.Approximate haversines are generated by this calibrator.The
outputs of the accelerometer and load cell are fed to two nominally identical charge
amplifiers or power units. The outputs from load cell and test accelerometer are
recorded or measured on a storage-type oscilloscope or peak-holding meters.

During impact, the voltage produced at the output of the accelerometer, ea(t), is

ea(t) = a(t)SaHa (11.19)

where a(t) = acceleration, m/s2

Sa = calibration factor for accelerometer, mV/m/s2

Ha = gain of charge amplifier or power unit

The output of load cell ef(t) is

ef(t) = F(t)SfHf (11.20)

where F(t) = force, N
Sf = calibration factor for load cell, mV/N

Hf = gain of charge amplifier or power unit

By using the relationship F(t) = ma(t), where m is the falling mass, and combining
Eqs. (11.19) and (11.20),

= (11.21)

and hence

Sa = Sf (11.22)

When calculating the mass, it is necessary to know the mass of the carriage,
accelerometer, mounting stud, cable connector, and a short portion of the accel-

ea(t) Hf m
��

ef(t) Ha

a(t)SaHa��
ma(t)SfHf

ea(t)
�
ef(t)
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FIGURE 11.16 Impact-force calibrator with auxiliary instruments.
(After W. P. Kistler.44)



erometer cable. Experience has shown that for small coaxial cables, a length of about
2 to 4 cm is correct. Calibrations by this method can be accomplished with uncer-
tainties generally between ±2 to ±5 percent.

FOURIER-TRANSFORM SHOCK CALIBRATION

The above calibration methods yield the approximate magnitude of the sensitivity
function for the accelerometer being tested. For shock standards and other critical
applications, more information may be required, for example, the accelerometer’s
sensitivity, both in magnitude and phase, as a function of frequency.45–48 The equip-
ment required for obtaining this information usually consists of a mechanical-
shock-generating machine and a two-channel signal analyzer, in addition to the
accelerometer being tested and a reference accelerometer. For a typical applica-
tion, a signal analyzer with 12-bit resolution and 5 MHz sampling rate is adequate.
The calibration results are obtained from the complex ratios of the output of the
test accelerometer to that of the standard accelerometer (see Chap. 14). The mag-
nitude and phase of these ratios represent the sensitivity of the test accelerometer
relative to the standard.

The range of usable frequencies is limited by the pulse shape and duration, sam-
pling rate, and analyzer capability. Figure 11.17 shows a typical half-sine shock pulse

whose spectral content is predominantly
below about 2 kHz, but pulses of shorter
duration contain sufficient energy up to
10 kHz, and even 30 kHz.48 An important
advantage of the spectral methods over
the time-domain methods is that they do
not require the waveform or pulse to be
smooth and clean. Modern signal pro-
cessing equipment has made it possible
to calibrate shock accelerometers at
amplitudes approaching 1 megameter
per sec2 by using the fast Fourier trans-
form (FFT) method with a Hopkinson
bar,48 shown in Fig. 11.12. The uncertain-
ties in this type of calibration can be as
low as 1 percent.49,50

VIBRATION EXCITERS USED FOR CALIBRATION

A vibration exciter that is suitable for calibration of vibration pickups should provide:

● Distortion-free sinusoidal motion
● True rectilinear motion in a direction normal to the vibration-table surface without

the presence of any other motion
● A table that is rigid for all design loads at all operating frequencies
● A table that remains at ambient temperature and does not provide either a source

or sink for heat regardless of the ambient temperature
● A table whose mounting area is free from electromagnetic disturbances
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FIGURE 11.17 A typical half-sine shock pulse
generated by a pneumatic shock machine.
Deceleration amplitude is 900g and pulse dura-
tion is 1 millisecond. (After J. D. Ramboz and 
C. Federman.45)



● Stepless variation of frequency and amplitude of motion within specified limits,
which is easily adjustable

ELECTRODYNAMIC EXCITERS

Electrodynamic exciters, described in Chap. 25, satisfactorily meet the requirements
of the ideal calibrator, providing a constant-force (acceleration) output with little
distortion over a rather wide frequency range from 1 to 10,000 Hz.51 Ordinarily, to
cover this frequency range, more than one exciter is required. Specially designed
machines featuring long strokes for very low frequencies or ultralight moving ele-
ments for very high frequencies are commercially available. One national standards
laboratory has a custom-built vibration exciter that has a low-frequency limit of 20
mHz.27 This machine employs a special air bearing, real-time electro-optic control,
and a suitable foundation.

A shaker system for the calibration of accelerometer sensitivity has been devel-
oped at the National Institute of Standards and Technology52,53 with the goal of
reducing the inherent uncertainties in the absolute measurements of accelerometer
sensitivity. The shaker has dual retractable magnets equipped with optical ports to
allow laser-beam access to the surface upon which the accelerometer is mounted
and the one opposite to it. The purpose of the optical ports is to enable interfero-
metric measurement of the surface displacement.The moving element of the shaker
is physically compact for directional stability and good high-frequency response. At
each end it is equipped with nominally identical coils and axially oriented mounting
tables.The driving and sensing coils are located on the same moving element so that
a separate shaker external to the calibration shaker is not needed when a reciproc-
ity calibration is performed.The dual-coil feature eliminates complications resulting
from mutual mechanical coupling between two separate shakers. Minimal distortion
and cross-action motion were two of the most important design requirements of this
vibration generator. These parameters are essential for the validity of the assump-
tions underlying the theory of electromechanical reciprocity.

PIEZOELECTRIC EXCITERS

The piezoelectric exciter (see Fig. 25.9 and Chap. 10) offers a number of advantages
in the calibration of vibration pickups, particularly at high frequencies. Calibration is
impracticable at low frequencies because of inherently small displacements in this
frequency range. A design which has been used at the National Institute of Stan-
dards and Technology for many years is described in Ref. 30.

MECHANICAL EXCITERS

Rectilinear motion can be produced by mechanical exciter systems of the type
described in Chap. 25 under “Direct-Drive Mechanical Vibration Machine.” Their
usable frequency range is from few hertz to less than 100 Hz. Despite their relatively
low cost, mechanical exciters are no longer used for high-quality calibrations of trans-
ducers because of their appreciable waveform distortion and background noise.

For generating vibratory motion at discrete frequencies (below 5 Hz), a linear
oscillator can be employed. Reference 54 describes a calibrator consisting of a

CALIBRATION OF SHOCK AND VIBRATION TRANSDUCERS 11.23



spring-supported table which is guided vertically by air bearings. Its advantages are
a clean waveform, resulting from free vibration, and large rectilinear displacement
with little damping, made possible by use of air bearings.

CALIBRATION OF TRANSVERSE SENSITIVITY

The characteristics of a vibration pickup may be such that an extraneous output volt-
age is generated as a result of vibration which is in a direction at right angles to the
axis of designated sensitivity of the pickup.This effect, illustrated in Fig. 10.11, results
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FIGURE 11.18 Transverse sensitivity of a piezoelectric accelerometer to vibration in the plane normal
to the sensitive axis.55



in the axis of maximum sensitivity not being aligned with the axis of designated sen-
sitivity.As indicated in Eq. (10.11), the cross-axis or transverse sensitivity of a pickup
is expressed as the tangent of an angle, i.e., the ratio of the output resulting from the
transverse motion divided by the output resulting from motion in the direction of
designated sensitivity. This ratio varies with the azimuth angle in the transverse
plane, as shown in Fig. 10.12, and also with frequency. In practice, tan θ has a value
between 0.01 and 0.05 and is expressed as a percentage. Figure 11.18 presents a typ-
ical result of a transverse-sensitivity calibration.55

Knowledge of the transverse sensitivity is vitally important in making accurate
vibration measurements, particularly at higher frequencies (i.e., at frequencies
approaching the mounted resonance frequency of the pickup). Figure 11.19 shows
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FIGURE 11.19 The relative response of an accelerometer to main-axis and transverse-axis
vibrations.5

the relative responses of an accelerometer to main-axis and transverse-axis vibra-
tion. It is noteworthy that the transverse resonance frequency is lower than the usu-
ally specified mounted resonance frequency.

A direct measurement of the transverse sensitivity of a pickup requires a vibra-
tion exciter capable of pure unidirectional motion at the frequencies of interest.This
usually means that any cross-axis motion of the mounting table should be less than
2 percent of the main-axis motion.10 Resonance beam exciters1 and air-bearing shak-
ers52 have been used for this purpose.

The resonant-beam method,56 used by many testing laboratories to provide the
sensitivity of a transducer automatically (in both magnitude and direction) yields a
plot of its sensitivity versus angle (similar to the one shown in Fig. 11.18). The
accelerometer under test is mounted at the free end of a circular-section steel beam
which is cantilevered from a massive base. Motion of the accelerometer is generated
by exciting the beam near resonance in its first bending mode, providing a large-
amplitude vibration at the free end of the beam, typically at a frequency between
300 and 800 Hz. A pair of vibration exciters, and associated electronic equipment,



permits the beam to be excited in any desired direction. Thus the transverse sensi-
tivity may be obtained at any angle without reorientation of the accelerometer.

Another method for obtaining the transverse sensitivity of a pickup is by use of
the impulse technique similar to that used in modal analysis (Chap. 21). An impulse
is generated by the impact of a hammer against a suspended mass on which the test
pickup is mounted. A force gage is mounted on the hammer, as illustrated in Fig.
11.20. From the characteristics of the force gage and its output when it strikes against
the suspended mass, from the output signal of the test pickup, and from the magni-
tude of the suspended mass, the transverse sensitivity of the accelerometer under
test Sta may be calculated according to a procedure described in Ref. 55, using the
following formula:

Sta = mSf � 	 (11.23)

where m = the mass of the suspended rigid block
Sf = the sensitivity of the force gage
ea = the output of the accelerometer under test
ef = the output of the force gage
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CHAPTER 12
STRAIN GAGE

INSTRUMENTATION

Patrick L. Walter

INTRODUCTION

This chapter provides an overview of bonded metal strain gage technology with a
lesser focus on both piezoresistive (MEMS, defined later) and piezoelectric strain
gages. After a brief discussion concerning the evolution of bonded gages, their man-
ufacture is described, along with the necessary mechanical considerations that
should occur to ensure their successful application. A description of the electrical
circuits in which the bonded gages must function to satisfy the requirements of
experimental stress analysis and electromechanical transducer design is then pre-
sented. Finally, because entire textbooks have been written to comprehensively
cover all the topics associated with strain gage selection and application, a compre-
hensive literature resource is identified.

Bonded metal foil strain gages are a mature technology.Their importance is rou-
tinely encountered in our daily lives every time a weighing process occurs. In addi-
tion, in experimental mechanics applications, such as flight qualification of a new
aircraft design, approximately one-third of the 1000 or more instrumented data
channels are dedicated to strain gage measurements. These gages are used to mon-
itor for material fatigue and structural design margin as well as identify structural
frequencies.

The detailed history of the evolution of the strain gage is presented in Ref. 1. On
September 10, 1936, an electrical engineering graduate student at the California
Institute of Technology by the name of Ed Simmons suggested using bonded wire to
measure the dynamic forces generated by an impact testing machine. The professor
with whom he was working, Dr. Gottfried Datwyler, bonded 40-gage, cotton-
wrapped, insulated, constantan wire, supplied by Mr. Simmons, to a piece of clock
spring with Glyptal cement. The spring was mounted as a cantilever beam, and the
wire change in resistance was proven to be linear, repeatable, and hysteresis free
with applied strain. The bonded wire strain gage was born. Mr. Simmons developed
a pulsed current excitation supply to use with these gages, and the experimental
work was completed and presented at a meeting of the American Society for Testing
and Materials (ASTM) in June 1938. Scant attention was given at this meeting to the
strain gage development that supported the experimental work.
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In 1938, at MIT, Professor Arthur Ruge was working on a research contract with
his graduate assistant, Hans Meir, to measure the stresses induced in water towers
under earthquake conditions. On April 3, 1938, while assisting Mr. Meir in his exper-
imental work, Professor Ruge unwound wire from a precision resistor, bonded it to a
test beam, and created a strain gage. The importance of this discovery was immedi-
ately apparent to Professor Ruge. He encouraged Mr. Meir to divert the emphasis of
his graduate work from the water tower to focus on the further development of the
strain gage. Professor Ruge and Mr. Meir spent the rest of their lives developing and
commercializing the bonded strain gage and transducers based on its operating prin-
ciple. During a patent search following the 1938 MIT discovery, Mr. Simmons’ earlier
work was uncovered.As a result, he ultimately received patent number 2,292,549, on
August 11, 1942, as the recognized inventor of the bonded resistance strain gage.
Today the bonded wire strain gage has been replaced by foil etched gages formed by
printed circuit techniques. These manufacturing techniques will be described later.
Currently the vast majority of strain gage applications associated with experimental
stress analysis are performed using bonded metal foil strain gages.

In the 1940s through the 1950s it was recognized that, when geometrically dis-
torted, the resistance change of semiconductor materials could also be correlated to
strain.2 The semiconductor strain gage became of interest because its sensitivity to
strain was about 50 to 200 times that of metal gages. However, whether using p- or
n-type silicon, gage sensitivity was discovered to be strongly influenced by both tem-
perature and strain level. For this reason, semiconductor strain gages find principal
application only in experimental stress analysis involving small strain differences at
controlled temperatures. Colloquially, the term piezoresistive strain gage is used syn-
onymously with silicon or semiconductor strain gages.

While not extensively used in experimental stress analysis work, due to their
higher strain sensitivity piezoresistive strain gages find significant application in the
construction of transducers (e.g., pressure, force, and acceleration) whose output can
be thermally compensated. Piezoresistive transducers manufactured in the 1960s first
used silicon strain gages fabricated from lightly doped ingots.These ingots were sliced
with respect to the crystal axes of the silicon to form small bars or patterns, which
became gages. These gages were usually bonded directly to the transducer flexure.

Since the late 1970s there has been a continual evolution of microsensors into the
marketplace. Piezoresistive transducers manufactured in this manner use silicon both
as their flexural element and as their transduction element (see Chap. 10). The strain
gages are diffused directly into the flexure. The most typical fabrication process has
the following sequence of events: the single crystal silicon is grown; the ingot is
trimmed, sliced, polished, and cleaned; diffusion of a dopant into a surface region of
the parent silicon wafer is controlled by a deposited film; a photolithography process
includes etching of the film at places defined in the developing process, followed by
removal of the photoresist; and isotropic and anisotropic wet chemicals are used for
shaping the mechanical microstructure. Both the resultant stress distribution in the
microstructure and the dopant control the piezoresistive coefficients of the silicon.

Electrical interconnection of various controlled surfaces formed in the silicon
crystal as well as bonding pads are provided by thin-film metallization. The silicon
wafer is then separated into individual dies. The dies are bonded by various tech-
niques into the transducer housing, and wire bonding connects the metalized pads to
metal terminals in the transducer housing. Sensors fabricated in this manner are
known as microelectromechanical systems (MEMS) transducers. Metal strain
gage–based transducers typically provide 20 to 30 millivolts (mV) of unamplified
full-scale signal; by comparison, MEMS resistance–based transducers produce 100
to 200 mV of unamplified signal. MEMS transducer technology is rapidly expanding
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in commercial and military applications.The piezoresistive transducer discussions in
Chap. 10 specifically include MEMS transducers when discussing the applicability of
this technology to mechanical shock measurements. Reference 3 provides an exten-
sive chapter on strain gage–based transducers.

The last strain gage technology to be mentioned is piezoelectric. Strain within a
piezoelectric material displaces electrical charges within the strained elements, and
the charges accumulate on opposing electrode surfaces. Piezoelectric strain gages do
not have response to 0 Hz. Therefore, their application in experimental stress analy-
sis is limited. However, modern gages have integral signal-conditioning electronics
(ICP® or IEPE) that greatly enhance the measurement system’s signal-to-noise
ratio. Five volts of signal can be provided for 100 × 10−6 in./in. (cm/cm) of strain, mak-
ing this type of gage very desirable for low-level, dynamic strain measurements.

Figures 12.1, 12.2, and 12.3 collectively illustrate all of the just-described tech-
nologies. Figure 12.1 shows a traditional metal strain gage, Fig. 12.2 shows a MEMS
transducer flexure (in this case, an accelerometer), and Fig. 12.3 shows a piezoelec-
tric strain gage with integral electronics (ICP®).

STRAIN GAGE INSTRUMENTATION 12.3

FIGURE 12.1 Single-element,
bonded metal film strain gage.

FIGURE 12.3 Piezoelectric strain
gage with ICP® signal conditioning.

FIGURE 12.2 MEMS piezoresistive accelerometer
flexure.



BONDED METAL STRAIN GAGE MATERIALS 

AND MANUFACTURE

As noted previously, for experimental stress analysis, the bonded metal foil strain
gage is used almost exclusively. The two most common materials are constantan 
(55 percent copper, 45 percent nickel) and Karma (20 percent chromium, 2.5 percent
aluminum, 2.5 percent copper, balance nickel). Both these materials offer (1) atypi-
cal resistance versus temperature behavior, (2) malleability sufficient to allow pro-
cessing into foil less than 0.001 in. (0.025 mm) thick, (3) ease of photochemical
machining into accurate configurations, and (4) reasonable cost. Considering gage
resistance-temperature behavior, it is desired that a strain gage eliminate false sig-
nals due to thermal expansion of the material on which it is mounted. If the increase
in gage resistance due to thermal expansion of this material can be offset by a cor-
responding decrease in gage alloy resistivity, the result will be zero change and no
false signal. In reality, a finished gage assembly includes its backing, sealant, and
adhesive. All of these materials expand at their own rate and contribute to this false
signal. Thermal coefficient of resistance (TCR) values required to achieve thermal
compensation tend to range from −25 to +5 ppm/°C.These values are well within the
capability of cold-rolled constantan and Karma. Optimum compensation is obtained
by heat treatment of the two foils, dependent on the material on which they are
mounted. Figure 12.4 shows the typical thermal or false strain compensation that can
be achieved by a strain gage in a temperature range around room temperature.

Strain gage manufacturing involves, first, putting the stringently manufactured
alloys through closely controlled melting processes, resulting in ingots 14 in. (35.56
cm) in diameter and weighing approximately 1 ton (454 kg mass).After an extended

12.4 CHAPTER TWELVE

FIGURE 12.4 Typical temperature compensation curves achievable with Constan-
tan (A) and Karma (K) strain gage materials.



high-temperature soak, hot-forging transitions the cast ingot into a slab. The slabs
are then cooled and ground to remove surface defects. Next, the slabs are reheated,
rolled to about 0.2 in. (5.1 mm), descaled, acid-cleaned, cold-rolled again, surface-
ground a second time, cold-rolled again, annealed, leaving the thickness at about
0.06 in. (1.5 mm), and placed in stock. Once removed from stock, additional rolling
and cleaning, followed by heat treatment, enable the foil to be bonded to a backing
film that acts as a carrier. The foil with the backing is then etched with photochemi-
cals to form the desired gage geometry. Sheets of gages are then cut apart and pack-
aged for sale. Reference 4 provides a detailed description of this process.

MECHANICAL ASPECTS OF GAGE OPERATION

To build effective strain-sensing circuits, one must be aware of the interaction
between the gage and the surface of the flexure to which it is mounted. Mechanical
aspects of this interaction include the influence of backing material, size, orientation,
transverse sensitivity, distance from the surface, bonding, and installation.

BACKING MATERIAL

The purpose of the backing material used in constructing strain gages is to provide
support, dimensional stability, and mechanical protection for the grid element. The
backing material of the gage element(s) acts as a spring in parallel with the parent
material to which it is attached and can potentially modify mechanical behavior. In
addition, the temperature operating range of the gage can be constrained by its back-
ing material. Most backings are polyimide or glass fiber–reinforced epoxies. Some
gages are encapsulated for chemical and mechanical protection as well as extended
fatigue life. For high-temperature applications, some gages have strippable backings
for mounting with ceramic adhesives. Still other metal gages can be welded. The fre-
quency response of welded gages, due to uncertainties in dynamic response, is a sub-
ject area that still requires investigation.

SIZE

The major factors to be considered in determining the size of strain gage to use are
available space for gage mounting, strain gradient at the test location, and character of
the material under test.The strain gage must be small enough to be compatible with its
mounting location and the concentrated strain field. It must be large enough so that,
on metals with large grain size, it measures average strain as opposed to local effects.
Grid elements greater than 0.125 in. (3mm) generally have greater fatigue resistance.

TRANSVERSE SENSITIVITY AND ORIENTATION

Strain gage transverse sensitivity and mounting orientation are concurrent consid-
erations. Transverse sensitivity in strain gages is important due to the fact that part
of the geometry of the gage grid is oriented in directions other than parallel to the
principal gage sensing direction. Values of transverse sensitivities are provided with
individual gages but typically vary between fractional and several percent.The posi-
tion of the strain gage axis relative to the numerically larger principal strain on the
surface to which it is mounted will have an influence on indicated strain.
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Distance from the Surface. The grid element of a strain gage is separated from the
structure under test by its backing material and cement. The grid then responds to
strain at a location removed from its mounting surface. The strain on structures such
as thin plates in bending can vary considerably from that measured by the strain gage.

Bonding Adhesives. Resistance strain gage performance is entirely dependent
on the bond attaching it to the parent material. The grid element must have the
strain transmitted to it undiminished by the bonding adhesive. Typical adhesives are
as follows.

Epoxy Adhesives. Epoxy adhesives are useful over a temperature range of −270
to +320°C. The two classes are either room-temperature curing or thermal setting
type; both are available with various organic fillers to optimize performance for indi-
vidual test requirements.

Phenolic Adhesives. Bakelite, or phenolic adhesive, requires high bonding
pressure and long curing cycles. It is used in some transducer applications because of
long-term stability under load.The maximum operating temperature for static loads
is 180°C.

Polyimide Adhesives. Polyimide adhesives are used to install gages backed by
polyimide carriers or high-temperature epoxies. They are a one-part thermal setting
resin and are used from −200 to +400°C.

Ceramic cements (applicable from −270 to +550°C) and welding are other mounting
techniques.

ELECTRICAL ASPECTS OF GAGE OPERATION

The resistance strain gage, which manifests a change in resistance proportional to
strain, must form part of an electrical circuit such that a current passed through the
gage transforms this change in resistance into a current, voltage, or power change to
be measured. The electrical aspects of gage operation to be considered include cur-
rent in the gage, resistance to ground, and shielding.

Strain gages are seldom damaged by excitation voltages in excess of proper val-
ues, but their performance degrades.The voltage applied to a strain gage bridge cre-
ates a power loss in each arm, which must be dissipated in the form of heat. By its
basic design, all of the power input to the bridge is dissipated in the bridge, with none
available to the output circuit.The sensing grid of every strain gage then operates at
a higher temperature than the structure on which it is mounted. Heat flow into the
structure causes a temperature rise, which is a function of its heat sink capacity and
gage power level.The optimum excitation level for strain gage applications is a func-
tion of the strain gage grid area, gage resistance, heat sink installation, required
operational specifications, and installation and wiring techniques. Zero shift versus
load and stability under load at the maximum operating temperature are the per-
formance tests most sensitive to excessive excitation voltage.

Resistance to ground is an important parameter in strain gage mounting, since
insulation leakage paths produce shunting of the gage resistance between the gage
and the metal structure to which it is bonded, producing false compressive strain read-
ings. The ingress of fluids typically leads to this breakdown in resistance-to-ground
value and can also change the mechanical properties of the adhesive. A minimum
gage–to–mounting surface resistance-to-ground value of 50 MΩ is recommended.

Since signals of interest from strain gage bridges are typically on the order of a
few millivolts, shielding of the bridge from stray pickup is important. Gage leads
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should also be shielded and proper grounding procedures followed. Stray pickup
may be introduced by 60-Hz line voltage associated with other electronic equip-
ment, electrical noise from motors, radio frequency interference, and so on. Note
that shielding materials for electrical fields are different from those for magnetic
fields. Nickel alloy strain gages are particularly susceptible to magnetic fields.

THE WHEATSTONE BRIDGE

Small strains result in small impedance changes in resistive strain gage elements. A
Wheatstone bridge circuit can detect a small change in impedance to a high degree
of accuracy.

BRIDGE EQUATIONS

The circuit most often used with metal strain gages is a four-arm bridge with a con-
stant-voltage power supply. Figure 12.5 shows a basic bridge configuration. The sup-
ply voltage Eex can be either ac or dc, but for now it is assumed to be dc, so equations
can be written in terms of resistance R rather than a complex impedance. The con-
dition for a balanced bridge with e0 equal to zero is:

= (12.1)
R4
�
R3

R1
�
R2
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FIGURE 12.5 Four-arm Wheatstone bridge with
constant voltage (Eex) power supply.

Next, an expression is presented for the bridge output voltage e0 due to small
changes in R1, R2, R3, and R4:

e0 = �− + − + Eex (12.2)

In many cases, the bridge circuit is made up of equal resistances. Substituting for
individual resistances, with a strain gage resistance R, and using the definition of the
gage factor supplied with every gage (F = (ΔR/R)/ε), Eq. 12.2 becomes:

e0 = (−ε4 + ε3 − ε2 + ε1) (12.3)
FEex
�

4

R2 dR1
��
(R1 + R2)2

R1 dR2
��
(R1 + R2)2

R4 dR3
��
(R3 + R4)2

R3 dR4
��
(R3 + R4)2



The unbalance of the bridge is seen to be proportional to the sum of the strain (or
resistance changes) in opposite arms and to the difference of strain (or resistance
changes) in adjacent arms.

Equations (12.2) and (12.3) indicate another technique to compensate strain
gage circuits to minimize the influence of false temperature-induced strain. This is
referred to as the dummy gage method.

Assume that we have a bridge circuit with one active arm, and arbitrarily let this
arm be number 4. Equation (12.3) becomes:

e0 = (−ε4) (12.4)

Arm 4 responds to the total strain induced in it, which is composed of both thermal
(t) and mechanical (m) strain:

ε4 = εm + εt (12.5)

A problem arises if it is desired to isolate the mechanical strain component. One
solution is to take another strain gage (the dummy gage) and mount it on a strain-
isolated piece of the same material as that on which gage 4 is mounted. If placed in
the same thermal environment as gage 4, the output from the dummy gage becomes
simply e t . If the dummy gage is wired in an adjacent bridge arm to 4 (1 or 3), Eq.
(12.3) becomes:

e0 = (−εm − εt + εt) (12.6)

Equation (12.6) indicates that thermal strain effects are canceled. In reality, perfect
temperature compensation is not achieved, since no two strain gages from a lot track
one another identically. However, compensation adequate for many applications
can be accomplished.

Equation (12.2) presented the generalized form of the bridge equation for four
active arms. If only one arm (e.g., arm 4) is active, this equation becomes:

e0 = �  Eex (12.7)

This equation was specifically presented for small changes in resistance, such as
those associated with metallic strain gages. If the change in resistance in arm 4 is
large, Eq. (12.7) is better expressed as:

e0 = − (12.8)

For an equal-arm bridge, this becomes:

e0 = = (12.9)

For an equal-arm bridge, Eq. (12.7) becomes:

e0 = = (12.10)

The difference between Eqs. (12.10) and (12.9) is that Eq. (12.10) describes a linear
process while Eq. (12.9) describes a nonlinear one. Semiconductor gages, because of
their large gage factor, require analysis using Eq. (12.9).

FEexε
�

4
dR Eex
�

4R

FEexε
�
4 + 2Fε

ΔREex
��
4R + 2ΔR

R4Eex
�
R4 + R3

(R4 + ΔR4)Eex
��
(R4 + ΔR4) + R3

−R3dR4
��
(R3 + R4)2

FEex
�

4

FEex
�

4
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Semiconductor gages may be used in constant-voltage, four-arm bridge circuits
when two or four gages are used in adjacent arms and strained so that their outputs
are additive.Analysis of the bridge equations for this situation will show that if gages
in adjacent arms are subjected to equal but opposite values of ΔR, the output signal
is doubled and the nonlinearity in the bridge output is eliminated.Another approach
to eliminating this nonlinearity is to design a circuit such that the current through
the strain gage remains constant.

The alternating signs in Eq. (12.3) are useful in isolating various strain compo-
nents when using bridge circuits containing strain gages. Table 12.1 provides gener-
alized bridge equations for one, two, and four equal-active-arm bridges that show
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(Note: These equations are appropriate for both large- and small-strain circuits.
For small strains, some contributors to the calculations may be very small as circuit
nonlinearities become negligible.)

Courtesy: Vishay Measurements Group.

TABLE 12.1 Strain Gage Bridge Configurations That Isolate Various 
Strain Components



how these strain components can be isolated. The dimensionless bridge output is
presented in millivolts per volts for a constant-voltage power supply. Strain is pre-
sented in microstrain. No small-strain assumption is built into these equations. For
large strains with semiconductor gages, F may not be a constant and this correction
also has to be built into the equations. In this table, the Poisson gage is one which
measures the lateral compressive strain accompanying an axial tension strain. As
noted earlier, only for two adjacent active gages with equal and opposite strains or
for four active gages with pairs subjected to equal and opposite strains is the bridge
output a linear function of strain.

OTHER CIRCUIT DESIGN CONSIDERATIONS

While bonded metal foil strain gages are a mature technology and the large numbers
of nuances associated with their application have been well studied, this chapter has
provided but a brief introduction to considerations necessary for their successful
application. During the last decade, the Vishay Micro-Measurements Division has
concentrated essentially the entire strain gage manufacturing capability in the
United States under one roof, in Raleigh, North Carolina.Their website can be found
at http://www.vishay.com/company/brands/micromeasurements/. This site remains a
stable, readily available source of technical support including both technical and
application notes. Although much more information is contained in this site, key
technical notes (TNs) are highlighted as follows:

● Strain Gage Selection: Criteria, Procedures, Recommendations, Tech Note TN-
505-4: Details gage selection considering material type, backing type, size, grid pat-
tern, and more.

● Strain Gage Rosettes: Selection,Application and Data Reduction,Tech Note 515:
Describes strain gage construction, selection, and data reduction to determine prin-
cipal stress magnitudes and directions on the surface of a material.

● Optimizing Strain Gage Excitation Levels, Tech Note TN-502: Provides guidance
for selection of strain gage bridge voltage excitation levels to minimize thermal heat-
ing errors due to internal gage power dissipation.

● Errors Due to Transverse Sensitivity in Strain Gages,Tech Note TN-509: Identifies
problems in gage readings due to transverse sensitivity and provides methods for
data correction.

● Strain Gage Thermal Output and Gage Factor Variation with Temperature, Tech
Note-504-1: Provides a methodology for compensating for false signals due to ther-
mal expansion of the gage as mounted on its parent material.

● Fatigue Characteristics of Vishay Micro-Measurements Strain Gages, Tech Note
TN-508-1: Provides fatigue exposure limits of gages and their associated backing
and mounting.

● Errors Due to Misalignment of Strain Gages, Tech Note TN-511: Details errors
due to misalignment of gages when mounted, of particular importance in character-
izing a biaxial stress field.

● Errors Due to Wheatstone Bridge Nonlinearity, Tech Note TN-507-1: Quantifies
nonlinearity errors in bridge circuits due to large changes in resistance (e.g., post
yield, piezoresistive gages, etc.).
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● Errors Due to Shared Lead Wires in Parallel Strain Gage Circuits, Tech Note TN-
516: Deals with errors that can occur in attempting to share common leads in strain
gage circuits.

● Shunt Calibration of Strain Gage Instrumentation, Tech Note TN-514: Provides
methods to verify accuracy of strain gage read out circuitry.

● Noise Control in Strain Gage Measurements, Tech Note TN-501-2: Describes the
susceptibility of strain gage circuits to low-level noise and provides preventative
measures.

These TNs provide a total of more than 100 pages of guidance in strain gage tech-
nology and should be consulted before initiating important experimental stress
analysis assessments for structural systems.
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CHAPTER 13
SHOCK AND VIBRATION 

DATA ACQUISITION

Strether Smith

INTRODUCTION

This chapter discusses the basic functions of systems that are used to acquire and
store data from shock and vibration experiments.The discussion concentrates on the
measurement and storage of signals in the audiofrequency range defined here as 
1 Hz to 100 kHz. Particular attention is paid to the primary features and problems
that are relevant to the discrete recording of these signals, specifically, dynamic
range, headroom, alias protection, data sparsity, and out-of-band energy.

The signals to be acquired and stored may be generated by a variety of devices
that sense acceleration, velocity, or displacement and might employ one of a mul-
titude of transduction mechanisms. This discussion will be restricted to the most
common systems used for vibration and shock, specifically, a piezoelectric trans-
duction measuring acceleration or force via appropriate signal conditioning. A
description of other devices and their conditioning can be found in Chap. 10 and
Ref. 1.

13.1

FIGURE 13.1 System signal path.

Figure 13.1 shows a typical instrumentation-signal path, which is made up of the
following:



● Transducer
● Cable
● Signal conditioner/amplifier
● Analog low-pass filter
● Analog-to-digital converter/digitizer
● Run-time analysis and display
● Data storage

PIEZOELECTRIC TRANSDUCERS, CABLING, 

AND SIGNAL CONDITIONING

The basic principles of piezoelectric transducers are described in Chap. 10. These
devices produce a charge signal that is proportional to the mechanical input (usually
acceleration or force). The charge signal is converted to voltage by either a charge
amplifier or an internal electronic piezoelectric (IEPE) system.2 Of the two options,
charge-based systems offer the most flexibility. Figure 13.2 shows a diagram of a
charge-amplifier measurement system. Charge, generated by the piezoelectric sensor
in response to a mechanical input, is transmitted to the amplifier with a special low-
noise or microdot cable. The charge amplifier converts the charge to a voltage that is
used by the downstream devices.The gain can be easily changed over a wide range to
adjust system sensitivity. Because there are no electronic components in the trans-
ducer, measurements can be taken at higher temperatures and the transducers have
better reliability than IEPE devices. However, applications are normally restricted to
short cable runs because the high impedance of the signal circuit makes it very sensi-
tive to induced noise. Also, the requirement of expensive, mechanically fragile
microdot cables often limits their practical use to research and other environments
where conditions are very well controlled.
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Many of the practical limitations of charge-based instrumentation are addressed
by IEPE systems. As shown in Fig. 13.3, an IEPE system converts the charge (high-
impedance) signal to a modulated current (low-impedance) signal in (or near) the
transducer. The modulated current is then converted to voltage in the signal condi-
tioner. This strategy has significant practical advantages over charge-based systems
for most testing applications. The primary advantage of an IEPE system is that con-
version to a low-impedance signal at, or near, the transducer allows the use of less
expensive, more robust cabling systems.Although nearly any cable with two or more
conductors will do (including microdot and other coaxial types), the use of twisted-
shielded pair produces significantly improved signal-to-noise ratios (SNRs). This is
particularly important in facilities that require long (>30-m/100-ft) cables. One fault
of the approach is that long lines (with excessive capacitance) and/or inadequate
excitation can produce reduced measurement bandwidth.3
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FIGURE 13.3 IEPE transducer/signal-conditioner/amplifier system.

An additional feature that is allowed by the IEPE technology is the Transducer
Electronic Data Sheet (TEDS).4 In a TEDS system, the transducers (or in-line con-
ditioners) are equipped with a digital memory that contains basic device informa-
tion such as manufacturer, model number, and calibration. On command, a matching
signal conditioner retrieves the information and passes it back to the data acquisi-
tion system for channel identification and characterization. For reasons similar to
the IEPE bandwidth limitations already described, TEDS systems also have prob-
lems with long analog lines.5

THE DIGITAL DATA ACQUISITION SYSTEM

During the past 40 years, strategies for the recording of shock, acoustic, and vibration
data have shifted almost entirely from continuous (analog) to discrete (digital) tech-
nology.The primary advantages of discrete conversion include better accuracy, higher
dynamic range, easier processing of data into meaningful engineering terms, and
more straightforward data storage and retrieval. The primary restriction, bandwidth,
was resolved about 1995, with the development of high-resolution, continuous-



recording, multichannel systems with bandwidths of 100 kHz or greater—enough to
cover most signals in the regimens of concern here.6

The most significant feature that digital data acquisition offers to signal mea-
surement is greater dynamic range, defined as follows:

Dynamic range = Full-scale value/Smallest detectable value (13.1)

Analog measurement devices, such as strip chart recorders and analog tape systems,
are inherently limited to a dynamic range of 100/1 (40 dB). Digital systems are avail-
able with better accuracy, resolution, and signal-to-noise ratios than the best of the
instrumentation and signal conditioning subsystems that feed them.

When a sinusoidal input signal is near full scale, the theoretical dynamic range, or
SNR, of a digitizing process is7

Dynamic range = Full-scale SNR = 6.02N + 1.76 (dB) (13.2)

where N is the number of bits in the digitizer. Of course, systems that include real
transducers, cabling, and analog electronics do not perform as well as theoretical ones,
but the earliest digital systems (10-bit) offered close to 55 dB (∼560/1) and the best 16-
bit systems provide over 90 dB (∼31,000/1) when characterized in the time domain.8

Systems with high dynamic range can use very conservative scaling to provide an
input range that is much greater than the anticipated signal. This in turn reduces the
chance of saturation in the event of unexpectedly large responses. The scaling mar-
gin is called headroom and is defined as follows:

Headroom = (System full scale)/(Expected maximum data) (13.3)

For example, if a measurement system with dynamic range of 80 dB is configured
with a headroom of 20 (allowing a response of 20 times the expected), it will provide
a resolution of 1 part in 500 of the predicted peak. This is well within the expected
accuracy of the experiment. It is critical to appreciate that the dynamic range of a
system includes all of the components. Systems based on IEPE transducers with
cable runs as long as 100 m have been shown to provide 85 dB (18,000/1) of dynamic
range.6 The need for even more conservative scaling is addressed in the discussion of
out-of-band energy later in this chapter.

Accuracy and repeatability have been comparably improved. The result is that,
when the digital acquisition is done correctly, overall system accuracy is driven almost
entirely by the characteristics of the transducer, cabling, and signal conditioning that
precede it.

This improvement in performance when compared to analog recording concepts
does not come without a price. Figure 13.4 shows the basic process of digitizing an
analog signal. The continuous signal is sampled instantaneously at equally spaced
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FIGURE 13.4 The digitizing process.



intervals (= ΔT). The fundamental question is: How often do we have to sample the
data? In other words, what is the required sample rate (RS)?

The answer was developed about the same time by several investigators,9 but a
paper by Claude Shannon10 is normally given primary credit. Reference 9 contains a
concise discussion of the Nyquist-Shannon sampling theory, where it is stated:
“Exact reconstruction of a continuous-time baseband signal from its samples is pos-
sible if the signal is band limited and the sampling frequency is greater than twice the
signal bandwidth.” An alternative statement is: “If we acquire more than two points
per cycle of the highest frequency component in the signal, the entire signal can be
reproduced exactly.”11 Inspection of either of these statements shows the critical
problem with discrete data acquisition. If there is any energy above one-half of the
sampling rate, often called the Nyquist frequency = fA = RS/2, Shannon’s theorem is
violated. In the real world, this will always be the case because there is always energy
at frequencies higher than fA. The violation results in errors called aliasing.

The effect of aliasing errors can be viewed in both the time and the frequency
domains. Figure 13.5 shows the effect of sampling a 900-Hz sine wave at 1000 
samples/sec (violating Shannon’s theorem). The discretely acquired signal appears
to be at 100 Hz. Figure 13.6 shows the same data viewed in the spectral domain. It
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FIGURE 13.5 Aliasing errors viewed in the time domain; sample rate = 1 kS/s, signal
frequency = 900 Hz.

FIGURE 13.6 Aliasing errors viewed in the spectral domain; sam-
ple rate = 1 kS/S, signal frequency = 900 Hz.



shows that energy that is in violation of Shannon’s theorem appears to “fold” around
the Nyquist frequency (fA) and superimposes itself on top of the energy that is at the
folded frequency.

The effect of energy above the sample rate is shown in Fig. 13.7. Folding around
the Nyquist frequency (fA) produces error energy that appears at negative fre-
quency. This, in turn, folds around zero frequency into the desired frequency range.
Energy at higher frequencies will alternately fold around the Nyquist frequency and
zero until it superimposes itself on the data in the frequency range of interest.

An obvious requirement for a digital data acquisition system is to reduce these
errors to an acceptable level. To accomplish this, we must reduce the energy above
the Nyquist frequency with a low-pass filter applied before digitization.The filtering
strategy required depends on the accuracy and robustness required of the data and
the type and amount of distortion that is deemed acceptable.
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FIGURE 13.7 Aliasing from higher frequencies (multi-
ple folding).

The first step in the design of a measurement system or experiment is the selec-
tion of the desired bandwidth (BD). This frequency represents a “wall” above which
the data either cannot be seen or is unacceptably aliased (corrupted). In the ideal
world, we could apply a low-pass filter with frequency-domain characteristics such
as those shown in Fig. 13.8. If we place the cutoff of this “barn-door” filter at the

FIGURE 13.8 The ideal “barn-door” low-pass filter.



desired bandwidth (BD), then Shannon’s theorem states that we could get a com-
plete representation of the data by sampling the filtered signal at a rate that is
slightly more than 2 × BD. Unfortunately, we cannot build a real filter with these
characteristics, and compromises must be made. For example, Fig. 13.9 shows the
attenuation (as a function of frequency) of several commercially available analog fil-
ters that might be used in systems for vibration and shock testing.
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FIGURE 13.9 “Strong” analog filter characteristics.

FIGURE 13.10 Aliasing diagram for an eight-pole Butterworth filter.

System designers use aliasing diagrams to evaluate the aliasing-error rejection
of a candidate filtering/sampling strategy.To create an aliasing diagram, the aliasing
attenuation is calculated by folding the filter shape around the Nyquist frequency
(fA = RS/2). Figure 13.10 shows the diagram of a strategy that might be used to pro-
vide good performance for a desired bandwidth (BD) of 10 kHz: an eight-pole But-



terworth filter with a cutoff frequency (FC) of 12 kHz and a 40 kS/s sample rate.This
combination provides

● Signal attenuation (amplitude distortion) of less than 3 percent in the passband
(the frequency range from zero frequency to BD)

● Aliasing rejection of 1000/1 (60 dB) or more for all frequencies below the desired
bandwidth (BD) of 10 kHz, a result that is normally considered adequate

This strong analog filter aliasing-protection strategy was used during the 1970s 
and 1980s for most shock and vibration systems.12 These filters provided good alias-
ing protection (and, hence, relatively low sample rates for a given sample rate and
acceptable error) and were followed by multiple-pass or successive-approximation
analog-to-digital (A/D) converters. The disadvantage of this approach is that these
complex analog filters are physically large, expensive, and inherently limited in 
cutoff capability and phase matching.

The 1990s brought improvements in sampling technology that enabled the devel-
opment of a hybrid A/D aliasing-protection/digital-conversion strategy called over-
sampling. The concept, shown in Fig. 13.11, is that the sampling is performed at a
multiple (called the oversample ratio) of what would be used with conventional 
systems.This in turn raises the Nyquist frequency and reduces the sharpness (hence,
the complexity and cost) of the analog filtering system required to provide adequate
alias protection. Once sampled, a digital filter and decimation process provides 
the final filter shape and sample rate. The objective of the oversampling strategy is
to minimize the analog part of the operation and do most of the operation with dig-
ital calculations. Figure 13.12 shows the aliasing diagram of an oversampling system
that has a 10-kHz bandwidth and uses an oversample ratio of 10.The combination of
a three-pole Butterworth filter at 20 kHz and a base sample rate of 25 kS/s provides
the same, or better, aliasing rejection (1000/1) below the desired bandwidth (BD)
than the strong analog-filter strategy previously discussed. The oversampled time
history is low-pass-filtered with a very sharp digital filter with a cutoff frequency of
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FIGURE 13.11 Oversampling analog-to-digital conversion concept.



slightly more than 10 kHz. It must be sharp enough to attenuate the signal at 15 kHz
so that, when the time history is decimated by 10 to produce the output sample 
rate (25 kS/s), the resulting aliasing error below 10 kHz (BD) is acceptably small.
The basic concept is that a less complex analog filter is used for alias protection and
the sharper, more repeatable digital filter does most of the work.

The advantages of the oversampling strategy are fully realized with a high over-
sample ratio. For example, if an oversample ratio of 128 is used, then a simple, two-pole
analog filter at 20 kHz and a base sample rate of 25kS/s will provide more than 88 dB
of alias protection in the 10-kHz frequency range of interest. However, this requires a
digitization rate of over 3.2 million samples/sec (128 ∗ 25 kS/s). To provide 100-kHz
bandwidth, over 32 million samples/sec are required.

The sigma-delta (ΣΔ) A/D converter was developed to provide these high sam-
pling rates.The concept13–16 employs a high-speed, low-resolution converter loop fol-
lowed by a digital low-pass filter/decimator to perform the digitization process. In
most systems, a variation on the theme of the 1-bit converter, called a delta-sigma
modulator, is used (Fig. 13.13). The filtering and decimation process is normally per-
formed by a finite impulse response (FIR) filter.17 This digital filter has several char-
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FIGURE 13.12 Oversampled (N = 10) aliasing diagram.

FIGURE 13.13 Sigma-delta oversampling converter.



acteristics that make it ideal for shock and vibration applications. The FIR filter’s
critical contribution to the shock and vibration measurement problem is shown by
the near-perfect gain characteristic shown in Fig. 13.14. Features include
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FIGURE 13.14 Typical sigma-delta (ΣΔ) filter shape. (Copyright Ana-
log Devices, Inc. Used with permission.)

● Essentially flat (�0.01 db, ∼0.1) percent response from zero frequency to 0.453 RS.
● More than 120 dB of rejection for all frequencies above 0.546 RS, well below the

digitizing noise floor for a 19-bit converter.Thus, frequencies below 0.453 RS have
aliasing errors attenuated by 120 dB or more.

This nearly perfect performance allows alias-free digital data acquisition of signals
with frequencies of up to about 45 percent of the sample rate. In other words, from
the standpoint of alias protection, the sample rate need be only 2.2 times the maxi-
mum desired bandwidth (BD). This is adequate when spectral analysis is the only
requirement. However, for time-domain analysis where resampling is to be per-
formed, a minimum sample rate of three times the desired bandwidth range (three
points/cycle) is recommended to provide a conservative margin.

The term alias free has been coined to describe systems where aliasing errors are
reduced to levels below the noise floor of the system. Strictly interpreted, this
means that alias rejection should be greater than the dynamic range of an ideal dig-
itization process indicated by Eq. (13.2) for all frequencies between zero and the
Nyquist frequency. However, even for the best of systems, the alias-free frequency
range is ∼0.45 RS. Signals in the frequency range between ∼0.45 RS and the Nyquist
frequency (0.5 RS) are unacceptably aliased, so the measurement cannot be truly
alias free.Also, available systems with 20 or more bits provide only 120 dB of rejec-
tion in the stopband. However, this is not a problem because this rejection level is
far below the dynamic range of any real experiment.

An additional feature of the ΣΔ approach is that the digital filter is normally
implemented in a way that produces a constant-delay or linear-phase response. An
emulation of the ΣΔ response to a square wave is shown overlaid with the responses
from Bessel, Butterworth, and elliptical filters in Fig. 13.15. Note that the ΣΔ
response rings at both ends of the transition—a basic characteristic of the digital
FIR filter used. A feature of the concept is that, since the ringing energy is split



between the entrance and the exit of the transition, the overshoot is less than with
the Butterworth and elliptical filters that do not have frequency-domain character-
istics that are as good.

Since most modern systems used for vibration and shock measurements use an
oversampling/FIR filter approach with similar strategies, the results will be consis-
tent from machine to machine. If other strategies (e.g., strong analog filter) are used,
processes are available that compensate for the differences in distortion to produce
consistent results between systems.18

Sigma-delta converters must be used in an A/D-converter-per-channel configu-
ration (Fig. 13.16) because their internal filtering disallows multiplexing. This, com-
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FIGURE 13.15 Square-wave responses of different alias protection
strategies.

FIGURE 13.16 A/D-per-channel system architecture.

bined with the use of simple, repeatable analog filters, produces multiple-channel
data that is almost perfectly simultaneous. The end result is that a properly imple-
mented oversampling strategy provides an almost ideal data acquisition system
where

● Aliasing errors are effectively eliminated within the bandwidth of the acquisition.
● The bandwidth is ∼90 percent of the Nyquist frequency.



● Amplitude reproduction from zero frequency to the system bandwidth (BD) is
effectively constant.

● Multiple-channel acquisition is essentially simultaneous.
● The systems provide constant delay/linear phase over the system bandwidth.

Sigma-delta systems have one significant limitation for some applications.
Because of the delay caused by the FIR filter (approximately 1⁄2 of the oversample
ratio in samples), the approach is usually not useful in rapid-response applications
where timing is critical.

THE DATA SPARSITY PROBLEM

A critical feature of Shannon’s theorem is that when proper alias-protection meth-
ods are used, a relatively small number of points can be acquired to completely
define the signal. If a ΣΔ system is used, we have seen that only 2.2 samples/cycle of
the highest desired frequency component (BD) are required. Figure 13.17 shows a
time history where the sample rate is 2.5 times the maximum significant signal fre-
quency (easily satisfying Shannon’s theorem), but the signal is obviously not well
represented by the raw digital data points. In particular, if the peaks of the data are
of interest, the raw data provides a very poor representation.
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FIGURE 13.17 Sparse data that satisfies Shannon’s theorem.

The reconstruction process is called upsampling, and the only question is what
trick to use.The Whittaker-Shannon interpolation formula19 is the classical approach,
but most applications use one of two strategies that take advantage of modern signal-
analysis capabilities:

1. The time-domain method20 is to add zeroes between the acquired points and then
apply a very sharp finite impulse response filter just below the Nyquist frequency.
This approach is best for continuous signals and is the technique used in com-
mercial audio equipment to provide a higher sample rate (hence, smoother wave-
form) before sending the signal to the speakers.



2. A frequency-domain method21 that converts a windowed time history to the spec-
tral domain by Fourier transform, adds zeroes to the end of the spectrum, inverse-
transforms the extended spectrum to the time domain, and then corrects for the
applied window. This approach is best for upsampling of short slices of data. An
example of this method of upsampling is shown in Fig. 13.18.
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FIGURE 13.18 Upsampled data (frequency-domain method).

FIGURE 13.19 Peak-detection error.

The relationship between the number of points per cycle (N) and the peak-
determination error when the points are equidistant from the peak (Fig. 13.19) is
given by

Max error (%) = 100[1 − cos (Π/N)] (13.4)

N = Π/(arccos {1 − [Max. error (%)/100]}) (13.5)

To evaluate signal peaks to an accuracy of 1 percent, approximately 22 points per
cycle of the highest frequency of interest (BD) are required. For many applications
this exceeds the sample-rate or storage capabilities of the available data acquisition
system.



A strategy that minimizes the requirements of the data acquisition system is to

● Acquire the data with a sample rate of 3 × BD.
● Upsample by a factor of 10 to produce 30 points/cycle, resulting in approximately

0.5 percent accuracy in peak determination for the highest frequency of interest.

Higher upsample factors will produce smaller errors at the expense of more compu-
tation.

OUT-OF-BAND ENERGY

Out-of-band energy consists of signals that are above the desired bandwidth (BD)
and/or above the bandwidth of the data acquisition system. In shock and vibration
testing there is often significant energy at frequencies that are in this range. This
requires experiment designers to plan for the unknown.To demonstrate the concept
of out-of-band energy, the time history and Fourier spectrum from a near-field
pyroshock test, acquired at 1 million samples/sec, are shown in gray in Fig. 13.20.
Features of the data include
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FIGURE 13.20 The effect of out-of-band energy.

● Significant energy between 0 and 200 kHz (including a transducer resonance at
about 90 kHz)

● A time-history data range of +877/−954g (1831g p-p).

This environment is what the transducer and input amplifier (all components up-
stream of the low-pass filter) experience.



The result of selecting a data acquisition strategy that has a bandwidth of 5 kHz
is shown in black. The data range for the band-limited data (low-pass-filtered) is
+238/−254g (492g p-p).This is the data that users see.All evidence of the higher, pre-
filtered raw data is lost in the data acquisition process.

Although users see only about 250g in the filtered signal, if the transducer and
input amplifier did not have a range of 1000g or more, they would have been over-
loaded. This would cause the signal to be clipped before the filter and would result
in corrupt data that would be very hard to detect because the clipping would be
smoothed by the filtering operation.Therefore, for tests that have significant out-of-
band energy, even more headroom is required than was considered in the example
discussed earlier. In cases where the expected response is not well known and there
is an expectation of significant out-of-band excitation, headroom of up to 50 might
be appropriate. In a system with high dynamic range, this can be accomplished
through conservative scaling. Refer to the previous discussion of dynamic range.
There is also evidence that if the rate of change in the voltage signal (dv/dt) is too
large, amplifiers in the system may be saturated in slew, and offsets in the data will
result.22 If this is the case, even greater headroom might be required to reduce the
voltage range and change rate.

CONCLUSION

Oversampling digital data acquisition systems provide almost perfect recording
capabilities for most applications in the shock and vibration world. The sigma delta
(ΣΔ) form of this basic strategy is used in most of the commercially available systems
that serve the shock and vibration area. These systems (when properly imple-
mented) allow the use of relatively low data acquisition rates, reducing both the data
transfer and data storage requirements of the system.

Fundamental steps required to ensure that the acquired data sets are adequate
include

● Determining the desired bandwidth (BD) for the experiment. Data with frequency
components above this frequency will be unacceptably aliased and/or hidden.

● Selecting an appropriate sample rate (RS). For ΣΔ-based machines this can be as
little as 2.2 BD.

● Ensuring that, for time-domain data, the sample rate is sufficient to adequately
define the signal. This can be done by sampling very fast or sampling relatively
slowly (but above 2.2 BD) and then using upsampling techniques to produce the
required data density.
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CHAPTER 14
VIBRATION ANALYZERS

AND THEIR USE

Robert B. Randall

INTRODUCTION

This chapter deals primarily with frequency analysis, but also some related analy-
sis techniques—namely, synchronous averaging, cepstrum analysis, and demodula-
tion techniques—are considered.

With the increase in availability of signal processing packages, virtually all of the
techniques discussed, and a large number of others, can now be directly pro-
grammed by the user on a general-purpose computer (see Chap. 20), but dedicated
analyzers still have a number of advantages, as follows:

● Dedicated hardware for preprocessing signals before they are actually stored in
the analyzer’s memory. This includes real-time zoom with decimation to a lower
sampling frequency (vastly reducing the amount of data to be stored), real-time
digital resampling for order analysis, and even something as trivial as real-time
triggering. If the data only has to be processed after the occurrence of some event
that can be used as a trigger, the latter can avoid the storage and postprocessing of
vast amounts of useless data.

● Fractional octave digital filter analyzers decimate the sampling frequency of low-
frequency signal components as part of their operation. If the equivalent analysis
over three frequency decades were to be carried out by postprocessing of an already
digitized signal, approximately one million samples would be required to obtain a
single one-twelfth-octave spectrum with sufficient averaging for a random signal.

● Dedicated analyzers are more likely to provide error-free results in terms of cor-
rect scaling as rms spectra, power spectra, power spectral density, or energy spec-
tral density, while compensating for the data windows used. They also often
indicate if insufficient averaging has been used for random signals, etc.

Virtually all frequency analysis is now done digitally, using the fast Fourier trans-
form (FFT) for constant bandwidth analysis on a linear frequency scale, and recur-
sive digital filters for constant-percentage bandwidth (fractional octave) analysis on
a logarithmic frequency scale; since the latter behave essentially in the same way as
analog filters, the chapter starts with a general discussion of filters and their use for
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frequency analysis, and later covers FFT analysis.Although spectrum analysis can be
done in other ways, such as autoregressive (AR) analysis, moving average (MA)
analysis, and their combination (ARMA analysis), these methods are not yet incor-
porated in spectrum analyzers, and so have not been treated in this chapter.

FILTERS

An ideal bandpass filter transmits that part of the input signal within its passband
and completely attenuates components at all other frequencies. Practical filters dif-
fer slightly from the ideal, as discussed below. Analog filters have now been almost
entirely superseded by digital filters.

Digital Filters. Digital filters (in particular, recursive digital filters) are devices
which process a continuous digitized signal and provide another signal as an output
which is filtered in some way with respect to the original. The relationship between
the output and input samples can be expressed as a difference equation (in general,
involving previous output and input values) with properties similar to those of a dif-
ferential equation which might describe an analog filter. Figure 14.1 shows a typical
two-pole section used in a one-third-octave digital filter analyzer (three of these are
cascaded to give six-pole filtration).

Two ways of changing the properties of a given digital filter circuit such as that
shown in Fig. 14.1 are:

1. For a given sampling frequency, the characteristics can be changed by changing
the coefficients of the difference equation. (In the circuit of Fig. 14.1 there are
three, effectively defining the resonance frequency, damping, and scaling.)

2. For given coefficients, the filter characteristic is defined only with respect to the
sampling frequency. Thus, halving the sampling frequency will halve the cutoff
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FIGURE 14.1 Block diagram of a typical two-pole digital filter section, consisting
of multipliers, adders, and delay units. H0, B1, and B2 are constants by which the
appropriate signal sample is multiplied. Z−1 indicates a delay of one sample interval
before the following operation.



frequencies, center frequencies, and bandwidths; consequently, the constant-
percentage characteristics are maintained one octave lower in frequency. For this
reason, digital filters are well adapted to constant-percentage bandwidth analysis
on a logarithmic (i.e., octave-based) frequency scale.

Thus, the 3 one-third-octave characteristics within each octave are generated by
changing coefficients, while the various octaves are covered by repetitively halving
the sampling frequency. Every time the sampling frequency is halved, it means that
only half the number of samples must be processed in a given time; the total num-
ber of samples for all octaves lower than the highest is (1⁄2 + 1⁄4 + 1⁄8 + ⋅⋅⋅), which in the
limit is the same as the number in the highest octave. By being able to calculate
twice as fast as is necessary for the upper octave alone, it is possible to cover any
number of lower octaves in real time. This is the other reason why digital filters are
so well adapted to real-time constant-percentage bandwidth analysis over a wide
frequency range.

Filter Properties. Figure 14.2 illustrates what is meant by the 3-dB bandwidth and
the effective noise bandwidth, the first being most relevant when separating discrete
frequencies, and the second when dealing with random signals. For filters having
good selectivity (i.e., having steep filter flanks), there is not a great difference
between the two values, and so in the following discussion no distinction is made
between them.
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FIGURE 14.2 Bandwidth definitions for a practical filter
characteristic. The 3-dB bandwidth is the width at the 3-dB
(half-power) points. The effective noise bandwidth is the width
of an ideal filter with the same area as the (hatched) area under
the practical filter characteristic on an amplitude squared
(power) scale.

The response time TR of a filter of bandwidth B is on the order of 1/B, as illus-
trated in Fig. 14.3, and thus the delay introduced by the filter is also on this order.
This relationship can be expressed in the form

BTR ≈ 1 (14.1)



which is most applicable to constant-bandwidth filters, or in the form

bnr ≈ 1 (14.2)

where b = B/f0 = relative bandwidth
nr = f0TR = number of periods of frequency f0 in time TR

f0 = center frequency of filter

This form is more applicable to constant-percentage bandwidth filters. Thus, the
response time of a 10-Hz bandwidth filter is approximately 100 milliseconds, while
the response time of a 1 percent bandwidth filter is approximately 100 periods. Fig-
ure 14.3 also illustrates that the effective length of the impulse TE is also approxi-
mately 1/B, while to integrate all of the energy contained in the filter impulse
response it is necessary to integrate over at least 3TR.

Choice of Bandwidth and Frequency Scale. In general it is found that analysis
time is governed by expressions of the type BT ≥ K, where K is a constant [see, for
example, Eq. (14.1)] and T is the time required for each measurement with band-
width B. Thus, it is important to choose the maximum bandwidth which is consistent
with obtaining an adequate resolution, because not only is the analysis time per
bandwidth proportional to 1/B but so is the number of bandwidths required to cover
a given frequency range—a squared effect.

It is difficult to give precise rules for the selection of filter bandwidth, but the fol-
lowing discussion provides some general guidelines: For stationary deterministic
and, in particular, periodic signals containing equally spaced discrete frequency
components, the aim is to separate adjacent components; this can best be done using
a constant bandwidth on a linear frequency scale. The bandwidth should, for exam-
ple, be chosen as one-fifth to one-third of the minimum expected spacing (e.g., the
lowest shaft speed, or its half-order if this is to be expected) (see Fig. 14.4A). For sta-
tionary random or transient signals, the shape of the spectrum will most likely 
be determined by resonances in the transmission path between the source and the
pickup, and the bandwidth B should be chosen so that it is about one-third of the

14.4 CHAPTER FOURTEEN

FIGURE 14.3 Typical filter impulse response.
TR = filter-response time (≈1/B); TE = effective
duration of the impulse (≈1/B); B = bandwidth.



bandwidth Br of the narrowest resonance peak (Fig. 14.4B). For constant damping
these tend to have a constant Q or constant-percentage bandwidth character, and
thus constant-percentage bandwidth on a logarithmic frequency scale often is most
appropriate. See Chap. 19 for further discussions of the desired resolution band-
width for random data analysis.

A linear frequency scale is normally used together with a constant bandwidth,
while a logarithmic frequency scale is normally used together with a constant-
percentage bandwidth, as each combination gives uniform resolution along the
scale. A logarithmic scale may be selected in order to cover a wide frequency range,
and then a constant-percentage bandwidth is virtually obligatory. A logarithmic fre-
quency scale may, however, occasionally be chosen in conjunction with a constant
bandwidth (though over a limited frequency range) in order to demonstrate a rela-
tionship which is linear on log-log scales (e.g., conversions between acceleration,
velocity, and displacement).

VIBRATION ANALYZERS AND THEIR USE 14.5

FIGURE 14.4 Choice of filter bandwidth B for different types of signals.
(A) Discrete frequency signals—harmonic spacing fh. (B) Stationary ran-
dom and impulsive signals.



Choice of Amplitude Scale. Externally measured vibrations, on a machine casing
for example, are almost always the result of internal forces acting on a structure whose
frequency response function modifies the result. Because the structural response func-
tions vary over a very wide dynamic range, it is almost always an advantage to depict
the vibration spectra on a logarithmic amplitude axis. This applies particularly when
the vibration measurements are used as an indicator of machine condition (and thus,
internal forces and stresses) since the largest vibration components by no means nec-
essarily represent the largest stresses. Even where the vibration is of direct interest
itself, in vibration measurements on humans, the amplitude axis should be logarithmic
because this is the way the body perceives the vibration level.

It is a matter of personal choice (though sometimes dictated by standards)
whether the logarithmic axes are scaled directly in linear units or in logarithmic units
expressed in decibels (dB) relative to a reference value. Another aspect to be con-
sidered is dynamic range. The signal from an accelerometer (plus preamplifier) can
very easily have a valid dynamic range of 120 dB (and more than 60 dB over three
frequency decades when integrated to velocity). The only way to utilize this wide
range of information is on a logarithmic amplitude axis. Figure 14.5 illustrates both
these considerations; it shows spectra measured at two different points on the same
gearbox (and representing the same internal condition) on both logarithmic and lin-
ear amplitude axes.The logarithmic representations of the two spectra are quite sim-
ilar, while the linear representations are not only different but hide a number of
components which could be important.

An exception where a linear amplitude scale usually is preferable to a logarith-
mic scale is in the analysis of relative displacement signals, measured using proxim-
ity probes, for the following reasons: (1) The parameter being measured is directly of
interest for comparison with the results of rotor dynamic and bearing hydrodynamic
calculations. (2) The dynamic range achievable with relative shaft vibration mea-
surements (as limited by mechanical and electrical runout) does not justify or neces-
sitate depiction on a logarithmic axis.

Analysis Speed. There are two basic elements in a filter analyzer which can give
rise to significant delays and thus influence the speed of analysis.

The filter introduces a delay on the same order as its response time TR (see Fig.
14.3). This is most likely to dominate in the analysis of stationary deterministic sig-
nals, where the filter contains only one discrete frequency component at a time and
only a short averaging time is required.

The detector which measures rms values introduces a delay on the same order as
the averaging time TA. The choice of averaging time depends on the type of signal
being analyzed, namely, stationary deterministic (discrete frequency) or stationary
random.

Choice of Averaging Time. For deterministic signals, made up entirely of discrete
frequency components, the minimum averaging time required when there is only
one component in the filter passband (e.g., for a one-third-octave filter containing
the first, second, or third harmonic of shaft speed) comprises three periods of this
frequency. However, since a result is obtained only after the filter response time
(1/B) the averaging time should be set at least equal to this for exponential averag-
ing, or double that value for linear averaging. When a filter contains two to five dis-
crete frequencies (e.g., a one-third-octave filter in the range from the fourth to the
twentieth harmonic of shaft speed) there will possibly be a beat frequency equal to
the difference between adjacent components (i.e., the shaft speed), and an averaging
time five times the beat period (reciprocal of the beat frequency) will be required to
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FIGURE 14.5 Comparison of rms logarithmic and rms linear amplitude scales for
the depiction of vibration velocity spectra from two measurement points [(A) and
(B)] on the same gearbox (thus representing the same internal condition). The log-
arithmic representations in terms of velocity level are similar and show all com-
ponents of interest. The linear spectra in terms of velocity amplitude are quite
different, and both hide many components which could be important.



smooth the result. In theory, the same applies with more components in the pass-
band (e.g., a one-third-octave filter at higher frequencies), but the bandpassed signal
will then resemble a pseudo-random signal, and can be treated as a truly random sig-
nal for analysis. If a single frequency component dominates a higher frequency band
(e.g., a gearmesh frequency without sidebands), it is possible to revert to the require-
ment given above for a single component.

For random signals, it is necessary to limit the standard deviation of the error to
an acceptable value. The normalized random error as a proportion of the rms value
is given by the formula:

ε = (14.3)

where B is the filter bandwidth, and TA the averaging time.This error corresponds to
approximately 1 dB when the BTA product is 16. To halve the error, the averaging
time must be increased by a factor of 4, etc.

Table 14.1 summarizes the above information; further detailed information is
given in Ref. 1.

Scaling and Calibration for Stationary Signals. Scaling is the process of deter-
mining the correct units for the Y axis of a frequency analysis, while calibration is the
process of setting and confirming the numerical values along the axis. In the most
general case, spectra can be scaled in terms of mean-square or rms values at each fre-
quency (or, strictly speaking, for each filter band). For signals dominated by discrete
frequency components, with no more than one component per filter band, this yields
the mean-square or rms value of each component.

For random signals, the mean square value within each frequency resolution
bandwidth is the most desirable scaling because the mean square value passed by a
narrow bandpass filter in proportional to the filter bandwidth. This allows the spec-
trum of mean square values to be normalized to a power spectral density W(f ) by
dividing by the bandwidth. The results then are independent of the analysis band-
width, provided the latter is narrower than the width of peaks in the spectrum being
analyzed (e.g., following Fig. 14.4B). As examples, power spectral density is
expressed in g 2 per hertz when the input signal is expressed in gs acceleration, and
in volts squared per hertz when the input signal is in volts.

The concept of power spectral density is meaningless in connection with discrete
frequency components (with infinitely narrow bandwidth); it can be applied only to
the random parts of signals containing mixtures of discrete frequency and random
components. Nevertheless, it is possible to calibrate a power spectral density scale

1
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2���BTA
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TABLE 14.1 Choice of Averaging Time for Filter Analysis of Stationary Signals

Signal type

Deterministic— Deterministic— Deterministic—
1 component 2–5 components >5 components

in band in band in band Random*

Averaging time TA TA > 3/f1 + TA > 5/fbeat + TA > 16/B
Exponential TA > 1/B TA > 1/B Treat as random Ditto
Linear TA > 2/B TA > 2/B Ditto

Legend: f1 = single frequency in band, fbeat = minimum beat frequency in band, B = filter bandwidth.
* For normalized error ≈ 1 dB.



using a discrete frequency calibration signal. For example, when analyzing a 1g sinu-
soidal signal with a 10-Hz analyzer bandwidth, the height of the discrete frequency
peak may be labeled 12g 2/10 Hz = 0.1g 2/Hz.

For constant-bandwidth analysis, the scaling thus achieved is valid for all fre-
quencies; for constant-percentage bandwidth analysis, the bandwidth and power
spectral density scaling vary with frequency. On log-log axes, it is possible to draw
straight lines representing constant power spectral density, which slope upward at 
10 dB per frequency decade from the calibration point.

FFT ANALYZERS

Fast Fourier transform analyzers make use of the FFT algorithm2 to calculate the
spectra of blocks of data.The FFT algorithm is an efficient way of calculating the dis-
crete Fourier transform (DFT). As described in Chap. 19, this is a finite, discrete
approximation of the Fourier integral transform. The equations given there for the
DFT assume real-valued time signals [see Eq. (19.30)]. The FFT algorithm makes
use of the following versions, which apply equally to real or complex time series:

X(m) = Δt �
N − 1

n = 0
x(n Δt) exp (−j2πm Δf n Δt) (14.4)

x(n) = Δf �
N − 1

m = 0
X(m Δf ) exp ( j2πm Δf n Δt) (14.5)

These equations give the spectrum values X(m) at the N discrete frequencies 
m Δf and give the time series x(n) at the N discrete time points n Δt.

Whereas the Fourier transform equations are infinite integrals of continuous func-
tions, the DFT equations are finite sums but otherwise have similar properties. The
function being transformed is multiplied by a rotating unit vector exp (±j2πm Δf n Δt),
which rotates (in discrete jumps for each increment of the time parameter n) at a
speed proportional to the frequency parameter m. The direct calculation of each fre-
quency component from Eq. (14.4) requires N complex multiplications and addi-
tions, and so to calculate the whole spectrum requires N 2 complex multiplications
and additions.

The FFT algorithm factors the equation in such a way that the same result is
achieved in roughly N log2 N operations.1 This represents a speedup by a factor of
more than 100 for the typical case where N = 1024 = 210. However, the properties of
the FFT result are the same as those of the DFT.

Inherent Properties of the DFT. Figure 14.6 graphically illustrates the differ-
ences between the discrete Fourier transform and the Fourier integral transform.

Because the spectrum is available only at discrete frequencies m Δf (where m is
an integer), the time function is implicitly periodic (as for the Fourier series). The
periodic time

T = N Δt = 1/Δf (14.6)

where N = number of samples in time function and frequency spectrum
T = corresponding record length of time function
Δt = time sample spacing
Δf = frequency line spacing = 1/T
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In an analogous manner, the discrete sampling of the time signal means that the
spectrum is implicitly periodic, with a period equal to the sampling frequency fs,
where

fs = N Δf = 1/Δt (14.7)

Note from Fig. 14.6 that because of the periodicity of the spectrum, the latter half
(m = N/2 to N) actually represents the negative frequency components (m = −N/2 to
0). For real-valued time samples (the usual case), the negative frequency components
are determined in relation to the positive frequency components by the equation

X(−m) = X*(m) (14.8)

and the spectrum is said to be conjugate even.
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FIGURE 14.6 Graphical comparison of (A) the Fourier trans-
form with (B) the discrete Fourier transform (DFT) (see text).
Note that for purposes of illustration, a function has been chosen
(gaussian) which has the same form in both time and frequency
domains.



In the usual case where the x(n) are real, it is only necessary to calculate the spec-
trum from m = 0 to N/2, and the transform size may be halved by one of the follow-
ing two procedures:

1. The N real samples are transformed as though representing N/2 complex values,
and that result is then manipulated to give the correct result.3

2. A zoom analysis (discussed in a later section) is performed which is centered on
the middle of the baseband range to achieve the same result.

Thus, most FFT analyzers produce a (complex) spectrum with a number of spectral
lines equal to half the number of (real) time samples transformed. To avoid the
effects of aliasing (see next section), not all the spectrum values calculated are valid,
and it is usual to display, say, 400 lines for a 1024-point transform or 800 lines for a
2048-point transform.

Aliasing. Aliasing is an effect introduced by the sampling of the time signal,
whereby high frequencies after sampling appear as lower ones (as with a strobo-
scope). The DFT algorithm of Eq. (14.4) cannot distinguish between a component
which rotates, say, seven-eighths of a revolution between samples and one which
rotates a negative one-eighth of a revolution.Aliasing is normally prevented by low-
pass filtering the time signal before sampling to exclude all frequencies above half
the sampling frequency (i.e., −N/2 < m < N/2). From Fig. 14.6 it will be seen that this
removes the ambiguity. In order to utilize up to 80 percent of the calculated spec-
trum components (e.g., 400 lines from 512 calculated), it is necessary to use very
steep antialiasing filters with a slope of about 120 dB/octave.

Normally, the user does not have to be concerned with aliasing because suitable
antialiasing filters automatically are applied by the analyzer. One situation where it
does have to be allowed for, however, is in tracking analysis (discussed in a follow-
ing section) where, for example, the sampling frequency varies in synchronism with
machine speed.

Leakage. Leakage is an effect whereby the power in a single frequency compo-
nent appears to leak into adjacent bands. It is caused by the finite length of the
record transformed (N samples) whenever the original signal is longer than this; the
DFT implicitly assumes that the data record transformed is one period of a periodic
signal, and the leakage depends on what is actually captured within the time window,
or data window.

Figure 14.7 illustrates this for three different sinusoidal signals. In (A) the data
window corresponds to an exact integer number of periods, and a periodic repe-
tition of this produces an infinitely long sinusoid with only one frequency. For (B)
and (C) (which have a slightly higher frequency) there is an extra half-period in
the data record, which gives a discontinuity where the ends are effectively joined
into a loop, and considerable leakage is apparent. The leakage would be some-
what less for intermediate frequencies. The difference between the cases of Fig.
14.7B and C lies in the phase of the signal, and other phases give an intermediate
result.

When analyzing a long signal using the DFT, it can be considered to be multiplied
by a (rectangular) time window of length T, and its spectrum consequently is con-
volved with the Fourier spectrum of the rectangular time window,4 which thus acts
like a filter characteristic. The actual filter characteristic depends on how the result-
ing spectrum is sampled in the frequency domain, as illustrated in Fig. 14.8.

In practice, leakage may be counteracted:
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FIGURE 14.8 Frequency sampling of the continuous spectrum of a time-
limited sinusoid of length T. (A) Integer number of periods, side lobes sampled
at zero points (compare with Fig. 14.7A). (B) Half integer number of periods,
side lobes sampled at maxima (compare with Fig. 14.7B and C).
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FIGURE 14.7 Time-window effects when analyzing a sinusoidal signal in an FFT 
analyzer using rectangular weighting. (A) Integer number of periods, no discontinuity.
(B) and (C) Half integer number of periods but with different phase relationships, giv-
ing a different discontinuity when the ends are joined into a loop.



1. By forcing the signal in the data window to correspond to an integer number of
periods of all important frequency components. This can be done in tracking
analysis (discussed in a later section) and in modal analysis measurements (Chap.
21), for example, where periodic excitation signals can be synchronized with the
analyzer cycle.

2. (For long transient signals) By increasing the length of the time window (for
example, by zooming) until the entire transient is contained within the data
record.

3. By applying a special time window which has better leakage characteristics than
the rectangular window already discussed.

Later sections deal with the choice of data windows for both stationary and tran-
sient signals.

Picket Fence Effect. The picket fence effect is a term used to describe the
effects of discrete sampling of the spectrum in the frequency domain. It has two
connotations:

1. It results in a nonuniform frequency weighting corresponding to a set of overlap-
ping filter characteristics, the tops of which have the appearance of a picket fence
(Fig. 14.9).

2. It is as though the spectrum is viewed through the slits in a picket fence, and thus
peak values are not necessarily observed.

One extreme example is in fact shown in
Fig. 14.8, where in (A) the side lobes are
completely missed, while in (B) the side
lobes are sampled at their maxima and
the peak value is missed.

The picket fence effect is not a
unique feature of FFT analysis; it occurs
whenever discrete fixed filters are used,
such as in normal one-third-octave
analysis. The maximum amplitude error
which can occur depends on the overlap
of the adjacent filter characteristics, and
this is one of the factors taken into
account in the following discussion on
the choice of data window.

Data Windows for Analysis of Stationary Signals. A data window is a weight-
ing function by which the data record is effectively multiplied before transforma-
tion. (It is sometimes more efficient to apply it by convolution in the frequency
domain.) The purpose of a data window is to minimize the effects of the disconti-
nuity which occurs when a section of continuous signal is joined into a loop.

For stationary signals, a good choice is the Hanning window (one period of a sine
squared function), which has a zero value and slope at each end and thus gives a grad-
ual transition over the discontinuity. In Fig. 14.10 it is compared with a rectangular
window, in both the time and frequency domains. Even though the main lobe (and thus
the bandwidth) of the frequency function is wider, the side lobes fall off much more
rapidly and the highest is at −32 dB, compared with −13.4 dB for the rectangular.

Other time-window functions may be chosen, usually with a trade-off between
the steepness of filter characteristic on the one hand and effective bandwidth on the
other. Table 14.2 compares the time windows most commonly used for stationary
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FIGURE 14.9 Illustration of the picket fence
effect. Each analysis line has a filter characteris-
tic associated with it which depends on the
weighting function used. If a frequency coincides
exactly with a line, it is indicated at its full level.
If it falls midway between two lines, it is repre-
sented in each at a lower level corresponding to
the point where the characteristics cross.



TABLE 14.2 Properties of Various Data Windows

Side lobe Maximum
Highest side fall-off, Noise amplitude

Window type lobe, dB dB/decade bandwidth* error, dB

Rectangular −13.4 −20 1.00 3.9
Hanning −32 −60 1.50 1.4
Hamming −43 −20 1.36 1.8
Kaiser-Bessel −69 −20 1.80 1.0
Truncated Gaussian −69 −20 1.90 0.9
Flattop −93 0 3.70 <0.1

* Relative to line spacing.
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FIGURE 14.10 Comparison of rectangular and Hanning window functions of
length T seconds. Full line—rectangular weighting; dotted line—Hanning
weighting. The inset shows the weighting functions in the time domain.

signals, and Fig. 14.11 compares the effective filter characteristics of the most impor-
tant. The most highly selective window, giving the best separation of closely spaced
components of widely differing levels, is the Kaiser-Bessel window. On the other
hand, it is usually possible to separate closely spaced components by zooming, at the
expense of a slightly increased analysis time.

Another window, the flattop window, is designed specifically to minimize the
picket fence effect so that the correct level of sinusoidal components will be indi-
cated, independent of where their frequency falls with respect to the analysis lines.
This is particularly useful with calibration signals. Nonetheless, by taking account
of the distribution of samples around a spectrum peak, it is possible to compensate
for picket fence effects with other windows as well. Figure 14.12, which is specifi-
cally for the Hanning window, is a nomogram giving both amplitude and frequency
corrections, based on the decibel difference (ΔdB) between the two highest sam-
ples around a peak. For stable single-frequency components this allows determi-
nation of the frequency to an accuracy of an order of magnitude better than the
line spacing.



Data Windows for Analysis of Transient Signals. When using impulsive (e.g.,
hammer) excitation of structures for determining their frequency response char-
acteristics (e.g., see Chap. 21), it is common to use the following special data win-
dows:

1. A short rectangular window may be applied over the very short excitation im-
pulse in order to exclude noise from the remaining portion of the record.

2. An exponential window can be applied where the response is very long (i.e.,
lightly damped structures) to reduce the signal to practically zero at the end of
the record, and thus avoid discontinuities. The effect is the same as adding extra
damping which is very precisely known and can be subtracted from the measure-
ment results.A half-Hanning taper is often added to both the leading and trailing
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FIGURE 14.11 Comparison of worst-case filter characteristics for rectangular and other weight-
ing functions for an 80-dB dynamic range. (A) Rectangular. (B) Kaiser-Bessel. (C) Hanning. (D)
Flattop.



edges of a short rectangular window, and to the leading edge of an exponential
window, to mitigate the effects of the discontinuities.

Zoom Analysis.5 Zoom analysis is the term given to a spectrum analysis having
increased resolution over a restricted part of the frequency range. The following
technique is commonly incorporated in FFT analyzers.

Real-time zoom (illustrated in the block diagram of Fig. 14.13) is a zoom process
in which the entire signal is first modified to shift its frequency origin to the center
of the zoom range. Then it is passed through a low-pass filter (usually a digital filter
in real time) which has a passband corresponding to the original zoom-band (Fig.
14.14). Because of the low-pass filtration, the signal then can be resampled at a lower
sampling rate without aliasing, and the resampled signal processed by a fast Fourier
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FIGURE 14.12 Picket fence corrections for Hanning weighting,
where ΔL = level correction, dB; Δf = frequency correction; Hz; B =
line spacing, Hz; ΔdB = difference in decibels between the two highest
samples around a peak representing a discrete frequency component.
Three examples are shown: (A) Actual frequency coincides with cen-
ter line. (B) Actual frequency midway between two lines. (C) General
situation. Note that the frequency correction Δf/B is almost linear.



transform. The original frequency shift is accomplished by multiplying the incoming
signal by a unit vector (phasor) rotating at −f0 (thereby subtracting f0 from all fre-
quencies in it), and the modified time signal is thus complex. This is one situation
where the fast Fourier transform of complex data is used. Figure 14.15 gives an
example of the use of zoom analysis to show that what appears in a baseband analy-
sis to be the second harmonic of shaft speed actually is dominated by twice the line
frequency at 100 Hz and reveals that what appears to be a single-frequency compo-
nent in a base-band spectrum actually comprises a family of uniformly spaced com-
ponents, the second highest of which is the second harmonic of the shaft speed.

Most analyzers now provide flexibility in selecting the transform size, so zoom
factors of up to 64 or so can be achieved by performing a correspondingly longer
transform and viewing only the desired part of the result.
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FIGURE 14.13 Block diagram for real-time zoom with bandwidth B centered on frequency
f0. M is the zoom factor and also the factor by which the sampling frequency is reduced.

FIGURE 14.14 Principle of real-time zoom, using a low-pass filter to filter
out the portion of the original signal in the zoom-band of width B. Prior to
this, the frequency origin is shifted to frequency f0 (the desired center fre-
quency of the zoom-band) by multiplying the (digitized) time signal by e−j2πf0t.



FIGURE 14.15 (A) Original baseband spectrum. (B) Shaded section of (A) zoomed by a factor of
64:1. Highest component at 100 Hz is twice the line frequency. Next highest component on the left is
twice the shaft rotational speed.

Real-time zoom has the advantage that the zoom factor obtainable is virtually
unlimited. A procedure is often employed (as illustrated in Fig. 14.13) whereby the
signal samples are repeatedly circulated around a loop containing a low-pass filter
which cuts off at one-half the previous maximum frequency, after which the sam-
pling frequency is halved by dropping every second sample. Each circulation dou-
bles the zoom factor and at the same time doubles the length of original signal
required to fill the transform buffer. It is this time requirement which places a limit
on the zoom factor, as well as on the stability of the signal itself.A zoom factor of 16
in a 400-line spectrum, for example, gives the equivalent of a 6400-line spectrum; a
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finer resolution is not required to analyze the vibration spectrum of a machine
whose speed fluctuates by, say, 0.1 percent.

Real-time zoom suffers the disadvantage that the entire signal must be repro-
cessed to zoom in another band. This has two detrimental consequences:

1. For very narrow bandwidths (long record lengths), the analysis time is very long
for each zoom analysis.

2. There is no certainty that exactly the same signal is processed each time unless it
is stored digitally and reapplied to the analyzer.

On the other hand, using a single, large transform has the advantage that for zoom
analysis in different bands, exactly the same data record is used.Thus, it is known, for
example, that there will be an exact integer relationship between the various har-
monics of a periodic signal. This can be useful, as a typical example, in separating the
various harmonics of shaft speed from those of line frequency, in induction motor
vibrations. Furthermore, the long analysis time is required only once (to fill the data
buffer); further zoom analyses on the same record are purely a matter of viewing a
different part of the result.

Thus, both types of zoom are advantageous for different purposes. A large trans-
form is probably best for diagnostic analysis of machine vibration signals, whereas
real-time zoom gives more flexibility in frequency response measurements (system
frequency response should not change even where the excitation signals change).
Real-time zoom also gives the possibility of very large zoom factors when they are
required.

In real-time zoom, it is only the preprocessing of the signal which has to be in real
time; the actual FFT analysis of the signal, once it is stored in the transform buffer,
does not have to be in real time.

ANALYSIS OF STATIONARY SIGNALS USING FFT

Equation (14.6) shows that for a single fast Fourier transform, the product (band-
width times averaging time) BTA = 1, at least for rectangular weighting where B is
equal to the line spacing Δf (Table 14.2). The same applies for any weighting func-
tion, the increased bandwidth being exactly compensated by a corresponding
decrease in effective record length.6

For stationary deterministic signals, a single transform having a BTA product
equal to unity is theoretically adequate, although a small number of averages is
sometimes performed if the signal is not completely stable. Figure 14.16 illustrates
the effect of averaging for a deterministic signal and demonstrates that the sinu-
soidal components are unaffected; the only effect is to smooth out the (nondeter-
ministic) noise at the base of the spectrum (Fig. 14.16B).

For stationary random signals, the normalized random error of the result of rms
averaging n independent spectra is given by the equivalent of Eq. (14.3), or

ε = (14.9)

As is always the case, rms averaging means averaging the squared magnitudes (the
mean-square values) of the various different spectra and taking the square root of
the result.

1
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FIGURE 14.16 Effect of averaging with a stationary deterministic signal. (A) Instantaneous
spectrum (average of 1). (B) The linear average of eight spectra.

Figure 14.17 illustrates (A) an instantaneous spectrum, (B) the average of eight
spectra, and (C) the average of 128 spectra.The meaning of the standard error ε [Eq.
(14.9)] is illustrated in (B) and (C). Statistically, there is a 68 percent probability that
the actual error will be less than ε, a 95.5 percent probability that it will be less than
2ε, and a 99.7 percent probability that it will be less than 3ε.

For rectangular weighting, independent spectra are those from nonoverlapping
time records; when other weighting functions are used, the situation is different. For
example, Fig. 14.18A illustrates the overall (power) weighting obtained when Han-
ning windows are applied to contiguous records. Note that virtually half of the
incoming signal is excluded from the analysis, whereas a 50 percent overlapping of
consecutive records regains most of the lost information. Thus, when using window
functions similar to Hanning (as recommended for stationary signals), it is almost
always advantageous to average the results from 50 percent overlapping records. A
method for calculating the effective number of averages obtained in this way is given
in Ref. 7; for 50 percent overlapping Hanning windows the error is very small in
treating them as independent records.

Real-Time Analysis. A fast Fourier transform analyzer is said to operate in real
time when it is able to process all the incoming data, even though presentation of
the results is delayed by an amount corresponding to the calculation time. This



implies that the time taken to analyze a data record, Ta, is less than the time taken
to collect the data transformed, T. It also implies that the analysis process should
not interrupt the continuous recording of data, so that recording can continue in
one part of the memory at the same time as analysis is being performed in another.
T is inversely proportional to the selected frequency range, and the highest fre-
quency range for which Ta is less than T is called the real-time frequency. This 
condition will ensure that all the incoming data are analyzed only when rect-
angular weighting is used. With Hanning weighting, for example, where 50 percent
overlap analysis must be employed to analyze all the data, the true real-time fre-
quency will be halved, since twice as many transforms must be performed for the
same length of data record. In yet another sense, the analysis is not truly real-time
unless the overall weighting function is uniform. As illustrated in Fig. 14.18, the
minimum overlap of Hanning windows to achieve this is two-thirds, which reduces
the true real-time frequency to one-third of the commonly understood definition
given above.
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FIGURE 14.17 Effect of averaging with a stationary random signal. (A)
Instantaneous spectrum. (B) Average of eight spectra. (C) Average of 128
spectra.



In practice, with stationary signals, there is no advantage to more than a 50 per-
cent overlap, since (1) statistical reliability is not significantly improved and (2) all
sections of the record are statistically equivalent, so that the overall weighting
function is not important. It can be important for nonstationary signals, such as
transients, as discussed below. For stationary signals, where any data missed are
statistically no different from the data analyzed, the only advantages of real-time
analysis are that (1) results with a given accuracy are obtained in the minimum
possible time and (2) maximum information is extracted from a record of limited
length.

FFT Analysis of Transients. Consider the use of fast Fourier transform analysis
when the entire transient fits into the transform size T without loss of high-
frequency information. Figure 14.19 shows such an example where the duration of
the transient is less than the analyzer record length of 2048 samples (2K) in a fre-
quency range which does not exclude high-frequency information in the signal.
Rectangular weighting should be used in such a case, where the signal value is zero
at each end, so that no discontinuity arises from making the record into a loop (an
inherent property of the FFT process). Exponential weighting sometimes may be
used to force the signal down to zero at the end of the record, but the frequency
spectrum will then include the effects of the extra damping which this represents.
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FIGURE 14.18 Overall weighting functions for spectrum averaging with overlapping Hanning win-
dows. (A) Zero overlap (step length T). (B) 50 percent overlap (step length T/2). (C) 66.7 percent over-
lap (step length T/3). (D) 75 percent overlap (step length T/4). T is the record length for the FFT
transform.



With rectangular weighting, the analysis bandwidth is equal to the line spacing
1/T, which is always less than the effective signal bandwidth. Conversion of the
results to energy spectral density, therefore, is valid in most practical situations.
Some analyzers provide the results in terms of energy spectral density, but if the
results are available only in terms of power or mean square value (U2), they must
be multiplied by the time T corresponding to the record length to convert them to
energy and divided by the bandwidth 1/T to convert them to energy spectral den-
sity, expressed in engineering units squared times seconds per hertz. Altogether,
this represents a multiplication by T 2.

Where a transient is longer than the normal transform size T, it can be analyzed
in one of the following ways:

1. Zoom FFT (see Zoom Analysis, above, for background information). A
suitable zoom factor is chosen such that the transform length (1/Δf ) is greater than
the duration of the transient. In the case of real-time zoom, analysis in more than
one zoom-band requires that the transient be recorded in an external medium and
played back for each zoom analysis. Rectangular weighting should be used (thus B =
Δf ) and energy spectral density (as above) is always valid using a value of T corre-
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FIGURE 14.19 Example of an FFT analysis of a short transient signal. (A) Time signal of length 2048
samples (2K) corresponding to 250 milliseconds (T = 250 milliseconds). (B) 800-line FFT spectrum with
bandwidth B = Δf = 4 Hz (rectangular weighting). Scaling on left is in rms units. Scaling on right is con-
verted to energy spectral density (ESD) by multiplying mean-square values by T 2.



FIGURE 14.20 Analysis of a long transient signal using the equivalent of a
large transform. (A) Envelope of time signal of length 10,240 samples (10K)
corresponding to 2 seconds (T = 2 seconds). (B) 4000-line composite zoom spec-
trum with bandwidth B = Δf = 0.5 Hz (rectangular weighting). Scaling on right
is converted to energy spectral density (ESD).

sponding to the zoom record length (1/B).The narrow bandwidth may give a restric-
tion of dynamic range of the result. Figure 14.20 shows a typical energy spectrum,
obtained by a process giving the same result as a single large transform.

2. Scan averaging. When the entire transient is stored in digital form in a long
memory, it is possible to obtain its spectrum by scanning a short time window (e.g., a
Hanning window) of length T over the entire record; this is done in overlapping steps,
and the results are averaged. As already demonstrated for stationary signals (Fig.
14.18), this procedure yields a result with uniform weighting for step lengths T/3 and
T/4. The same applies to step lengths T/5, T/6, etc., but there is a slight difference with
respect to the overall weighting function for the different step lengths. Figure 14.21
illustrates the overall time weighting function for different step lengths T/n (where n
is an integer greater than 2) and shows the length of the uniform section (within which
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FIGURE 14.21 Overall weighting function for scan averaging of a transient. (A)
Overlapping Hanning windows of length T with definition of parameters m and n.
(B) Overall weighting function with indication of Teff and Tflat in terms of T, m, and
n. Teff is the effective length of the time window for conversion of power to energy
units. Tflat is the length of the section with uniform weighting within which the tran-
sient ideally should be located.

the entire transient should ideally be located) and the effective length Teff by which
power units should be multiplied to convert them to energy. For a conversion to
energy spectral density to be valid, the width of spectrum peaks must be somewhat
greater than the analysis bandwidth; this can be seen by inspection of the analysis
results. For example, for the Hanning window, the bandwidth B is 1.5 times the line
spacing Δf (see Table 14.2), and so spectrum peaks should have a 3-dB bandwidth of
more than five lines.

Even though the broader bandwidth obtained by scan averaging may result in a
loss of spectrum detail, it provides considerable improvement in the dynamic range
of the result. Figure 14.22 (using scan averaging) illustrates these points for the same
signal as Fig. 14.20 (using zoom).The spectrum obtained by scan averaging generally
has 12 dB more dynamic range than that obtained by zoom (with factor 10), but the
level of peaks does not differ by this amount; this confirms that their resolution is
not sufficient to allow scaling in terms of energy spectral density.

To obtain Fig. 14.22, scan averaging with a step length of T/4 was used (an over-
lap of successive records of 75 percent). Even though a step length of T/3 (overlap of
66.7 percent) is theoretically more efficient, T/4 is usually more convenient because
the number of samples in T generally is a power of 2.



FIGURE 14.22 Analysis of a long transient by scan averaging (same signal as Fig. 14.20).
The energy spectral density (ESD) scaling on the right can be compared with that in Fig. 14.20,
although the peaks are not valid because of insufficient resolution.

ANALYSIS OF NONSTATIONARY SIGNALS

A typical nonstationary signal results from measurements made during a machine
run-up or coast-down (here, the primary cause of the nonstationary signal is a change
in shaft speed). The signal can be analyzed by dividing it up into a series of short
quasi-stationary time periods (often overlapping), in each of which the speed is
roughly constant. The length of the time window used to select a portion of the con-
tinuous signal may have to be chosen so as to ensure this.The simplest way to analyze
a nonstationary signal of this type is to use a tracking filter tuned to a specific har-
monic of shaft speed and to record the results vs. rpm of the machine. If a phase meter
is inserted between the filtered signal and the tracking signal, it is possible to record
phase as well as amplitude against rpm to give what is called a Bode plot.8

Using a fast Fourier transform analyzer, the behavior of several harmonics may
be studied simultaneously. One way to do this, using an FFT analyzer having a long
memory, is with a simple scan analysis; a short Hanning window is scanned through
the record (as for a scan average), and successive instantaneous spectra (from each
window position) are viewed on the display screen. The speed of the scan may be
changed by varying the step length; this is one situation (in contrast to scan averag-
ing) where very short step lengths may be of advantage, for example, in slowing
down the passage through a resonance.

A highly effective method of representing such a scan analysis is by a “water-
fall,” or “cascade,” plot as shown in Fig. 14.23 (which represents a typical machine
run-up). As indicated, the third dimension of such a three-dimensional plot can be
either time or rpm; for a simple scan analysis it usually is time, but if the spectra are
spaced at equal intervals of rpm, a number of advantages result. Harmonically
related components (whose bases follow radial lines) then can be separated easily
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FIGURE 14.23 Three-dimensional spectral map or waterfall plot, showing how spectra change with
shaft rpm or time.

from constant-frequency components (e.g., related to line frequency or resonances)
whose bases follow lines parallel with the rpm axis. Such a cascade plot, with rpm as
the third axis, is sometimes referred to as a Campbell diagram, although strictly
speaking a Campbell diagram has a vertical frequency axis, a horizontal rpm axis,
and a signal amplitude represented as the diameter of a circle (or square) centered
on the appropriate point in the diagram.

Ideally, each of the spectra in a cascade plot such as Fig. 14.23 should be obtained
with constant shaft speed at the respective rpm. This is sometimes possible, for
example, during the very slow start-up of a large steam turbine, but usually each
spectrum is a windowed section of a continuously varying signal with a small speed
change within the window length. Consequently, the peak corresponding to each
harmonic is not always localized in one analysis line; in particular, the higher har-
monics are likely to be spread over progressively more lines.Thus, the height of each
peak cannot be used directly as a measure of the strength of each component; it
would be necessary to integrate over the whole of a distributed peak to measure the
total power contained in it.

A way of overcoming this problem is to use tracking analysis, where the sampling
rate of the FFT analyzer is related directly to shaft speed. A frequency multiplier
may be used to produce a sampling frequency signal (controlling the A/D converter
of the analyzer) which is a specified multiple of the shaft speed.

Figure 14.24 illustrates the basic principles. Figure 14.24B shows a hypothetical
signal produced by a rotating shaft during a run-up (in practice, the amplitude nor-
mally also would vary with shaft speed). Figure 14.24A shows the samples obtained
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FIGURE 14.24 Analysis of a fundamental component which is increasing in frequency.
(A) Data record resulting from a uniform sampling rate, and its spectrum, which spreads
over a frequency band corresponding to the speed change. (B) The original time signal. (C)
Data record resulting from sampling eight times per fundamental cycle, and its spectrum,
which is concentrated in one analysis line.

by sampling the signal value at a constant sampling frequency (as for normal fre-
quency analysis) and the spectrum resulting from FFT analysis of these samples. The
spectral peak is seen to spread over a number of lines corresponding to the speed
change along the time record. Figure 14.24C shows the samples obtained by sampling
the signal a fixed number of times per shaft revolution (in this case, eight). The sam-
ples are indistinguishable from those obtained from normal analysis of a constant-
frequency component, and thus the frequency spectrum is concentrated in one line.

A frequency multiplier, based on a phase-locked loop, suffers from the disadvan-
tage of a finite response time, so that it cannot keep up if the speed is changing rap-
idly. A better alternative, offered by some analyzers, is based on digital resampling
(interpolation) of each record in line with the simultaneously measured tachometer
signal.

When the sampling frequency varies with shaft speed, however, special pre-
cautions must be taken to avoid problems with aliasing. One possibility is to use a
tracking low-pass filter with a cutoff frequency suitably less than half the sampling
frequency. Because of the difficulty of obtaining a tracking filter having a very steep
roll-off (e.g., 120 dB/octave), it is often simpler to choose one of a series of filters
with a fixed cutoff frequency, depending on the current shaft speed. Such a series of
filters (in, for example, a 2, 5, 10 sequence) often is available in the analyzer to
determine the normal frequency ranges. Taking the case of a 400-line analyzer, for
example, all 400 lines in the measured spectrum are valid when the sampling fre-
quency is appropriate to the selected filter (Fig. 14.25A). If the sampling frequency
is higher than the ideal for a given filter, the upper part of the spectrum is affected
by the filter (Fig. 14.25B). If it is lower, the upper part of the spectrum may be con-
taminated by aliasing components (Fig. 14.25C). Nevertheless, by arranging for the
selection of the optimum filter at all times (either manually or automatically), at



least 60 percent of the measured spectrum (i.e., in this case 240 lines) is always
valid. The analysis parameters can be selected so that the desired number of har-
monics is contained within this range, based on the fact that the line number in the
spectrum of a given component is equal to the number of periods it represents in
the data record of length N samples. If, for example, the 30th harmonic is to be
located in line no. 240, the fundamental must be in line no. 8; there must be eight
periods of the fundamental component along the data record. Where the data
record contains 1024 samples (i.e., N = 1024), the sampling frequency must then be
128 times the shaft speed; thus, a frequency multiplier with a multiplication factor
of 128 should be used in this specific case.

For FFT analyzers with zoom, a simpler approach can be used, as illustrated in
Fig. 14.26. An analog low-pass filter is applied to the signal with a cutoff frequency
corresponding to the highest required harmonic at maximum shaft speed. However,
a frequency multiplying factor is chosen so as to make the sampling frequency, say,
10 or 20 times this cutoff frequency (instead of the normal 2.56). The spectrum then
is obtained by zooming in a range corresponding to the highest required harmonic.
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FIGURE 14.25 Effect of sampling frequency on the validity of spectral components,
assuming an FFT analyzer with 400 lines and 80-dB dynamic range. fs = sampling fre-
quency. fN = Nyquist folding frequency = fs/2. (A) Normal situation with optimum choice
of sampling frequency for the low-pass filter. (B) Situation with increased sampling fre-
quency. The upper lines in the spectrum are influenced by the low-pass filter. (C) Situa-
tion with decreased sampling frequency. The upper lines in the spectrum are influenced
by aliasing components folded around fN (double cross-hatched area).



FIGURE 14.26 Use of a fixed low-pass filter to prevent aliasing when tracking with an FFT
analyzer employing zoom to analyze in a lower-frequency band. For illustration purposes, the
sampling frequency at maximum shaft speed has been made four times greater than that appro-
priate to the analog LP filter. The shaft speed range could be made proportionally greater by
increasing this factor. (A) Situation at maximum shaft speed. All harmonics of interest must be
contained in the display range. (B) Situation at one-fourth maximum shaft speed. The analog fil-
ter characteristics overlap, but are well separated from the display range. (C) Situation at three-
sixteenths maximum shaft speed. The aliasing range almost intrudes on the display range.

As shown in Fig. 14.26, the shaft speed (and thus the sampling frequency) can then
be varied over a wide range, without aliasing components affecting the measure-
ment results. A somewhat similar procedure is used in conjunction with the digital
resampling technique mentioned above. By using four times oversampling, a maxi-
mum speed range of 5.92:1 can be accommodated without changing the decimation
rate (i.e., the proportion of samples retained after digital filtration), but an even
wider range can be covered, at the expense of small “glitches” at the junctions, if the
decimation rate is allowed to change.

Figure 14.27 shows the results of tracking FFT analysis on a large turbogenerator.
It was made using nondestructive zoom with zoom factor 10 (equivalent to a large
transform size giving 4000 lines). A frequency multiplying factor of 256 was used,

14.30 CHAPTER FOURTEEN



giving 40 periods of the fundamental component in the 10K (10,240-point) memory
of the FFT analyzer. The fundamental is thus located in line no. 40 of the 400-line
zoom spectrum. Because the harmonics coincide exactly with analysis lines, rect-
angular weighting could have been used in place of the Hanning weighting actually
used (all harmonics have exact integer numbers of periods along the record length);
Hanning weighting can, however, be advantageous for nonsynchronous components
such as constant-frequency components. Such a component at 150 Hz (initially coin-
ciding with the third harmonic of shaft speed) is shown in Fig. 14.27. Constant-
frequency components follow a hyperbolic locus in cascade plots employing order
tracking. See Chap. 19 for further discussions of nonstationary data analysis.

RELATED ANALYSIS TECHNIQUES

Signal analysis techniques other than those described above, which are useful as an
adjunct to frequency analysis, include synchronous averaging, cepstrum analysis, and
demodulation.

Synchronous Averaging (Signal Enhancement). Synchronous averaging is an
averaging of digitized time records, the start of which is defined by a repetitive trig-
ger signal. One example of such a trigger signal is a once-per-revolution synchroniz-
ing pulse from a rotating shaft. This process serves to enhance the repetitive part of
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FIGURE 14.27 Tracking FFT analysis of the rundown of a large turbogenerator. The superim-
posed hyperbolic curve represents a fixed-frequency component at 150 Hz.



FIGURE 14.28 Use of signal enhancement in gear fault diagnosis. (A)
Enhanced signal (120 averages) for a gear in normal condition. (B)
Enhanced signal (120 averages) for a similar gear with a local fault. (C) Sec-
tion of raw signal corresponding to (B).

the signal (whose period coincides with that of the trigger signal) with respect to
nonsynchronous effects. That part of the signal which repeats each time adds
directly, in proportion to the number of averages, n. The nonsynchronous compo-
nents, both random noise and periodic signals with a different period, add like noise,
with random phase; the amplitude increase is in proportion to �––n . The overall
improvement in the signal-to-noise rms ratio is thus �––n , resulting in an improve-
ment of 10 log10 n dB, i.e., 10 dB for 10 averages, 20 dB for 100, 30 dB for 1000.

Figure 14.28 shows the application of synchronous averaging to vibration signals
from similar gearboxes in good and faulty condition. Figure 14.28A shows the
enhanced time signal (120 averages) for the gear on the output shaft. The signal is
fairly uniform and gives evidence of periodicity corresponding to the tooth-meshing.
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Figure 14.28B is a similarly enhanced time signal for a faulty gear; a localized defect
on the gear is revealed. By way of comparison, Fig. 14.28C shows a single time
record, without enhancement, for the same signal as in Fig. 14.28B; neither the
tooth-meshing effect nor the fault is readily seen.

For best results, synchronous averaging should be combined with tracking. Where
there is no synchronization between the digital sampling and the (analog) trigger sig-
nal, an uncertainty of up to one sample spacing can occur between successive digitized
records.This represents a phase change of 360° at the sampling frequency, and approx-
imately 140° at the highest valid frequency component in the signal, even with per-
fectly stable speed. Where speed varies, an additional phase shift occurs; for example,
a speed fluctuation of 0.1 percent would cause a shift of one sample spacing at the end
of a typical 1024-sample record.The use of tracking analysis (generating the sampling
frequency from the synchronizing signal) reduces both effects to a minimum.

Cepstrum Analysis. Originally the cepstrum was defined as the power spectrum of
the logarithmic power spectrum.9 A number of other terms commonly found in the
cepstrum literature (and with an equivalent meaning in the cepstrum domain) are
derived in an analogous way, e.g., cepstrum from spectrum, quefrency from frequency,
rahmonic from harmonic. The distinguishing feature of the cepstrum is not just that it
is a spectrum of a spectrum, but rather that it is the spectrum of a spectrum on a loga-
rithmic amplitude axis; by comparison, the autocorrelation function [see Eq. (19.11)] is
the inverse Fourier transform of the power spectrum without logarithmic conversion.

Most commonly, the power cepstrum is defined as the inverse Fourier transform
of the logarithmic power spectrum,10 which differs primarily from the original defi-
nition in that the result of the second Fourier transformation is not modified by
obtaining the amplitude squared at each quefrency; it is thus reversible back to the
logarithmic spectrum.Another type of cepstrum, the complex cepstrum, discussed in
Refs. 10 and 11, is reversible to a time signal.

Figure 14.29, the analysis of a vibration signal from a faulty bearing, shows the
advantage of the power cepstrum over the autocorrelation function. In Fig. 14.29A,
the same power spectrum is depicted on both linear and logarithmic amplitude axes;
in (B) and (C) the autocorrelation and cepstrum, respectively, are shown. In (C), the
use of the logarithmic power spectrum reveals the existence of a family of harmon-
ics which are concealed in the linear depiction. The presence of the family of har-
monics is made evident by a corresponding series of rahmonics in the cepstrum
(denoted ➀, ➁, etc.), but is not detected in the autocorrelation function. The que-
frency axis of the cepstrum is a time axis, most closely related to the X axis of the
autocorrelation function (i.e., time delay or periodic time rather than absolute time).
The reciprocal of the quefrency of any component gives the equivalent frequency
spacing in the spectrum, not the absolute frequency.

Most of the applications of the power cepstrum derive from its ability to detect a
periodic structure in the spectrum, for example, families of uniformly spaced har-
monics and/or sidebands. The application of the cepstrum to the diagnosis of faults
in gears and rolling element bearings is discussed in Ref. 11.

To obtain a distinct peak in the cepstrum, a reasonable number of the members
of the corresponding harmonic or sideband family must be present (although the
fundamental may be absent). These uniformly spaced components must be ade-
quately resolved in the spectrum. As a guide, the spacing of components to be
detected should be a minimum of eight lines in the original spectrum. For this rea-
son, it is often advantageous to perform a cepstrum analysis on a spectrum obtained
by zoom FFT.11
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Demodulation. Many fast Fourier transform analyzers perform demodulation,
as it is a natural function in connection with a real-time zoom processor, and there
are many applications in vibration analysis. An example of amplitude demodula-
tion is given by “envelope analysis” in rolling element bearing diagnostics (see
Chap. 16) where information about bearing faults is contained in the spectrum of
the envelope of the series of high-frequency bursts produced by a fault, but not in
the spectrum of the raw signal.The envelope of the signal can be obtained by ampli-
tude demodulation of a frequency band containing resonances excited by the faults.
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FIGURE 14.29 Effect of linear vs. logarithmic amplitude scale in power
spectrum. (A) Power spectrum on linear scale (lower curve) and logarith-
mic scale (upper curve). (B) Autocorrelation function (obtained from linear
representation). (C) Cepstrum (obtained from logarithmic representa-
tion)—➀, ➁, etc., are rahmonics corresponding to harmonic series in spec-
trum (4.85 milliseconds equivalent to 1/206 Hz). The harmonics result from
a fault in a bearing.



Phase and frequency demodulation is, for example, important in torsional vibra-
tions, as torsional vibration is a phase modulation (of the nominal shaft speed 
as carrier frequency) when expressed as variations in angular displacement and is 
frequency modulation when expressed in terms of angular velocity fluctuations
around the fixed carrier. Frequency modulation is the time derivative of phase
modulation. A further differentiation of the angular velocity gives the angular
acceleration of a shaft, but there is no corresponding modulation term.

A zoom band such as illustrated in Fig. 14.14 would generally represent a “phase
coherent” signal such as described by one component of Eq. (19.23). In fact, Eq.
(19.23) has a two-sided frequency spectrum, but the zoom band of Fig. 14.14 contains
only positive frequencies and can be represented by the complex exponential function

x(t) = A(t)exp[2πfi(t) + θ0] (14.10)

The actual signal is the real part of this, that is, the projection on the real axis of a
rotating vector of time-varying amplitude A(t) and rotational speed fi(t) with phase
angle θ0 at time zero. Because the spectrum is one-sided, the imaginary part of the
complex exponential function would be the Hilbert transform of the real part.1

By definition, phase modulation is the variation of phase around the linearly
increasing phase of the carrier frequency, which can be expressed as

φm(t) = 2π[ fi(t) − f0t] + θ0 (14.11)

where f0 is the carrier frequency and θ0 has been incorporated into φm(t). Thus, if a
zoom analysis is performed around the carrier frequency, this frequency is sub-
tracted from every component in the band, so that the remainder (the zoom proces-
sor output) can be expressed as

xm(t) = A(t)exp[φm(t)] (14.12)

where the amplitude modulation information is contained in

A(t) = A0 + Am(t) (14.13)

Am(t) is the actual amplitude modulation signal and A0 is a suitable dc offset to
ensure that A(t) is always positive. Note that the amplitude modulation information
is independent of any frequency shift. The phase of the zoom processor output is
directly the phase modulation signal. To obtain the corresponding frequency modu-
lation signal, it should be differentiated and scaled in Hz, as

fm(t) = �
2
1
π
� �

d
d
t

� [φm(t)] (14.14)

This differentiation can be achieved by multiplication by jw in the frequency
domain, and some FFT analyzers provide this option.

Note that f0 can only be chosen as one of the frequency lines in the zoom analysis,
and if the actual physical carrier frequency is slightly different, this just means that
the phase modulation signal will have a small added slope. Since one line spacing of a
fast Fourier transform spectrum corresponds to one rotation (period) in the record
length, the maximum slope which can be encountered by choosing the nearest fre-
quency line as carrier will lie in the range ±π radians over the record length. It can be
removed by subtracting the linear regression line (trend removal). Where order
tracking is used—for example, on a gear signal—a typical carrier frequency (e.g., a
gearmesh frequency) will normally correspond to an analysis line. Note also that the
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scaling of the phase is in radians of the carrier frequency. If this represents the nth
harmonic of the shaft speed (e.g., a gearmesh frequency), the phase modulation sig-
nal should be divided by n to scale it in terms of radians of shaft rotation.
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CHAPTER 15
MEASUREMENT TECHNIQUES

Cyril M. Harris

INTRODUCTION

Earlier chapters describe equipment used in vibration measurements. For example,
detailed information concerning transducers, their characteristics, and how these
characteristics are influenced by environmental factors is given in Chap. 10.The var-
ious measurement system components and the characteristics which determine their
selection are described in Chaps. 13 and 14.The use of such measurement systems in
vibration problems may involve only one or two engineers as in monitoring the con-
dition of machinery in a factory (Chap. 16), in some problems in modal testing
(Chap. 21), in measurements in building structures (Chap. 29), and in measuring tor-
sional vibration in reciprocating and rotating engines (Chap. 37). In contrast, in the
aerospace industry, some measurement problems are so complex that teams of engi-
neers and several divisions of the company may be involved. Yet all these examples
share certain basic measurement procedures. It is these basic procedures (rather
than measurement details, which vary from problem to problem) that are consid-
ered here. Thus, this chapter includes a general discussion of (1) planning measure-
ments to achieve stated objectives, (2) selecting the type of measurements which
should be made to achieve these objectives, (3) selecting transducers, (4) mounting
transducers, (5) mounting cable and wiring (including shielding and grounding), (6)
selecting techniques for the field calibration of the overall measurement system, (7)
collecting and logging the data obtained, and (8) conducting a measurement error
analysis.

The best method of analyzing the vibration measurement data, once they have
been acquired, depends on a number of factors, including the quantity of data to be
processed, the objectives of the measurements, test criteria, specifications, and the
accuracy required. These factors are discussed in Chaps. 14, 18, 19, 20, and 26.

MEASUREMENT PLANNING

Careful pretest planning (and, in the case of a complex measurement program,
detailed documentation) can save much time in making measurements and in ensur-
ing that the most useful information is obtained from the test data. In many cases, as
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in environmental testing, measurement procedures are contained in test specifica-
tions to ensure that a specification or legal requirement has been met. In other cases
(as in balancing rotating machinery), measurement procedures are outlined in detail
in national or international standards. In general, the first step in planning is to
define the purpose of the test and to define what is to be measured. Planning should
start with a clear definition of the test objectives, including the required accuracy
and reliability. The second step is to define those non-equipment-related factors
which influence the selection of measurement equipment and measurement tech-
niques.These include availability of trained personnel; cost considerations; length of
time available for measurements; scheduling considerations; and available tech-
niques for data analysis, validation, and presentation.

Next, the various factors listed in Table 15.1 should be considered. For example,
it is important to have some estimate of the characteristics of the motion to be mea-
sured—e.g., its frequency range, amplitude, dynamic range, duration, and principal
direction of motion. Such information is needed to provide the basis for the opti-
mum selection of measurement equipment. Yet often very little is known about the
characteristics of the motion to be measured. Previous experience may provide a
guide in estimating signal characteristics. Where this is not available, preliminary
measurements may be carried out to obtain information which serves as a guide for
further measurements. For example, suppose preliminary measurements show a fre-
quency spectrum having considerable content in the region of the lowest frequency
measured. This would indicate that the instrumentation capability should be
extended to a somewhat lower frequency in subsequent measurements.Thus an iter-
ative process often takes place in a shock and vibration measurement program. To
speed this process, it is helpful to employ equipment whose characteristics cover a
wide range and which has considerable flexibility. Failure to take this feedback
process into account can sometimes result in the acquisition of meaningless test
results. For example, a measurement program was carried out by one organization
over a period of many weeks.The objective was to correlate building vibration data,
measured in the organization’s own laboratories, with the acceptability of these lab-
oratories as sites for ultrasensitive galvanometers and other motion-sensitive equip-
ment. No correlation was found, and the entire measurement program was a waste
of time, for two reasons: (a) The measurements were made with equipment with a
frequency limit which was not sufficiently low, so that important spectral compo-
nents of building vibration could not be measured. (b) Measurements were made
only in the vertical direction, whereas it was the horizontal component which was
dominant and which made certain laboratory areas unacceptable for the location of
vibration-sensitive equipment.

Many of the various factors, listed in Table 15.1, which should be considered in
planning instrumentation for shock and vibration measurements are discussed in
earlier chapters and are cross-referenced, rather than repeated, here. For example,
Chap. 10 discusses the effects of environmental conditions on transducer character-
istics; Chap. 13 describes various components which follow the transducer in a mea-
surement system (such as preamplifiers, signal conditioners, filters, analyzers, and
recorders). Chapter 14 describes the selection of the appropriate analyzer band-
width, frequency scale, amplitude scale, selection of data windows, etc.

Before making measurements, it is usually important to establish a measurement
protocol—the more complex the measurements to be made, the more formal and
detailed the measurement protocol should be. It is also important to make an error
analysis, i.e., (a) to estimate the error introduced into the data acquisition and analy-
sis by each individual item of equipment, and (b) to determine the total error by cal-
culating the square root of the sum of the squares of the individual errors. For
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TABLE 15.1 Factors Which Are Important Considerations in the Selection of Measurement
Equipment and Measurement Techniques for Mechanical Shock and Vibration Measurements

Parameter to be measured

Acceleration Strain
Velocity Force
Displacement Mechanical impedance

Characteristics of motion to be measured

Frequency range Direction of motion
Amplitude range Transient characteristics
Phase Duration

Environmental conditions

Temperature (ambient and transient) Magnetic and radio-frequency fields
Humidity Corrosive and abrasive media
Ambient pressure Nuclear radiation
Acoustic noise Sustained acceleration

Transducer characteristics

Electrical characteristics (sensitivity, resolution, transverse sensitivity, amplitude linearity,
dynamic range, frequency response, phase response, effects of environment on the transducer)

Physical characteristics (e.g., size and mass)
Self-generating or auxiliary power required
Electrically grounded to case, or isolated
Self-contained amplifier

Transducer mountings and locations of mountings

Effect of mounting on transducer characteristics
Effect of mounting on vibratory characteristics of item under test
Number of measurement locations
Space availability for measurement locations
Availability of well-regulated power, free of voltage spikes
Ease of installation
Possibility of mounting misalignment with respect to intended direction of measurement

System components (preamplifiers, signal conditioners, filters, analyzers)

Electrical characteristics (e.g., input and output impedances)
Power availability
Noise interference (shielding, avoidance of ground loops)
Number of channels required for measurement and recording: maximum duration of 

measurements, tape storage requirements
Possible requirement for real-time information

Method of data transmission

Coaxial cable
Twisted pair of wires
Telemetry (channels assigned)
Optical fiber

Recording equipment

Recording-time capability
Electrical characteristics (e.g., signal-to-noise ratio)
Portability; power requirements
Correlation between recorded information and physical phenomena
Redundancy to minimize the risk of loss of vital information
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example, such an analysis may discover that an individual item of equipment is pri-
marily responsible for introducing a significant total error, suggesting that perhaps it
should be replaced. Furthermore, such a determination will indicate whether the total
error is within the bounds of acceptability, thereby avoiding useless measurements.

SELECTION OF THE PARAMETER 

TO BE MEASURED

Often, the selection of the parameter to be measured (displacement, velocity, accel-
eration, or strain) is predetermined by specifications or by standards. When this is
not the case, it is often helpful to apply the considerations given in Table 15.2 or to
apply the flattest spectrum rule described in Chap. 16.According to this rule, the best
motion parameter to use is the one whose spectrum is closest to being uniform (i.e.,
the one having the flattest spectrum). This is important for two reasons: if the spec-
trum is relatively flat, then (1) an increase at any frequency has a roughly even
chance of influencing overall vibration levels, and (2) minimum demands are placed
on the required dynamic range of the equipment which follows the transducer. For
example, Fig. 16.2 shows two spectra obtained under identical conditions—one a
velocity spectrum, the other a displacement spectrum. The spectrum obtained using
a velocity transducer is the more uniform of the two; therefore, velocity would be the
appropriate motion parameter to select.

SELECTING THE TRANSDUCER

In selecting the transducer best suited for a given measurement, the various factors
listed in Table 15.1 must be taken into consideration, particularly those under “Param-
eter to Be Measured,” “Characteristics of Motion to Be Measured,” “Environmental
Conditions,” and “Transducer Characteristics.” Each of these factors (as well as cost
and availability) influences the selection process. If consideration of different factors
leads to recommendations which are in opposition, then the relative importance of
each factor must be determined and a decision made on this basis. For example, con-
sider two factors which enter into the selection of a piezoelectric accelerometer, sensi-
tivity and mass. Sensitivity considerations would suggest that a transducer of large size
be selected since transducer sensitivity generally increases with size (and therefore
with mass) for an accelerometer of this type. In contrast, mass considerations would
suggest that a transducer of small size be selected in order to minimize the mass load-
ing on the test item; a small size is advantageous since, as Eq. (10.11) indicates, the nat-
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TABLE 15.1 Factors Which Are Important Considerations in the Selection of Measurement
Equipment and Measurement Techniques for Mechanical Shock and Vibration Measurements
(Continued)

Field calibration

Transducers
Over-all measurement system

Data analysis, presentation, and validation

Manual or automatic; computer
Type of presentation required



ural frequency of a structure is lowered by the addition of mass.Therefore in this case
one should choose the most sensitive transducer (and therefore the largest size) which
produces no significant mass loading. In special cases, even the smallest transducer
may result in an unacceptable load. Then one of the devices described in Chap. 10
which make no contact with the test surface may be selected.

Consider another example. Suppose a specification requires that vibration dis-
placement be measured. It is reasonable to assume that a displacement transducer
(such as the one described in Chap. 10) should be chosen since (depending on the
frequency spectrum) such a selection could yield the highest signal-to-noise ratio.
On the other hand, in many measurement problems it is more convenient and
equally satisfactory to select an accelerometer having a wide dynamic range and to
employ an electric circuit which obtains displacement by double integration of the
signal from the transducer’s output.

TRANSDUCER MOUNTINGS

Various methods of mounting a transducer on a test surface include (1) screwing the
transducer to the test surface by means of a threaded stud, (2) cementing the trans-
ducer to the test surface, (3) mounting the transducer on the test surface by means
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TABLE 15.2 A Guide for the Selection of the Parameter to Be Measured

Acceleration measurements

Used at high frequencies where acceleration measurements provide the highest signal outputs
Used where forces, loads, and stresses must be analyzed—where force is proportional to

acceleration (which is not always the case)
Used where a transducer of small size and small mass is required, since accelerometers 

usually are somewhat smaller than velocity or displacement pickups

Velocity measurements

Used where vibration measurements are to be correlated with acoustic measurements since
sound pressure is proportional to the velocity of the vibrating surface

Used at intermediate frequencies where displacement measurements yield transducer 
outputs which may be too small to measure conveniently

Used extensively in measurements on machinery where the velocity spectrum usually is more
uniform than either the displacement or acceleration spectra

Used where vibration measurements on resonant structures are to be correlated with modal 
stress, since modal stress is proportional to modal velocity at resonance frequencies

Displacement measurements

Used where amplitude of displacement is particularly important—e.g., where vibrating parts 
must not touch or where displacement beyond a given value results in equipment damage

Used where the magnitude of the displacement may be an indication of stresses to be analyzed
Used at low frequencies, where the output of accelerometers or velocity pickups may be too 

small for useful measurement
Used to measure relative motion between rotating bodies and structure of a machine

Strain measurements

Used where a portion of the specimen being tested undergoes an appreciable variation in 
strain caused by vibration—usually limited to low frequencies



of a layer of wax, (4) attaching the transducer to a ferromagnetic surface by means
of a permanent magnet, (5) mounting the transducer on a bracket which, in turn, is
mounted on the test surface, and (6) holding the transducer against the test surface
by hand. Several of these mounting techniques are illustrated in Fig. 15.1, and their
frequency response characteristics are shown in Fig. 15.2. Two types of mechanical
brackets are illustrated in Fig. 15.3.

The method of mounting affects the resonance frequency and,hence, the useful fre-
quency range of the transducer.Therefore it is important to ensure that the frequency
response is adequate before measurements are taken. Each of the above methods of
mounting has its advantages and disadvantages. The appropriate choice for a given
measurement problem depends on a number of factors, including the following:

Effect of the mounting on the useful frequency range of the transducer
Effect of mass loading of the transducer mounting on the test surface
Maximum level of vibration the mounting can withstand
Maximum operating temperature
Measurement accuracy
Repeatability of measurements (Can the transducer be remounted at exactly the
same position with the same orientation?)
Stability of the mounting with time
Requirement that the test surface not be damaged by screw holes
Requirement for electrical insulation of the transducer
Time required for preparation of test surface
Time required to prepare mounting
Time required to remove mounting
Difficulty in cleaning the transducer after removal from test surface
Difficulty in cleaning test surface after transducer removed
Skill required to prepare mounting
Cost of mounting
Environmental problems (dirt, dust, oil, moisture)

For example, the above “requirement for electrical insulation of the transducer”
would be a major consideration in the selection of a method of mounting if the insu-
lation so obtained would result in the breaking of a ground loop, as explained in a
following section.

Stud Mounting. Figure 15.1A illustrates a typical stud-mounted transducer; the
transducer is fixed to the test surface by means of a threaded metal screw. One
method of insulating the stud-mounted transducer from the test surface is shown in
Fig. 15.1B. The metal stud is replaced with one which is fabricated of insulating
material, and a mica washer is inserted between the transducer and the test surface.
Other manufacturers employ a threaded, insulated stud with a flange made of the
same material; the flange, midway along the length of the stud, serves as the base for
the accelerometer. The entire base of the transducer should be in intimate contact
with the test surface.The mounting stud must be of the correct length, incorporating
a flange to prevent “bottoming” of the stud which may result in strain-induced
errors.
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FIGURE 15.1 Various methods of mounting a transducer on a test surface: (A) Stud mounting; transducer
screws directly to the surface by a threaded stud. (B) Same as (A) but with a transducer insulated from test sur-
face by use of stud fabricated of insulating material and by a mica washer between the surface and transducer.
(C) Cement mounting of a transducer; the cement bonds the transducer directly to the surface. (D) Similar to
(C), but here cement bonds the surface to a cementing stud screwed into the transducer. (E) Transducer
mounted to surface by means of double-sided adhesive tape or disc. (F ) Transducer mounted to surface by
means of a magnet. (Courtesy of Brüel & Kjaer.)
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FIGURE 15.2 Frequency-response curves for the same piezoelectric accelerometer mounted by the different
methods illustrated in Fig. 15.1: (A) stud mounting; (B) cement mounting; (C) double-sided adhesive mounting;
(D) magnetic mounting. (Courtesy of Brüel & Kjaer.)
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Where stud mounting is practical, it is the best type to use for the following reasons:

1. It provides the highest resonance frequency (up to 100 kHz) of any of the mount-
ing techniques and, therefore, the widest possible measurement frequency range
(up to 50 kHz).

2. It permits measurements at very high vibration levels without the loosening of
the transducer from the test surface.

3. It does not reduce the maximum permissible operating temperature at which
measurements can be made.

4. It permits accurate and reproducible results since the measurement position can
always be duplicated.

In preparing a stud mounting, the test
surface must be drilled and tapped.
A standard 10-32 thread is widely
used. (Also see International Standards
Organisation Standard ISO 1101.) Dis-
tortion of the transducer as mounted
may produce strains that affect the
transducer’s response. Therefore, it is
important (1) to ensure that the test sur-
face is very flat (which can be done by
grinding or lapping), (2) to prevent the
mounting stud from bottoming in the
transducer case—this can lead to strain,

and (3) to screw the stud into the hole in the test surface, and then the accelerome-
ter onto the stud using a torque wrench to ensure repeatability in installation of the
transducers and to prevent thread damage; use the torque recommended by the
transducer’s manufacturer. The application of a silicone grease (such as Dow-
Corning DC-4) or a light machine oil between the transducer and the test surface
usually provides better response at high frequencies—say, above 2000 Hz.The upper
temperature limit for the stud mounting of Fig. 15.1A is limited only by the
accelerometer, but with the mica washer insert shown in Fig. 15.1B, the upper limit
may be as low as 480°F (250°C).

Figure 15.2A shows response curves for a stud-mounted accelerometer for the
following conditions: ➀ spanner tight, which has the highest resonance frequency, ➁
finger tight, ➂ mounted with a mica washer to provide electrical insulation between
the transducer and the vibrating surface, and ➃ mounted on a somewhat thinner
mica washer—which results in a higher resonance frequency than for ➂.

Cement Mountings. A cement is a substance that bonds two surfaces together
when the cement hardens; it acts as an adhesive.Where it is not possible to use a stud
mounting, a transducer can be bonded to a clean test surface by means of a thin layer
of cement (for example, a cyanoacrylate, dental cement, or epoxy cement), as shown
in Fig. 15.1C. If the test surface is not flat and a miniature accelerometer is used, it
is not difficult to build up a layer of dental cement around the accelerometer so as
to provide firm attachment for the accelerometer. In mounting the transducer, it
should be pressed firmly against the flat, smooth surface to ensure that the adhe-
sive layer is thin; excess adhesive around the perimeter should then be removed
immediately.

The cement method of mounting a transducer provides excellent frequency
response, as shown in Fig. 15.2B for three conditions: ➀ accelerometer cemented
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FIGURE 15.3 Two types of mounting brack-
ets. In this example, a velocity-type transducer is
shown; the arrows indicate the direction of
sensed motion.



directly to test surface, ➁ accelerometer cemented with a “soft” adhesive (not rec-
ommended), and ➂ accelerometer with a cementing stud which is cemented to the
surface with a hard cement.

This type of mounting may be used at high levels of vibration if the cementing
surfaces are carefully prepared, following the manufacturer’s instructions. Cement
mounting may or may not provide electrical insulation; if insulation is required, the
electrical resistance between the transducer and the test surface should be checked
with an ohmmeter.The maximum temperature at which measurements can be made
is limited by the physical characteristics of the cement employed—generally about
176°F (80°C). Some cements such as 3M Cyanolite 303 have an upper limit as high
as 390°F (200°C). At room temperature, it has the best coupling characteristics over
a wide frequency range. This type of mounting has good stability with time. Where a
transducer has been attached to a surface by the use of a cement, exercise consider-
able caution in removing the transducer from the surface to avoid damaging it;
application of a solvent to soften the cement is strongly recommended.

Cements 3M Cyanolite 101 and Permabond 747 dry much more rapidly than
epoxy cements and therefore require less time to mount a transducer. They may be
removed easily and the surface cleaned with a solvent such as acetone. Removal of
epoxy from the test surface and from the transducer may be time-consuming. In fact,
the epoxy bond may be so good that the transducer can be damaged in removing it
from the test surface. When encased in epoxy, an accelerometer may be subject to
considerable strain, which will significantly alter its characteristics. On the other
hand, unless the cemented surfaces are very smooth, an epoxy can provide a supe-
rior bond since it will fill in a rough surface far better than a cyanoacrylate cement.
With either bonding agent, the surfaces must be very clean before application of the
cement. This mounting technique is not recommended for conditions of prolonged
high humidity or for pyroshock measurements.

Commercial adhesives are obtainable for use in very hot or in very cold environ-
ments. For cryogenic applications, a two-component epoxy resin, room-temperature-
cured, is available that is effective down to −200ºC and is able to withstand cryogenic
thermal shock without cracking. For use at very high temperatures (up to 700ºC)
ceramic-based adhesives are available that are effective, but require so high a curing
temperature that their use is usually restricted to high-temperature applications.
Several epoxy resins are commercially available that are cured at room temperature
and can operate at temperatures as high as 260ºC.1

Wax Mounting. Beeswax or a petroleum-based petrowax may be used to attach
a transducer to a flat test surface. If the bonding layer is thin (say, no greater than 0.2
mm), it is possible to obtain a resonance frequency almost as high as that for the stud
mounting, but if the test surface is not smooth, a thicker wax layer is required and
the resonance frequency will be reduced. If the mating surfaces are very clean and
free from moisture, the transducer can be mounted fairly easily, although some prac-
tice may be required. The transducer can be removed rapidly with a naphtha-type
solvent. Disadvantages include the possibility of disattachment of the transducer at
high vibration levels, a temperature limitation because of the relatively low melting
point of wax, and poor long-time stability of the mounting. The maximum tempera-
ture at which measurements can be made with this mounting technique is usually
about 100°F (40°C).

Adhesive-Tape Mounting. An adhesive is a substance used to bond two surfaces
together. The adhesive is usually applied to a tape or disc. In such application, this
term is often used as a synonym for the word “cement.” An adhesive film may be
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used to mount a small transducer on a flat, clean test surface—usually by means of a
double-sided adhesive tape. Double-sided adhesive discs are supplied by some
transducer manufacturers.This mounting technique, illustrated in Fig. 15.1E, is rapid
and easy to apply. Furthermore, such a mounting has the advantage of providing
electrical insulation between the transducer and the test surface, and it does not
require the drilling of a hole in the test surface; it is particularly applicable for use
with a transducer having no tapped hole in its base. Such adhesives can provide
secure attachment over a limited temperature range, usually below 200°F (95°C). In
preparing an adhesive mounting, it is important to clean both the accelerometer and
the test surface so that the adhesive will adhere firmly. When this is done, the fre-
quency response can be fairly good, as illustrated in Fig. 15.2C, but not as good as
with a wax mounting.

Another method of mounting is to use a cementing stud which is threaded into
the transducer; the flat side of the stud is then cemented to the test surface as shown
in Fig. 15.1D. This is a useful technique where repeated measurements at the same
point are required. The transducer may be removed for measurements elsewhere,
but the cementing stud is left in place. This provides assurance that future measure-
ments will be made at precisely the same point.

Magnetic Mounting. With magnetic mounting, illustrated in Fig. 15.1F, a perma-
nent magnet attaches the transducer to the test surface, which must be ferromag-
netic, flat, free from dirt particles, and reasonably smooth. Magnetic mounting is
useful in measuring low acceleration levels. The transducer can be attached to the
test surface easily and moved quickly from one measurement point to another. For
example, in a condition-monitoring system (described in Chap. 16) it can be used to
determine a suitable measurement location for a transducer to be mounted per-
manently on a large rotating machine. In a heavy machine of this type, the added
mass of the magnet is not important, but in other problems, the additional mass
loading on the test surface may make the use of magnetic mounting unacceptable.
Furthermore, if the acceleration levels are sufficiently high, as in impact testing, the
magnet may become loosened momentarily. This can result in an inaccurate read-
ing and possibly a slight change in the position of the transducer, which would also
change the reading. The frequency response for this type of mounting is fair, as
shown in Fig. 15.2D, but not as good as with the wax mounting. The magnet, often
available from the transducer’s manufacturer, usually is attached to the transducer
by means of (1) a projecting screw on the magnet, which is threaded into the base
of the transducer, or (2) a machine screw, one end of which is threaded into the
transducer and the other end into the magnet. Application of a light machine oil or
silicone grease usually improves the frequency response above about 2,000 Hz.The
maximum temperature at which measurements can be made with this mounting
technique is usually about 300°F (150°C). In attaching a magnetically mounted
transducer to a test surface, the magnetic force that pulls the assembly toward the
surface may sometimes be sufficiently high to result in a high level of mechanical
shock at the time of contact, causing damage to the sensing elements or its internal
electronics.

Mounting Blocks or Brackets. Physical conditions may make it impractical to
mount a transducer by any of the above methods. In such cases, a mounting bracket
or block that has been especially prepared for use on the test surface may be
employed. For example, if the structural surface is rounded, a solid mounting block
can be fabricated which is rounded to this same contour on one side and flat on the
other side for mounting the transducer. A mounting block also may be useful where
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the surface is subject to structural bending; in this case, two accelerometers selected
to have the same characteristics may be attached to the mounting block to measure
bending-induced rotation. The effect of the mass of the mounting block is consid-
ered in Eq. (15.1).Two types of mounting brackets are illustrated in Fig. 15.3. Instead
of using a triaxial accelerometer, sometimes it is more convenient to mount three
transducers on a single block having sensitivities in three orthogonal directions.Any
such mounting must couple the transducer to the test surface so that the transducer
accurately follows the motion of the surface to which it is attached.This requires that
the effective stiffness of the transducer mounting be high so that the mounting does
not deflect under the inertial load of the transducer mass. This is not a problem in
many transducer installations.

Mounting brackets may have resonance frequencies which are below 2,000 Hz
and have little damping. Under such conditions, their use may result in significant
measurement error as a result of resonant amplification or because of attenuation of
vibration in the mounting. This is illustrated in Fig. 15.4, which shows the frequency
response of a transducer mounted on brackets which are identical in geometry but
which are fabricated from different materials. Note that a change in material from
(A) steel to (B) a phenolic plastic halves the resonance frequency of the mounting.
A change in the method of attachment, from (B) screw mounting to (C) an epoxy
resin adhesive bond, significantly increases the frequency of the mounting reso-
nance.Although these results are not of a general nature, they show that such minor
variations in the transducer mounting may produce significant changes in the output
characteristics of the transducer. It is good practice to calibrate an accelerometer in
combination with its mounting block.

Hand-held Transducer. A transducer which is held against the test surface by
hand provides the poorest performance of any of the techniques described here, but
it sometimes can be useful in making a rapid survey of a test surface because the
measurement location can be changed more rapidly than with any other method of
mounting. Usually, a rod (called a probe), which is threaded at one end, is screwed
into the transducer; the other end has a tip that is pressed against the test surface.
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FIGURE 15.4 Relative frequency response of a
velocity transducer mounted on three brackets which
have identical geometry but are fabricated of differ-
ent materials: (A) steel bracket, screw mounted, (B)
cloth-reinforced phenolic plastic bracket, screw
mounted, and (C) same as (B) but attached with
epoxy resin adhesive.



The frequency response is highly restricted—about 20 to 1,000 Hz; furthermore this
technique should not be employed for accelerations greater than 1g.Thus, this tech-
nique is used when measurement accuracy is not essential, e.g., in finding the nodal
points on a vibrating surface.

Mass-Loading. The effect of the mounting on the accuracy of measurement can
be estimated roughly if it is assumed that the combination of the transducer (having
a mass m) and the mounting (having a stiffness k) behaves as a simple spring-mass
system driven at the spring end of the system. Then the acceleration of the trans-
ducer ẍ is given by

ẍ = ü (15.1)

where ü is the acceleration of the test item, and f is its frequency of vibration. If the
acceleration of the transducer is to be within 10 percent of the acceleration of 
the test item, then from Eq. (15.1), k must have a value at least 10 times greater than
the term m(2πf )2. Since the undamped natural frequency fn of the transducer-
mounting system is given by fn = 1⁄2π(k/m)1/2, the value of the natural frequency of the
system must be at least 10 times the frequency of vibration of the test item—espe-
cially for the measurement of transients.

Alternatively, the unloaded dynamic environment at the mounting point can be
calculated from the measured dynamic environment using the mechanical imped-
ance ratio given by Eq. (3.4) of Ref. 1.

FIELD CALIBRATION TECHNIQUES

TRANSDUCERS

Various methods of calibrating transducers are described in Chap. 18. If a transducer
is to be used under unusual temperature conditions, it is important to perform the
calibration in the temperature range in which it will operate. Of these, the following
are particularly convenient for use in the field.

Comparison Method. This is a rapid and convenient method of obtaining the
sensitivity of a transducer. It is one of the most commonly used calibration tech-
niques. Calibration is obtained by a direct comparison of the output generated when
the transducer is attached to a vibration exciter with the output generated by a sec-
ondary standard transducer which is attached to the same vibration exciter and
which is subject to precisely the same motion. The two transducers are mounted
back to back, as illustrated in Fig. 11.3. Calibration by this method is limited to the
frequency and amplitude ranges for which the secondary standard has been cali-
brated and for which the vibration exciter has adequate rectilinear motion. The sec-
ondary standard accelerometer should be calibrated against a National Institute of
Standards and Technology (NIST) traceable reference, at least once a year, in com-
pliance with MIL-STD-45662A.

Free-fall Calibration Method. The gravimetric free-fall calibration method
(sometimes called a drop test) is a simple and rapid method of calibrating motion
and force sensors.The transducer under test is allowed to fall freely for an instant of

k
��
k + m(2πf )2
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time under the influence of gravity; the peak signal then is measured for an acceler-
ation of gravity having a value of 1g. This technique is illustrated in Fig. 11.5.

Earth’s Gravitational Field Method. In the following technique (sometimes
called the “inversion method” of calibration), the sensitive axis of the transducer is
first aligned vertically in one direction of the earth’s gravitational field, as shown in
Fig. 15.5A. Then it is inverted so that its sensitive axis is aligned in the opposite direc-
tion, as shown in Fig. 15.5B. The transducer output is observed for a 2g change in
acceleration, as shown in Fig. 15.5C. This method is limited in application to
accelerometers having sensitivity down to 0 Hz; it is not recommended for calibra-
tion of accelerometers having significant transverse sensitivity.
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FIGURE 15.5 Gravitational field method (inversion test) for cal-
ibrating an accelerometer having useful sensitivity down to 0 Hz.
Inversion of the accelerometer, initially aligned in one direction, as
in (A), to the opposite direction, as in (B), produces a change in
acceleration of 2g. The transducer output for this change is mea-
sured in (C). (Courtesy of Quixote Measurement Dynamics, Inc.)

OVERALL SYSTEM

Calibration of a complete vibration measurement system usually is referred to as
overall calibration or end-to-end calibration. It is good practice to perform such a cal-
ibration at periodic intervals—particularly both before and after an extensive series
of measurements. In such a calibration, the amplitude characteristics, phase charac-
teristics, and linearity of the overall system are determined when the transducer is



subject to a known acceleration, velocity, or displacement, for example, by means of
a field calibrator.

Field Calibrator. This is a portable device on which a transducer can be mounted
and subjected to a known acceleration, velocity, or displacement at a fixed fre-
quency. Such an instrument (essentially a small, portable, battery-powered shaker)
provides a convenient means for calibrating a transducer in the field and/or cali-
brating the overall vibration measurement system. For example, the hand-held
device shown in Fig. 15.6 can be used to calibrate a transducer weighing up to 85
grams at a frequency of 79.6 Hz. This device is furnished with an internal oscillator
and a stable, built-in reference accelerometer in a feedback loop controlling the
electrodynamic exciter; the exciter subjects the transducer under test to a constant
rms acceleration amplitude of 1g.
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FIGURE 15.6 A handheld vibration calibrator especially designed for field
application. (Courtesy PCB Piezotronics, Inc.)

Combining Calibration Characteristics of a Measurement System’s Compo-
nents. An overall system can be calibrated by combining the measured electrical
characteristics of all components in the measurement system from one end to the
other. Obtaining a system calibration in this way circumvents the difficulties of pre-
cise field calibration, but it requires that each element in the system be calibrated in
the laboratory with extreme care and that the effects of the source and load imped-
ances be completely accounted for. Thus, a system calibration is subject to the sum
of the experimental errors introduced by the calibration of each element, in addition
to any errors resulting from improper simulation of, or accounting for, loading
effects. In general, the calibration of each element is performed before the 
system is assembled, and so this method is subject to error resulting from (1) unde-
tected damage to components between calibration and use and/or (2) improper con-
nections, misidentifications, or confusion in polarity.

Voltage Substitution Method of Calibration. A suitable simulated transducer
for use in field checkout must duplicate the electrical outputs of the actual trans-
ducer for the various vibration conditions to be simulated.The simulated transducer
must either (1) reproduce the electrical voltage- or current-generating characteris-



FIGURE 15.7 Electrical schematic diagrams of some common types of transducers and typical circuits used to
simulate them during field calibration.Terminals labeled A and B are the signal lead connections to which either
the transducer or the simulated transducer is connected.

1
5
.1

6



MEASUREMENT TECHNIQUES 15.17

tics of the actual transducer and have the same output impedance or (2) duplicate
the electrical quantity generated by the actual transducer when connected to its
load. Failure to meet these conditions will result in a different loading of the actual
and simulated transducers and will probably cause calibration errors. It is important
that the simulated transducer have the same electrical grounding configuration as
the actual transducer; otherwise, electric-circuit noise and cross talk* will not be rep-
resented accurately when the simulated transducer is in use.

Typical examples of circuits which simulate transducers are shown in Fig. 15.7.
The simulated transducer introduces an electrical signal into the measurement sys-
tem, thereby simulating the response of the actual transducer.

CABLE AND WIRING CONSIDERATIONS

The method of data transmission between a transducer and the electronic instru-
mentation which follows it depends on the complexity of the problem. In general,
cable is used for most problems, but the aerospace industry often relies on telemetry
for data transmission. Many types of cable are available. The choice of a suitable
cable depends primarily on the particular application, the transducer, the cable
length, whether the transducer is followed by a voltage amplifier or charge amplifier,
and environmental conditions. For example, cable jackets may be made of silicone
rubber having a useful temperature range from −100 to 500°F (−73 to 260°C), of
polyvinylchloride having a useful range from −65 to 175°F (−54 to 79°C), or of fused
Teflon having a useful range from −450 to 500°F (−268 to 260°C). Special-purpose
cables are available that can be used at much higher temperatures. In general, cable
should be as light and flexible as possible—consistent with other requirements. The
effect of the shunt capacitance of the cable following the transducer on the sensitiv-
ity of the transducer depends on the type of amplifier connected to the cable. If a
voltage amplifier is used, there is a reduction in sensitivity of the transducer, given
by Eq. (10.17). In contrast, when a charge amplifier is used, the effect of the shunt
capacitance of the cable in reducing the sensitivity of the transducer is negligible
(although the noise pickup in the high-impedance circuit increases with cable
length). See Chapter 10 for details.

In the audio-frequency range, the series inductance L and the shunt leakage G
of short, good-quality cables are negligibly small in comparison with other param-
eters and may be neglected. Figure 15.8A shows the equivalent low-frequency
representation of a cable with distributed constants. For most purposes the simpler
lumped-constant configuration of Fig. 15.8B is a sufficiently accurate representa-
tion. The quantities Rc and Cc are the total resistance of the conductors and the
total capacitance between them, respectively. Values for a typical coaxial cable
having a Teflon dielectric are Rc = 0.01 ohm/ft (0.03 ohm/m) and Cc = 29 pF/ft
(88 pF/m).

The normal characteristic impedance of about 50 ohms for such cable has no sig-
nificance in most measurement problems, where cables usually are relatively short.
The open-circuit input impedance of the cable is almost exclusively capacitative.
When terminated, it takes on the impedance of the load, modified by the series and
shunt parameters.

*Cross talk is the output of one measurement channel when a signal is applied to another measurement
channel. Cross talk can be distinguished from other electrical disturbances because it is a function of the
applied signal in the other measurement channel and disappears when this applied signal is removed.



In general, cables should be treated with the same care given transducers in
shock and vibration measurement systems. The following are based on recommen-
dations given in Ref. 2; they represent good engineering practice.
1. Attach a coaxial cable to a transducer by turning the connector nut onto the

threads of the transducer (not vice versa) to avoid damage to the pins.
2. Avoid cable whip by tying down the cable at a point near the transducer and at

regular intervals to avoid induced cable noise.
3. Screw the cable connection to the tightness specified by the manufacturer.
4. Loop the cable near the connector in a high-humidity environment, to allow con-

densation to drip off before reaching the connector.
5. Clean the cable connector before use (e.g., acetone or chlorothene) to remove

contamination as a result of handling; the contamination can create a low imped-
ance between the signal path and ground.

6. Check electrical continuity of cable conductors and shield if intermittent signals
are observed. Then, flex the cable—especially near the connector—and observe
if the signal is affected by flexing.

7. Select cables that are light and flexible enough to avoid loading the transducer
and/or the structure under test, or exerting a force on the transducer.

8. Avoid twisting the cable when it is connected to the transducer.
9. Move the cable back and forth to determine if such movement generates unac-

ceptable electrical noise; if so, tie the cable more securely or replace the cable.

CABLE NOISE GENERATION

When two dissimilar substances are rubbed together, they become oppositely
charged—a phenomenon known as triboelectricity, illustrated in Fig. 15.9. Thus a
charge may be generated when a cable is flexed, bent, struck, squeezed, or otherwise
distorted, for then such friction takes place between the dielectric and the outer
shield or between the dielectric and the center conductor.3 A charge is generated
across the cable capacitance so that a voltage appears across the termination of the
cable.

Another mechanism by which noise may be induced in the cable results from the
change in capacitance of the cable when it is flexed. If the transducer produces a
charge across the cable, the change in capacitance results in a voltage change across
the output of the cable, appearing as noise at the input of a voltage amplifier; it will
not produce a similar change if a charge amplifier is used.
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FIGURE 15.8 Successive approximations in the representation of a short, high-
quality transmission line at audio frequencies. (A) Distributed constant configuration
neglecting series inductance and shunt leakage. (B) Lumped-constant configuration.



Suppose the dielectric surfaces
within the cable are coated so that an
electrical leakage path is provided along
the dielectric surface. Then if the cable
shield is separated from the outer sur-
face of the dielectric, the charges flow
along the surface to the nearest point of
contact of the dielectric and shield; with-
out this leakage path, the charges would
flow to the terminating impedance,
where they would give rise to a noise sig-
nal. Such coatings are provided in low-

noise cables which are available commercially. Cables of this type are capable of
withstanding considerable abuse before becoming noisy. Usually they are tested by
the manufacturer continuously along their lengths to assure meeting the low-noise
characteristics. It is important in fitting such a cable with a connector, or in splicing
such a cable, that no conducting material be allowed to form a leakage path between
the conductors. Carbon tetrachloride and xylene are satisfactory solvents and clean-
ing agents.

NOISE-SUPPRESSION TECHNIQUES

Under certain conditions of use and environment, spurious signals (noise) may be
induced in wiring and cables in a measurement system. Then there will be signals at
the termination of the system that were not present in the transducer output.

Electrical noise may be generated by motion of some parts of the wiring because
of variation in contact resistance in connectors, because of changes in geometry of
the wiring, or because of voltages induced by motion through, or changes in, the
electrostatic fields or magnetic fields which may be present. No cable should carry
wiring both for data transmission and for electrical power; all electrical power
wiring should be twisted pair. In general, such electrical noise will be reduced if the
cable is securely fastened to the structure at frequent intervals and if connectors
are provided with mechanical locks and strain-relief loops in their cables. Precau-
tions taken to avoid interference usually include the use of shielding, cables which
are only as long as necessary, and proper grounding. Cable jackets must be selected
that will not deteriorate under the measurement environment. In addition, the use
of a transducer containing an internal amplifier can provide advantages in noise
suppression.

Shielding. A change in the electric field or a change in the magnetic field around a
circuit or cable may induce a voltage within it and thus be a source of electrical noise.
Such electrical interference can be avoided by completely surrounding the circuit or
cable with a conductive surface which keeps the space within it free of external elec-
trostatic or magnetic fields.This is called shielding. Protection against changes in each
type of field is different.

Electrostatic Shields. Electrostatic shields provide a conducting surface for the
termination of electrostatic lines of flux. Stranded braid, mesh, and screens of good
electrical conductors such as copper or aluminum are good electrostatic shields.
Most shielded cables use copper braid as the outer conductor and electrostatic
shield. A good magnetic shield is also a good electrostatic shield, but the converse is
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FIGURE 15.9 A section of cable during dis-
tortion, showing how separation of triboelectric
charge leads to the production of cable noise
across the termination resistance. (After T. T.
Perls.3)



not true. For installations where cable lengths are especially long, where impedances
are high, or where noise interference is highly objectionable, double-shielded cable
is sometimes used. In this type of cable, a second shielding braid is woven over the
cable jacket, electrically insulating it from the inner shield; the inner braid furnishes
additional shielding against electrostatic fields which penetrate the first shield.
The shields should be connected to ground at one point only, as explained under
“Grounding; Avoiding Ground Loops.”

Magnetic Shields. Magnetic shields are effective partly because of the short cir-
cuiting of magnetic lines of flux by low-reluctance paths and partly because of the
cancellation resulting from opposing fields set up by eddy currents. Accordingly,
they are made from high-permeability materials such as Permalloy, are as thick as
possible, and contain a minimum of joints, holes, etc.

Magnetic fields associated with current-carrying power lines, electronic equip-
ment, and power transformers are among the most troublesome sources of magnetic
interference in instrumentation setups—chiefly at the frequency of the power line
and its harmonics. Since these fields attenuate rapidly with distance from the source,
the most practical solution for this type of interference usually is to keep the signal
cables as far from the power source as possible.

Grounding; Avoiding Ground Loops. A circuit is said to be grounded when
one terminal of the circuit is connected to the “earth.” Grounding removes the
potential difference between that side of the circuit and earth, and the variable
stray capacitances which tend to induce voltages in “floating” (i.e., ungrounded)
systems. Water pipes make good ground connections because of their intimate con-
tact with the earth.

Ground loops are formed when a common connection in a system is grounded
at more than one point, as illustrated in Fig. 15.10, where the cable shield is
grounded at both ends. Since it is unlikely that the two grounds will be at a common
potential, their potential difference, egnd, will be the source of circulating currents in
the ground loop.Then a signal produced by the transducer will be modulated by the
potential egnd, thereby introducing noise in the measurement system. Such a condi-
tion may occur when one end of a cable is connected to one side of the electrical
output of a transducer that has been grounded to the transducer’s housing and the
other end of the cable is connected to a voltage amplifier or signal conditioner
which is also grounded (usually to the case of the instrument). Then, a ground loop
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FIGURE 15.10 Ground loop in a system as a
result of grounding the cable shield at two points.
Then, the input signal e1 is modulated by the poten-
tial difference egnd which develops between these
two points.
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FIGURE 15.11 (A) A ground loop formed when the “low” sides of both the
transducer and the amplifier are connected to their respective cases, which are
grounded. (B) The ground loop shown in (A) is broken by isolating the case of
the transducer from ground.

will be formed. Such a condition must be avoided by grounding the circuit at only
one point. Thus the circuit shown in Fig. 15.11A will result in noise because of the
ground loop, but by insulating the transducer as shown in Fig. 15.11B the ground
loop has been broken.

DATA SHEETS FOR LOGGING TEST

INFORMATION

When data are acquired in the field, measurement conditions may be far from ideal;
environmental conditions may be unfavorable, and the time available for measure-
ments may be extremely limited.Therefore it is good practice to prepare data sheets
that are relatively simple and that require a minimum amount of writing; for exam-
ple, use multiple-choice entries. The data sheets should include sufficient informa-
tion so that someone else, at a later time, could duplicate the measurement setup on
the basis of information supplied by the data sheets. If there are any anomalies that
occur during the test, they should be duly noted. In general, the following informa-
tion should be included:

Basic data concerning the test measurements:

● Date, times, and duration of test.
● Identification of test by test number.
● Identification of equipment, machine, or device under test.
● Conditions of operation during the measurement.
● Any anomalies in operation and their times of occurrence.
● Location of test, using diagram where appropriate.
● Environmental conditions during test; note anomalies where appropriate.
● Persons participating in the test.

Equipment, including transducers, cables, signal conditions, data recorders, telemeter:

● Type.
● Manufacturer, model number, and serial number.
● Transducer sensitivity, exact location, orientation, and type of mounting.



● Signal conditioner and amplifier gain and attenuator settings; note any changes in
these settings during the test.

● Filter settings, if any.
● Recorder speed, number of tracks, tape speed, gain settings; note any changes in

these settings during the test.

Calibration information:

● Transducer calibration.
● Overall system (end-to-end) calibration of system.
● Phase of output signal relative to input signal.
● Any changes in calibration between pretest and posttest conditions.
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CHAPTER 16
CONDITION MONITORING

OF MACHINERY

Ronald L. Eshleman

INTRODUCTION

Condition monitoring of machinery is the measurement of various parameters
related to the mechanical condition of the machinery (such as vibration, bearing
temperature, oil pressure, oil debris, and performance), which makes it possible to
determine whether the machinery is in good or bad mechanical condition. If the
mechanical condition is bad, then condition monitoring makes it possible to deter-
mine the cause of the problem.

Condition monitoring is used in conjunction with predictive maintenance, i.e.,
maintenance of machinery based on an indication that a problem is about to occur.
In many plants predictive maintenance is replacing run-to-breakdown maintenance
and preventive maintenance (in which mechanical parts are replaced periodically at
fixed time intervals regardless of the machinery’s mechanical condition). Predictive
maintenance of machinery:

● Avoids unexpected catastrophic breakdowns with expensive or dangerous conse-
quences.

● Reduces the number of overhauls on machines to a minimum, thereby reducing
maintenance costs.

● Eliminates unnecessary interventions with the consequent risk of introducing
faults on smoothly operating machines.

● Allows spare parts to be ordered in time and thus eliminates costly inventories.

● Reduces the intervention time, thereby minimizing production loss. Because the
fault to be repaired is known in advance, overhauls can be scheduled when most
convenient.

This chapter describes the use of vibration measurements for monitoring the
condition of machinery.1,2 Vibration is the parameter which can be used to predict
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the broadest range of faults in machinery most successfully. This description
includes:

● Selection of an appropriate type of monitoring system (permanent or periodic)

● Establishment of a condition monitoring program

● Fault detection

● Spectrum interpretation and fault diagnosis

● Special analysis techniques

● Trend analysis

● Correction methods

TYPES OF CONDITION MONITORING SYSTEMS

Condition monitoring systems are of two types: periodic and permanent. In a peri-
odic monitoring system (also called an off-line condition monitoring system),
machinery vibration is measured (or recorded and later analyzed) at selected time
intervals in the field; then an analysis is made either in the field or in the laboratory.
Advanced analysis techniques usually are required for fault diagnosis and trend
analysis. Intermittent monitoring provides information at a very early stage about
incipient failure and usually is used where (1) very early warning of faults is
required, (2) advanced diagnostics are required, (3) measurements must be made at
many locations on a machine, and (4) machines are complex.

In a permanent monitoring system (also called an on-line condition monitoring sys-
tem), machinery vibration is measured continuously at selected points of the machine
and is constantly compared with acceptable levels of vibration.The principal function
of a permanent condition monitoring system is to protect one or more machines by pro-
viding a warning that the machine is operating improperly and/or to shut the machine
down when a preset safety limit is exceeded, thereby avoiding catastrophic failure and
destruction.The measurement system may be permanent (as in parallel acquisition sys-
tems where one transducer and one measurement chain are used for each measure-
ment point), or it may be quasi-permanent (as in multiplexed systems where one
transducer is used for each measurement point but the rest of the measurement chain
is shared between a few points with a multiplexing interval of a few seconds).

In a permanent monitoring system, transducers are mounted permanently at
each selected measurement point. These sensors may be hard-wired to a central
location or connected through a transmitter-receiver wireless system. Such an
approach is normally used in critical applications where: (1) no personnel are avail-
able to perform measurements (offshore, remote pumping stations, etc.), (2) it is
necessary to stop the machine before a breakdown occurs in order to avoid a cata-
strophic accident, (3) an instantaneous fault may occur that requires machine shut-
down, and (4) the environment (explosive, toxic, or high-temperature) does not
permit the human involvement required by intermittent measurements.

Before a permanent monitoring system is selected, preliminary measurements
should be made periodically over a period of time to become acquainted with the
vibration characteristics of the machine. This procedure will make it possible to
select the most appropriate vibration measurement parameter, frequency range, and
normal alarm and trip levels.
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ESTABLISHING A CONDITION MONITORING

PROGRAM

A condition monitoring program may be established to check the satisfactory oper-
ation of a single machine or, more usually, it is established to check the operation of
a number of machines, perhaps all the machines in an entire plant. The following
steps are usually considered in the establishment of such a program, depending on
the type of machine and impact of failure on the operation of machines.

Step 1. Determine the type of condition monitoring system, described in the pre-
ceding section, that best meets the needs of the plant.

Step 2. Make a list of all of the machines to be monitored (see, for example, Table
16.1), based on the importance of these machines in the production line.

Step 3. Tabulate the characteristics of the machines that are important in conduct-
ing vibration analyses of the machines of step 2. These characteristics are associated
with machine construction such as the natural frequencies of shafts, casings, and
pedestals, and operational and defect responses. A tabulation of machine frequen-
cies is important because fault analysis is conducted by matching machine frequen-
cies to measured frequencies appearing in a spectrum. The following machine
characteristics provide the necessary information for fault analysis.

● Shaft rotational speeds, bearing defect frequencies, number of teeth in gears, num-
ber of vanes and blades in pumps and fans, and number of motor poles, stator slots
and rotor bars.

● Vibration responses due to process changes, such as temperature and pressure.
● Fault responses associated with specific machine types, such as motors, pumps, and

fans.
● Sensitivity to instability in components, such as fluid film bearings and seals due to

wear and clearance.
● Effects of loads or changes in operating conditions.
● Effects of mass unbalance, misalignment, distortion, and other malfunction/defect

excitations on vibration response.

Step 4. Select the most appropriate vibration measurement parameter. When an
accelerometer is employed as the sensing device in a condition monitoring system,
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TABLE 16.1 Machinery Classification for Monitoring

Machinery classification Result of failure

Critical Unexpected shutdown or failure causes significant
production loss.

Interrupts production Unexpected shutdown or failure causes minor
interruptions in production.

Causes inconvenience Inconvenience in operation, but no interruption
in production.

Noncritical Production is not affected by failure.



the resulting acceleration signal can be electronically integrated to obtain velocity
or displacement. Any one of these three parameters may be used in an analysis.
However, the integration process may compromise the data. Measurement sensitiv-
ity and dynamic range should be considered. Displacement provides the best sensi-
tivity in the low-frequency range (0 to 10 Hz) and acceleration in the high-frequency
range (above 1000 Hz).Velocity usually provides the “flattest” spectrum and, hence,
a relatively uniform sensitivity over the medium-frequency range (10 to 1000 Hz).

Step 5. Select one of the following vibration transducers that will best meet the
requirements of step 4.

Displacement Transducer. A displacement transducer is a transducer that con-
verts an input mechanical displacement into an electrical output that is proportional
to the input displacement. Displacement transducer of the eddy-current type
(described in Chap. 10), which have noncontacting probes, are commonly used to
measure the relative motion between a shaft and its journal bearings. This infor-
mation can be related directly to physical values such as mechanical clearance or 
oil-film thickness; that is, it can give an indication of incipient rubbing or excessive
pressure on the bearing babbit. Relative shaft vibration provides information on the
current machine condition, but is principally used in permanent monitoring systems
for machine protection, in other words, immediate shutdown in the event of serious
trouble. Noncontacting displacement transducers are sensitive to shaft runout and
surface irregularities, either mechanical or electrical.

Accelerometer Transducer. Transducers of this type (see Chap. 10) are used to
detect faults through seismic measurements. In the medium-frequency range (10 to
1000 Hz), the acceleration signal is integrated to velocity to detect faults such as
mass unbalance, misalignment, and looseness. In the high-frequency range (above
1000 hz), the acceleration signal is used directly to detect rolling element bearing
and gear defects.

Step 6. Select the measurement locations. When a periodic (off-line) monitoring
system is employed, the number of points at which measurements are made is lim-
ited only by the requirement for keeping measurement time to a minimum. As a
general rule, bearing vibration measurements are made in the radial direction on
each accessible bearing, and in the axial direction on thrust bearings. It is not usually
necessary to measure bearing vibration in both the horizontal and the vertical direc-
tion, since both measurements give the same information regarding the forces
within the machine; this information is merely transmitted through two different
transmission paths. This applies for detecting developing faults. It will later be seen,
however, that in order subsequently to diagnose the origin of the impending fault,
measurements in both the horizontal and the vertical direction may give valuable
information.When measuring shaft vibrations with permanently mounted proximity
transducers, it is convenient to use two probes on each bearing, located at 90° from
each other, thereby providing an indication of the orbit of the shaft within the bear-
ing. Axial displacement transducers, programmed to shut the machine down on pre-
set levels, are mounted where a thrust measurement will protect the machine
rotating parts, such as blades, from rubbing the stationary casing due to fault-
induced axial forces.

When a permanent (on-line) monitoring system is employed using a seismic
pickup, the number of measurement points usually is minimized for reasons of
economy. Selection must be made following a study of the vibration spectra of dif-
ferent bearings in order to locate those points where all significant components
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related to the different expected faults are transmitted at measurable vibration
levels if full spectrum comparison is performed. If only broadband measurements
are monitored, then a further requirement is that all frequency components
related to the expected faults must be of approximately the same level within the
selected frequency range. Otherwise, measurements must be made in selected fre-
quency bands.

Step 7. Select the time interval between measurements. The selection of the time
interval between measurements requires knowledge of the specific machine. Some
machines develop faults quickly, and others run trouble-free for years. A compro-
mise must be found between the safety of the system and the time taken for mea-
surements and analysis. Measurements should be made frequently in the initial
stages of a condition monitoring program to ensure that the vibration levels mea-
sured are stable and that no fault is already developing.When a significant change is
detected, the time interval between measurements should be reduced sufficiently so
as not to risk a breakdown before the next measurement. The trend curve will help
in determining when the next measurement should be performed.

Step 8. Establish an optimum sequence of data acquisition. The sequence in which
data acquired in a condition monitoring program must be planned so that the data
are acquired efficiently. For example, the data collection may be planned on the
basis of plant layout, on the type of data required, or on the sequence of components
in the machine train, from driver to driven components.

Step 9. Select the data acquisition, storage, and analysis system. The data acquisi-
tion is normally performed sequentially on a preprogrammed route by a small,
lightweight special computer called a data collector. This device acquires the data
from a transducer and can store overall values as well as digitized time waveforms
and spectra. It can also be used as an analyzer when used “off route.” The results of
the route are then downloaded to a host computer that analyzes, trends, and stores
the data, providing a report if the machine condition, including trend charts, overall
levels, and alarms, is violated. In a permanent monitoring system, the complete data
acquisition, analysis, and alarms (including warning and shutdown) are contained in
a package tied to the overall plant process system.

FAULT DETECTION IN ROTATING MACHINERY

It is highly desirable to be able to detect all types of faults likely to occur during the
operation of rotating machinery. Such faults range from vibrations at very low fre-
quencies (subsynchronous components indicating looseness, oil whirl, faulty belt
drive, etc.) to vibrations at very high frequencies (tooth-meshing frequencies, blade-
passing frequencies, frequencies of structural resonances excited by faulty rolling-
element bearings, etc.). Such detection should be applicable to the complete range of
machines in a plant, which operate from very low to very high speed. This requires
the selection of equipment and analysis techniques, which cover a very broad fre-
quency range.

Measurements of absolute vibration levels of bearings provide no indication
of the machine’s condition, since they are influenced by the transmission path
between the force and the measurement point, which may amplify some frequen-
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cies and attenuate others. Bearing vibration levels change from one measure-
ment point to another on a given machine, since the transmission paths are dif-
ferent; they also change for the same reason from machine to machine for
measurements made at the same measurement point. Therefore, in estimating the
condition of a machine, it is essential to monitor changes in vibration from a ref-
erence value established when the machine was known to be in good condition.
Changes are expressed as a ratio or as a change of level, i.e., the logarithm of a
ratio, in decibels.

The objective of condition monitoring of a machine is to predict a fault well in
advance of its occurrence. Therefore, a measurement of the overall vibration level
sometimes will not provide successful prediction because the highest vibration com-
ponent within the overall frequency range may dominate the measurement and not
be the result of the defect (particularly with rolling element bearings). This is illus-
trated in Fig. 16.1, which shows an example where overall measurements of the
vibration velocity resulted in an incorrect prediction with an overestimate of the
lead time. The early successful detection of faults in machinery can be ensured only
by comparison with a reference spectrum. This section compares types of spectrum
analysis for this purpose.

FALSE ALARMS

Changes in machinery vibration may result from a number of causes which are not
necessarily related to the deterioration of the machine. For example, a change in
speed of the machine or a change in the load on the machine may greatly modify the
relative amplitudes of the different components of vibration at a fixed transducer
location or may modify the relative pattern of vibration at different locations.
Depending on the criteria used for fault detection, such changes may result in a false
indication of deterioration of the machine. Appropriate selection of the technique
employed and/or alarm levels can avoid such false alarms.

HOW SPECTRUM CHANGES ARE RELATED 

TO THE CONDITION OF A MACHINE

To obtain information about changes in condition of a machine, vibration spectra
should be compared only for similar operating conditions. The influence of operat-
ing condition of the machine (such as machine speed, load, and temperature) on the
vibration parameter being measured varies greatly for different types of machines.
Speed changes of up to 10 percent usually can be compensated for, and spectra can
be compared. If the speed changes are greater than this value, the operating condi-
tion of the machine should be considered to be different and a new reference spec-
trum used as a basis of comparison. The reference spectrum need not be measured
when the machine is new (after allowing for a run-in period). The reference spec-
trum can be determined at any time during the life of a machine provided the vibra-
tions are stable, since a stable spectrum is a sign of stable operation of the machine.
The principal difficulty is to establish when changes in the spectrum are sufficiently
large to warrant stopping the machine.

Most national and international standards for the measurement of seismic vibra-
tion do not consider frequency spectra; instead, they give values for vibration
changes of the rms value of the overall velocity amplitude from 10 to 1000 Hz (or
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10,000 Hz) for machines in good and bad condition. These ratios have successfully
been transposed to characteristic components in the vibration spectrum such as
unbalance or misalignment. Usually, a change in the seismic vibration amplitude
(measured in terms of acceleration, velocity, or displacement) on any characteristic
component from the spectrum by a factor of 2 to 2.5 (6 to 8 dB in vibration level) is
considered significant; a change by a factor of 8 to 10 (18 to 20 dB in vibration level)
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FIGURE 16.1 Trend analysis performed on an overall
measurement and on an individual component. (A) The
velocity spectrum of vibration measured on a gearbox after
installation. Note the high amplitude of the 480-Hz compo-
nent, dominating the reference spectrum. (B) The velocity
spectrum three months later. Note the dramatic increase in
the 121-Hz component, which corresponds to the output
shaft speed of the gearbox. (C) Curves comparing the
increase in the 121-Hz component in the velocity spectrum;
the increase in overall velocity in the band from 10 to 1000
Hz indicates a developing fault.



is considered critical, unless specified otherwise by the manufacturer. Limits for
shaft vibration measurements, giving the relative motion of the shaft inside the bear-
ing, directly relate to physical bearing clearance in the machine. The required time
interval between measurements varies greatly from one machine to another and
depends directly on the expected mean time between failure and the deterioration
rate of the expected failures; therefore, measurements should be made more fre-
quently as soon as incipient deterioration is noticed.

Successful fault detection in machinery is the first step toward a successful 
condition monitoring program. Early recognition of deterioration is the key to
valuable fault diagnosis and efficient trend analysis. Consequently, this phase of
condition monitoring should not be neglected, although sometimes it may seem
tedious.

SPECTRUM INTERPRETATION 

AND FAULT DIAGNOSIS

Commercially available computer-based fast Fourier transform analyzers provide a
suitable tool for spectrum interpretation. They provide constant bandwidth (on a
linear frequency scale), and, by means of zoom or extended lines of resolution, they
also provide very high resolution in any frequency range of interest.This permits (1)
early recognition and separation of harmonic patterns or sideband patterns and (2)
separation of closely spaced individual components. Fast Fourier transform (FFT)
analyzers also may provide diagnostic tools such as synchronous time averaging,
cepstrum analysis, peakness analysis, and/or use of the Hilbert transform for ampli-
tude and phase demodulation (see Chap. 14).

Table 16.2 classifies different types of faults and indicates at which frequency the
faults are displayed in a vibration spectrum.Although such a table is of considerable
help in spectrum interpretation, any such simplified presentation must be used with
care, as illustrated by the examples considered below. The various faults can be clas-
sified according to their spectral components, as follows.

SUBSYNCHRONOUS COMPONENTS

Subsynchronous components of vibration (at frequencies below the rotational
speed of the machine) usually occur where sleeve bearings are used. The most com-
mon are the vibrations due to oil whirl, hysteresis whirl, resonant whirl, or mechani-
cal looseness. Figure 16.2 shows a spectrum measured on the journal bearing of a
centrifugal compressor with mechanical looseness. A characteristic pattern of half-
order harmonics of rotation speed can be clearly seen. Figure 16.3 shows a spectrum
of the journal bearing of a pump in which a developing oil whirl shows up clearly at
21 Hz (42 percent of the rotation speed) and its second harmonic.

Both examples clearly indicate how the use of a linear frequency scale facili-
tates the diagnosis of the fault by providing a clear indication of the different types
of harmonic patterns. High resolution is required to separate a half-order har-
monic component due to looseness or subharmonic resonance (exactly 50 percent
of rotation speed) from a component due to oil whirl (42 to 48 percent of rotation
speed).
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LOW HARMONICS OF ROTATIONAL SPEED

Low harmonics of the rotational speed are generated by shaft unbalance, misalign-
ment, and eccentricity, as well as cracks in shafts and bent shafts.These various faults
may be difficult to distinguish, since they are mechanically related.4 A bad coupling
may result in misalignment. A bent shaft results in unbalance. Even a well-known
and well-defined fault such as unbalance may give misleading vibration components.
The exciting fault due to eccentric masses is a centrifugal force (thus radial) rotating
at the shaft speed and is therefore expected to result in a component in the vibration
spectrum at the machine speed and in the radial direction. However, dynamic unbal-
ance may also result in a rocking motion and consequently in vibration in both radial
and axial directions. In the same way, if there is a nonlinear transmission path from
the point where the force is applied to the point of measurement, a rise in the har-
monics of the rotation speed can be observed in the vibration spectrum, due to dis-
tortion of the signal.

The phase relationship between bearings provides essential information for dif-
ferentiating these various types of faults. As an example, unbalance will generate a
rotating force, and therefore the phase relationship between bearings can be
expected to be identical in both horizontal and vertical directions (in the absence of
resonances). For mass unbalance, the phase difference between a vertical and hori-
zontal transducer is 90° on the same bearing. Misalignment, however, does not cre-
ate a rotating force, and thus the phase relationship between bearings in both
vertical and horizontal directions can be vastly different.

HARMONICS OF THE POWER LINE FREQUENCY

Vibrational components, which are related to the frequency of the power line or
variable frequency drive, or to the difference between the synchronous frequency
and the rotational speed, occur in electric machines such as induction motors or gen-
erators.These vibrations are due to electromagnetically induced forces.These forces,
which occur in the case of a malfunction in the electric machine, are related to the air
gap between the rotor and the stator and to the current. The faults on the electric
machine are due either to the stator (called stationary faults) or to the rotor (called
rotating faults). They may originate from either a variation in the air gap or a varia-
tion in the current.

Figure 16.4 shows a vibration signal measured on the rolling-element bearing of
an asynchronous electric motor. By zooming in the region of the high-level 100-Hz
component (i.e., twice the line frequency in Europe), this component can be diag-
nosed as the pole-passing frequency of 100 Hz and not the 2 × rotation speed at
99.6 Hz which could have been an indication of a faulty alignment. This demon-
strates the value of being able to zoom to the frequency region containing the
component of interest. The zoom or extended lines of resolution provides suffi-
cient resolution to separate closely spaced components. It is of no help in analyz-
ing synchronous machines or generators, since the rotation speed and the line
(mains) frequency are identical. In such a case, the machine should be permitted to
coast to a stop. When the power is cut, electrically induced components of vibra-
tion disappear, and the harmonics of the rotation speed gradually decrease in fre-
quency and amplitude.

Vibration forces resulting from an effective variation of the reluctance in the
magnetic circuit as a function of the rate of the stator and rotor slot passing will be
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TABLE 16.2 A Vibration Troubleshooting Chart

Frequency of dominant vibration,
Nature of fault Hz = rpm/60 Direction Remarks

Rotating members out of 1 × rpm Radial A common cause of excess vibration in machinery
balance

Misalignment and bent Usually 1 × rpm Radial A common fault
shaft Often 2 × rpm and

Sometimes 3 and 4 × rpm axial

Impact rates for the individual Uneven vibration levels, often with shocks
bearing component

Damaged rolling element Also vibrations at high Radial Impact Rates f (Hz):
bearings (ball, roller, frequencies (2 to 60 kHz) often and For Outer Race Defect
etc.) related to radial resonances in axial

bearings f(Hz) = fr�1 − cos β	
For Inner Race Defect

f(Hz) = fr�1 + cos β	
For Ball Defect

f(Hz) = fr�1 − � cos β	2
n = number of balls or rollers
fr = relative rps between inner and outer races

Journal bearings loose in Subharmonics of shaft rpm, Primarily Looseness may only develop at operating speed
housing exactly 1⁄2 or 1⁄3 × rpm radial and temperature (e.g., turbomachines)

BD
�
PD

PD
�
BD

BD
�
PD

n
�
2

BD
�
PD

n
�
2

1
6
.1

0



1
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1

Oil-film whirl or whip in Slightly less than half shaft speed Primarily Applicable to high-speed (e.g., turbo) machines
journal bearings (42 to 48 percent) radial

Hysteresis whirl Shaft critical speed Primarily Vibrations excited when passing through critical
radial shaft speed are maintained at higher shaft

speeds. Can sometimes be cured by tightening
the rotor components.

Damaged or worn gears Tooth-meshing frequencies (shaft Radial Sidebands around tooth-meshing frequencies
rpm × number of teeth) and and indicate modulation (e.g., eccentricity) at
harmonics axial frequency corresponding to sideband spacings.

Normally only detectable with very narrow-
band analysis and cepstrum analysis.

Mechanical looseness 2 × rpm Also sub- and interharmonics, as for loose
journal bearings

Faulty belt drive 1, 2, 3, and 4 × rpm of belt Radial The precise problem can usually be identified
visually with the help of a stroboscope

Unbalanced reciprocating 1 × rpm and/or multiples for Primarily
forces and couples higher-order unbalance radial

Increased turbulence Blade & vane passing frequencies Radial An increased level indicates increased turbulence
and harmonics and

axial

Electrically induced 1 × rpm or 2 times line Radial Should disappear when power is turned off
vibrations frequency and

axial



FIGURE 16.3 Spectrum analysis showing component due to oil whirl at 42
percent of the rotation speed measured on the journal bearing of a pump.
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FIGURE 16.2 Acceleration spectra of a journal bearing on a centrifugal compressor. (A) Com-
pressor in good condition. Before shutdown, the vibration pattern is normal with few harmonics of
the compressor’s rotation speed and broadband noise at higher frequencies due to inherent turbu-
lences. (B) Compressor with looseness in the journal bearing. After shutdown, the higher-order har-
monics have an increased amplitude, and the presence of half-order harmonics can be observed.



present even in a motor which is in good condition.These vibrations occur at the slot
harmonics given by the following equation:

fslot = Rs frot ± kfline

where fslot = slot passing frequency
Rs = number of rotor slots
frot = rotating speed

k = zero or even number
fline = power line frequency

The vibration components at low frequency differentiate between stator problems
and rotor problems.They do not, however, indicate whether the faults originate from
variations in air gaps or current. The components at the slot harmonics, on the other
hand, will behave differently depending on whether the fault originates from an air
gap or current variation as indicated in Table 16.3.

Figure 16.5 shows that by using a zoom around slot harmonics, sidebands can be
observed at twice the slip frequency, thereby permitting the diagnosis of broken
rotor bars. For a four-pole motor, sidebands occur at four times the slip frequency.

As an alternative to using signal analysis of vibration, signal analysis of the motor
current may be used to monitor certain types of problems. It is a more direct mea-
surement for all electrical problems and, with the help of algorithms, makes it possi-
ble, for example, to determine with a certain amount of accuracy the number of
broken rotor bars. Reference 4 mentions that mechanical phenomena such as worn
gears, tooth wear, and steam packing degradation (in motor-operated valves) can be
detected as well. It also mentions the applicability of this technique to dc motors.
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FIGURE 16.4 Spectrum analysis employing zoom frequency analysis around the 100-Hz compo-
nent, measured on the rolling-element bearing of an asynchronous electric motor.



TABLE 16.3 Troubleshooting Guide of Induction Motor Vibrations

Static eccentricity 2 × line frequency and components Can result from poor internal alignment,
at ω × [nRs(1 − s)/p ± k1] Radial bearing wear, or from local stator heating 

(vibration worsens as motor heats up).

Weakness/looseness Referred to as “loose iron.”
of stator support,
unbalanced phase Difficult to differentiate between this group 
resistance or coil sides 2 × line frequency Radial using only vibration analysis, but they will

Shorted stator also be apparent at no load as well as on load.
laminations/turns

Loose stator laminations 2 × line frequency and components Can have high amplitude but not usually destructive.
spaced by 2 × line frequency at Radial The high-frequency components may be similar 
around 1 kHz to static eccentricity.

Dynamic eccentricity 1 × rpm with 2 × slip-frequency Can result from rotor bow, rotor runout, or from 
sidebands and components at Radial local rotor heating (vibration worsens as motor 
ω × [((nRs ± ke) × (1 − s)/p) ± k1] heats up).

Broken or cracked rotor bar 1 × rpm with 2 × slip-frequency The slip sidebands may be low level, requir-
Loose rotor bar sidebands and components Radial ing a large dynamic range as well as fre-
Shorted rotor laminations similar to those given above for quency selectivity in measuring instrumen-
Poor end-ring joints dynamic eccentricity with addition tation. Typical spectra show that these components in 

of 2 × slip-frequency sidebands the region of the principal vibration slot harmonics 
around slot harmonics also have slip-frequency sidebands.

1
6
.1
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HIGHER HARMONICS OF THE ROTATIONAL SPEED

Higher harmonics of the rotational speed typically occur where characteristic fre-
quencies are an integral multiple of the rotational speed of the machine, for example,
in the case of gearboxes, compressors, and turbines, where vibration occurs in multi-
ples of the number of teeth, blades, lobes, etc. An increase in components, such as
tooth-meshing frequencies or blade-passing frequencies, indicates deterioration act-
ing on all teeth or blades, e.g., as uniform wear or increased turbulences, respectively.

“Ghost components” sometimes are observed in vibration spectra obtained from
measurements on gearboxes; these components appear as tooth-meshing frequen-
cies, but at frequencies where no gear in the gearbox has the corresponding number
of teeth. Such components arise from faults on the gear-cutting equipment which
have been transmitted to the new gear. Being geometrical faults, they are not load-
sensitive, nor do they increase with wear; rather, as the gear’s surface wears, they
tend to decrease with time. The frequencies of the components are an integral mul-
tiple of the number of teeth on the index wheel and therefore appear as harmonics
of the speed of rotation of the faulty gear.

SIDEBAND PATTERNS DUE TO MODULATION

Modulations, frequently seen in vibration measurements on gearboxes, are caused
by such faults as eccentricities, varying gear-tooth spacing, pitch errors, varying load,
tooth-to-tooth pittting, and uneven wear. Such modulations manifest themselves as
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FIGURE 16.5 Zoom spectrum centered around the second principal vibration slot harmonic,
showing 2 × slip-frequency sidebands on the component at this frequency.



families of sidebands around the gear-tooth-meshing frequency with a frequency
spacing equal to the modulating frequency (e.g., the rotation speed of the faulty gear
in the case of an eccentric gear). Figure 16.6A shows the distribution of the side-
bands for such a condition. Any gear in a gearbox can be a source of modulation. In
order to distinguish all possible sidebands, the analysis must be carried out with suf-
ficient resolution to detect sidebands with a spacing equal to even the lowest rota-
tional speed inside the gearbox, and therefore the zoom feature is indispensable.

Local faults, such as cracked or broken gear teeth, cause bursts of energy where
the fault passes through the gearmesh (see Fig. 16.6B). The spectrum appears as a
family of sidebands with a spacing equal to the rotation speed of the faulty gear, as
this induces a change in tooth deflection, during meshing, once per revolution. The
sidebands shown in Fig. 16.6B are low in level and cover a broad frequency range.
Very often the influence of the transmission path will modify the shape of the side-
band pattern and does not permit a precise diagnosis. Local faults are best detected
in the time waveform of Fig. 16.6B.5 Similarly, sidebands at the rotational speed and
slip frequency are quite common in patterns for asynchronous machines.

HARMONIC PATTERNS NOT HARMONICALLY RELATED 

TO THE ROTATIONAL SPEED

Harmonic patterns which are not harmonically related to the speed of rotation typ-
ically appear where there are local faults in rolling-element bearings.5 A local fault
produces an impulse having a repetition rate equal to the characteristic frequencies
of the bearing: ball-passing frequency for the outer raceway, ball-passing frequency
for the inner raceway, and twice the ball-spin frequency (see Table 16.2). Such faults
appear as a series of harmonics separated by the impact frequency with an ampli-
tude proportional to the spectrum of the single impulse. An impact tends to excite
bearing defect frequencies or excite structural resonances in the frequency range
covered, and the harmonic patterns around these resonances thus are emphasized.
This provides two methods of detecting rolling-element bearing faults: (1) by finding
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FIGURE 16.6 Distribution of sideband patterns for distributed (A) and local (B) faults
on a gear.



the fundamental of the impact rate in the low-frequency range; and (2) by finding
the harmonic pattern at the impact frequency in the high-frequency range, where
resonances are excited; this may be difficult because speed fluctuations tend to
smear these components.

SPECIAL ANALYSIS TECHNIQUES

Table 16.4 summarizes the applications of the various analysis techniques described
below.
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TABLE 16.4 Typical Applications of the Various Analysis Techniques

Technique Application Fault/machine

Zoom Separation of closely Electrical machines, gearboxes,
spaced components turbines

Improvement of signal-to-
noise ratio, separation of 
resonances from pure tones

Phase Operational deflection shapes
Detection of developing cracks 

in shafts
Balancing

Time signal Waveform visualization for Rubbing, impacts, clipping,
identification of distortion cracked teeth

Cepstrum Identification and separation Rolling elements bearing,
of families of harmonics bladed machines, gearboxes

Identification and separation 
of families of sidebands

Envelope analysis Amplitude demodulation Rolling element bearing,
Observation of a low-frequency electrical machines,

amplitude modulation happening gearboxes
at high frequency

Peakness methods Calculation of high-pass filtered Faults in low-speed machines
signals

Synchronous time Improving signal-to-noise ratio Electrical machines,
averaging Waveform analysis reciprocating machines,

Separating effects of adjacent gearboxes, etc.
machines

Separating effects of different 
shafts

Separating electrically and 
mechanically induced vibrations

Impact testing Resonance testing Foundations, bearings,
couplings, gears

Scan analysis Analysis of nonstationary signals Fast run-up/coast down



ENVELOPE DETECTION

Envelope detection (envelope detectors are discussed in Chap. 13) is particularly
useful for fault diagnosis in machinery, since it permits elimination of the signal
resulting from background vibration and concentrates the analysis in the frequency
range placing the greatest emphasis on the harmonic pattern of the impact fre-
quency—a resonance of the structure excited by the impulse. This can be done by
either analog or digital means.6 Figure 16.7 illustrates the analog process. The signal
(see Fig. 16.7A) is first bandpass-filtered around the frequency range where a signif-
icant broadband increase has been detected, as illustrated in Fig. 16.7B and D (usu-
ally one or more resonances between 2 and 20,000 Hz have been excited). The
filtered signal (which now contains only the ringing of the selected resonance
excited by the repetitive impacts, Fig. 16.7C) is rectified and analyzed once again in
a low-frequency range in order to determine the repetition frequency of the impacts,
as shown in Fig. 16.7E and F.

The advantages of envelope detection are as follows:

1. The use of bandpass filters eliminates background noise resulting from other
vibration sources (for example, from unbalance or gear vibration). All that
remains is the repetition rate of the impacts exciting the structural resonance,
possibly amplitude-modulated.

2. High-frequency analysis is not required, since only the envelope of the signal is of
importance, not the signal itself, which can extend upward to hundreds of kilohertz.

3. Diagnosis is possible, since the impact frequencies are determined and can be
related to a specific source (ball-passing frequency for the outer raceway, ball-
passing frequency for the inner raceway, ball-spin frequency, fundamental train
frequency, or some other source of repetitive impacts, for example, a cracked
gear tooth).
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FIGURE 16.7 Principle of analog envelope detection applied to
the analysis of impacts due to rolling-element bearing faults.
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Figure 16.8A and B shows the acceleration spectra from 0 to 25 kHz of a good
bearing and a faulty bearing. Note that the spectrum is noticeably higher on the
good bearing than on the faulty one, which confirms that comparative measure-
ments should not be made between different measurement points or different
machines. Absolute vibration levels often do not provide a satisfactory indication of
the condition of a machine; only changes in level are relevant. Figure 16.8C and D
shows the analysis of the envelopes on the good and the faulty bearings obtained
after zooming around 5400 Hz with an 800-Hz frequency span. The only noticeable
pattern on the good bearing comes from the forced lubrication system. In contrast,
the result of the envelope analysis on the faulty bearings shows a complex pattern,
and frequency information is absolutely necessary to confirm whether or not there
is a ball-bearing fault. The following frequencies appear: 5.4 Hz (the repetition rate
of the forced lubrication system on the actual bearing, and its harmonics), 6.4 Hz
(the repetition range of the forced lubrication system on adjacent bearings, and its
harmonics), and 15.43 Hz (the ball-passing frequency for an outer raceway defect,
and its harmonics).

CEPSTRUM ANALYSIS

The use of cepstrum analysis (explained in more detail in Chap. 14) is particularly
advantageous for detecting periodicities in the power spectrum (e.g., harmonics and
sideband patterns), since it provides a precise measure of the frequency spacing
between components.6 Figure 16.9 shows the spectrum and the corresponding cep-
strum analysis of a measurement made on an auxiliary gearbox driving a generator
on a gas-turbine-driven oil pump.As a fault on one of the bearings develops, the first
rahmonic appears and then increases at a quefrency equal to the reciprocal of the
spacing in the frequency spectrum which corresponds to an outer raceway defect in
one of the bearings. Another advantage of cepstrum analysis is that one component
in the cepstrum represents the global “power” content of a whole family of harmon-

FIGURE 16.8 Envelope analysis of a good and bad bearing in the frequency
range from 0 to 25 kHz.



ics or sidebands, and this value is practically independent of extraneous factors such
as machine-load condition, selection of measurement location, and phasing between
amplitude and phase modulation.

PEAKNESS METHODS

It has been found that the analysis of stress waves (short pulses compared to oper-
ating speed) generated by metal-to-metal contact indicate such defects as bearing
flaws, gear tooth surface deformities, rubs, and insufficient lubrication. Peakness
methods are based on high-pass or bandpass-filtered acceleration measurement and
sampling; however, high-pass filtering varies from method to method. Instead of
demodulation, peakness methods directly use either peak, peak-to-peak, or dynamic
crest factor detection.They eliminate all energy from the spectrum except the impul-
sive activity.

The PeakVue® waveform* is formed by a series of digital signal processing steps.
The analog signal from the transducer is passed through a user-specified high-pass
filter set at greater than or equal to the user-specified Fmax. The resultant signal is
sampled at a rate of 2.56 × 40,000 kHz. This digital string of data is decimated by a
factor of 40,000/Fmax while saving the absolute peak value out of each decimation
step. The PeakVue waveform (Fig. 16.10A) is formed by saving a block of peak val-
ues of 2.56 times the user-specified number of lines. The PeakVue spectrum (Fig.
16.10B) is calculated from the PeakVue waveform using the FFT process with the
selected Fmax and number of lines. In addition, the analyst generates the autocorrela-
tion coefficient (Fig. 16.10C) from the PeakVue waveform.The autocorrelation pro-
cedure is a scalar averaging process with no phase information.7
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FIGURE 16.9 Analyses of vibration of an auxiliary gearbox before and after the devel-
opment of a fault on one of the bearings. (A) Spectrum analysis; (B) the corresponding cep-
strum analysis.

*PeakVue® is a trademark of Emerson Process Management.



FIGURE 16.10 PeakVue® analysis of a chipper bearing.7
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Figure 16.10 shows the analysis of a chipper with a defective rolling-element
bearing. The spectrum of the PeakVue time waveform (Fig. 16.10B) shows frequen-
cies at 2.2 Hz and multiples (fundamental train frequency), which indicates a cage
defect. The autocorrelation coefficient (Fig. 16.10C) explicitly shows frequencies of
2.2 Hz and 40.2 Hz (ball spin frequency), which indicates a rolling-element defect.

APPLICATION OF VIBRATION ANALYSIS 

TO RECIPROCATING MACHINES

Vibration signals from reciprocating machines (such as diesel engines, reciprocating
compressors, hydraulic pumps, and gas engines) differ from those of rotating
machines in that they are not stationary. Instead, they consist of short impulses
which occur at different points in time for different events (valves opening and clos-
ing, piston slap, combustion, etc.) and are repeated with the same timing for each
new machine cycle. If these signals are averaged over a longer period of time, as is
common practice in the analysis of rotating machines, these individual events would
be averaged out so that changes would go undetected.

In reciprocating machines, different events will excite different resonances of a
structure; the resulting frequencies that are generated provide valuable diagnostic
information. Timing provides equally valuable information because the time when an
event occurs may be related to what is actually happening in the cycle of the engine.

In gated vibration analysis, the vibration signal is analyzed at various angles of
the crankshaft in order to cover a complete cycle of the machine in a three-
dimensional plot.8 The analyzer is triggered by a once-per-cycle trigger signal; then
the delay after triggering is shifted to provide adequate overlap; this procedure con-
tinues until a complete cycle is covered. Note that each spectrum represents actually
an average over many machine cycles for one time delay. This process averages any
differences between machine cycles.

Shock monitoring technology9 has been shown to be sensitive to reciprocating
compressor faults in the early stages. These faults, which have the symptoms of
mechanical looseness, relate to loose rod nuts, loose bolts, broken parts, liquid in the
cylinders, and cylinder scoring.

TREND ANALYSIS

Trend analysis makes use of graphs of a condition-related parameter versus time
(date or running hours) to determine when the parameter is likely to exceed a given
limit.The goal of a successful condition monitoring program is to predict the time of
an expected breakdown well in advance of its occurrence in order to shut down the
machine in ample time, to order spare parts, and thereby to minimize the shutdown
time. Since all vibration criteria indicate that equal changes on a log scale corre-
spond to equal changes in severity, data for a trend analysis should be plotted on a
logarithmic scale in decibels. A linear trend on a logarithmic scale is found occa-
sionally, but the actual trend may follow another course; for example, when the fault
feeds back on the rate of deterioration (e.g., gear wear), the trend, when plotted on
a logarithmic scale, may then be exponential. In some cases the fault changes sud-
denly in finite steps (for example, a spall caused by gradual subsurface fatigue), mak-
ing it very difficult to extrapolate to determine the date of the shutdown. To ensure
accurate trend analysis, the following precautions should be taken:
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1. Determine a trend based on measurements of a parameter directly related to a
specific type of fault—not on measurements of overall levels.

2. Diagnose faults before attempting to interpret a trend curve in order to (a) select
the appropriate parameter for the type of fault which is being monitored (for
example, the parameter may be the level of an individual component, of a cep-
strum component, or of a selected frequency range) and (b) observe critically the
results of the trend analysis so as to determine if the linear or exponential inter-
polation is adequate.

3. Keep in mind that the best estimate of the lead time will be obtained by employ-
ing a trend of the most recent measurements.

CORRECTION METHODS

Condition monitoring of machinery always leads to correction of faults that caused
excessive and/or abnormal vibration. Abnormal vibration is the symptom of normal
wear, design deficiencies, installation errors, manufacturing tolerances, or process
excitation. It is important to correct because excessive vibration destroys bearings,
foundations, casings, and shafts and may affect the process and the health of person-
nel working near the machine. Some vibration is normal because of the process and
function of the machine. The common correction methods employed to reduce
excessive vibration include:

1. Replacement of defective parts
2. Alignment10

3. Rotor mass balancing11,12

4. Resonance removal (Chaps. 21 and 23)
5. System redesign
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CHAPTER 17
SHOCK AND VIBRATION

STANDARDS

David J. Evans

Henry C. Pusey

INTRODUCTION

This chapter is concerned with shock and vibration standards covering (1) terminol-
ogy; (2) use and calibration of transducers and instrumentation; (3) shock and vibra-
tion generators; (4) structures and structural systems; (5) vehicles including
land-based, airborne, and ocean-going; (6) machines and machinery including test-
ing, condition monitoring, diagnostics, prognostics, and balancing; (7) human expo-
sure to shock and vibration; and (8) testing. These topics may be covered by
international, regional, or national documents that are issued as either standards or
recommended practices. The dominant international consensus standards bodies
concerned with shock and vibration are the International Organization for Stan-
dardization (ISO) and the International Electrotechnical Commission (IEC). The
U.S. members of ISO and IEC are the American National Standards Institute
(ANSI) and the United States National Committee of the International Elec-
trotechnical Commission (USNC/IEC), respectively.The USNC/IEC is a committee
of ANSI. Examples of regional standards bodies are the European Committee for
Standardization (CEN) and the European Committee for Electrotechnical Stan-
dardization (CENELEC). Within the U.S.A., ANSI standards are developed by
standards committees following the accredited standards procedures of ANSI.
These national committees also often furnish the expert members from the U.S.A. to
working groups within ISO and IEC. The national standards committees are typi-
cally sponsored by professional societies that have an interest in particular areas of
standardization work. Within the U.S.A., additional national consensus standards
bodies exist, such as the American Society for Testing and Materials (ASTM), that
develop standards by consensus of the members of their society.
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17.2 CHAPTER SEVENTEEN

STANDARDS ORGANIZATIONS 

AND COMMITTEES

ISO technical committee (TC) 108 (Mechanical Vibration, Shock and Condition
Monitoring) and its five subcommittees (SCs) are predominantly responsible for
any international standards activity related to shock and vibration. TC 108 and its
subcommittees maintain numerous liaisons with other technical committees and
subcommittees within ISO and IEC, including ISO TC 20 (Aircraft and Space Vehi-
cles), ISO TC 43 (Acoustics), ISO TC 45 (Rubber and Rubber Products), ISO TC
159 (Ergonomics), IEC TC 2 (Rotating Machinery), IEC TC 5 (Steam Turbines), and
IEC TC 87 (Ultrasonics).

The subcommittees of TC 108 also maintain liaisons with other organizations out-
side of ISO and IEC that are interested in their work. IEC TC 104 is responsible for
standards activities related to environmental testing, including testing using shock and
vibration. The primary counterpart to ISO TC 108 within the U.S.A. is ANSI-
accredited standards committee S2 (Mechanical Vibration and Shock), which holds
the U.S. Technical Advisory Group (TAG) for ISO TC 108 and all of its subcommit-
tees.The ANSI-accredited standards committee S2 and its U.S.TAGs are administered
by the Acoustical Society of America Committee on Standards (ASACOS) and the
Acoustical Society of America (ASA) Standards Secretariat. The U.S. TAG for IEC
TC 104 is administered and managed by the Electronic Industries Alliance (EIA) Cor-
porate Engineering Department.The activities of CEN TC 231 on shock and vibration
are reported to ISO TC 108. Much of the standardization work of CEN TC 231 is
related to the EU (European Union) Machinery Directive(s).

STANDARDS ACTIVITIES

The various international standards activities related to shock and vibration are
summarized in Table 17.1 and discussed in the following sections.

Terminology. Documents on standardized terminology of all aspects of TC 108
and its six subcommittees are coordinated under TC 108. This vocabulary is con-
tained in ISO document ISO 2041.

Use and Calibration of Transducers and Instrumentation. The use and
calibration of shock and vibration transducers and instrumentation, including stan-
dardized calibration methods, measuring instrumentation for human response to
vibration, and vibration condition monitoring transducers and instrumentation,
is assigned to ISO TC 108/SC 3 (Use and Calibration of Vibration and Shock Mea-
suring Instrumentation). TC 108/SC 3 maintains a liaison with the International
Organization of Legal Metrology (OIML). Numerous standards on calibration are
contained in the ISO 5347 series of standards, as well as in the ISO 16063 series of
standards. The ANSI standard on methods of calibration of shock and vibration
transducers is ANSI S2.2. The ISO standard on measuring instrumentation for
human response to vibration is ISO 8041. The Instrumentation, Systems, and
Automation Society (ISA) administers a number of standards committees, one of
which is SP37 on specifications and tests for sensors and transducers used in mea-
surement and control. SP37 has a number of subcommittees that involve transducers
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used in shock and vibration measurements, e.g., strain gages, accelerometers, servo-
accelerometers, and force transducers. SP37.20 is a separate subcommittee of SP37
devoted specifically to vibration transducers.

Shock and Vibration Generators. ISO TC 108/SC 6 (Vibration and Shock Gen-
erating Systems) has been assigned standards activities related to systems for the
generation of shock and vibration and their terminology. TC 108/SC 6 maintains a
liaison with IEC TC 104. IEC TC 104 (Environmental Conditions, Classification, and
Methods of Test) is concerned with standardized environmental testing, of which
shock and vibration are only two of several variables defining a test environment.
ANSI has a number of standards related to the specification of the performance of
shock- and vibration-testing machines, as well as standards covering the perfor-
mance characteristics of these machines.

Structures and Structural Systems. ISO TC 108 (Mechanical Vibration and
Shock) and TC 108/SC 2 (Measurement and Evaluation of Mechanical Vibration
and Shock as Applied to Machines, Vehicles, and Structures) both have items in

TABLE 17.1 Summary of International Standards Activities

Document Responsible Related
Category series ISO TC/SC documents

Vocabulary ISO 2041 TC 108 ANSI S2.1

Mobility ISO 7626 TC 108 ANSI S2.31–34

Isolators ISO 2017 TC 108 ANSI S2.8

Balancing ISO 1940 TC 108 ANSI S2.19,
S2.42, and S2.43

Balancing machines ISO 2953 TC 108 ANSI S2.38

Machines/machinery ISO 7919 and TC 108/SC 2 ANSI S2.13,
10816 S2.40, and S2.41

Vehicles ISO 8002 TC 108/SC 2

Ships ISO 4867, TC 108/SC 2 ANSI S2.16 and
4868, 6954, S2.25;
and 10055 MIL-STD-167

Buildings ISO 4866 and TC 108/SC 2 ANSI S2.47
8569

Calibration ISO 5347 and TC 108/SC 3 ANSI S2.2
16063

Human response ISO 8041 TC 108/SC 3

Human exposure ISO 2631, TC 108/SC 4 ANSI S3.18,
5349, 6897, S3.29, and S3.34
8727, and 13090

Generating systems ISO 5344, TC 108/SC 6 ANSI S2.5,
6070, and 8626 S2.45, S2.48,

and S2.58

Shock machines ISO 8568 TC 108 ANSI S2.3,
S2.14, and S2.15



their program of work related to stationary structures or structural systems. Guide-
lines on building vibration are contained in ISO 4866 and ANSI S2.47. Work on
condition monitoring and assessment of structures and structural systems is ongo-
ing in TC 108.

Vehicles. This comprises a very broad area of standardization with a small, but
important, portion of it directly related to shock and vibration. ISO TC 108/SC 2
(Measurement and Evaluation of Mechanical Vibration and Shock as Applied to
Machines, Vehicles, and Structures) is involved with the vibration of ships, and ISO
4867, 4868, and 6954 specifically address the measurement and reporting of vibra-
tion onboard ships. Much of the U.S. participation in this work is contributed by
members of the Society of Naval Architects and Marine Engineers (SNAME). ANSI
S2.16 covers the measurement and acceptance criteria for the vibratory noise of
shipboard equipment, and ANSI S2.25 covers the evaluation and reporting of hull
and superstructure vibration in ships. ISO TC 108/SC 2 is also involved with vibra-
tion of land-based vehicles, and ISO 8002, 8608, and 10326 are specifically related to
the evaluation and reporting of the vibration associated with either land-based vehi-
cles or road surface profiles. ISO TC 20 (Aircraft and Space Vehicles) is involved
with standards related to aerospace vehicles in general, and a number of ISO tech-
nical committees exist that generally cover specific types of land-based vehicles, e.g.,
construction, agricultural, and off-road vehicles.The U.S.TAG for ISO TC 20 and the
U.S. TAGs for many of the ISO technical committees on land-based vehicles in gen-
eral are administered by the Society of Automotive Engineers (SAE).The CEN doc-
ument CEN EN 1032 on testing mobile machinery has been published, and work is
ongoing within CEN TC 231 with respect to testing mobile machinery to determine
whole-body vibration and vibration emission values. CEN TC 231 maintains liaisons
with CEN TC 144 and CEN TC 151 on tractors and agricultural machines, and con-
struction equipment, respectively.

Machines and Machinery. Standardization related to the shock and vibration
of machines and machinery including balancing, condition monitoring, diagnostics,
prognostics, and testing is within the program of work of ISO TC 108 ISO TC
108/SC 2 (Measurement and Evaluation of Mechanical Vibration and Shock as
Applied to Machines, Vehicles, and Structures), and ISO TC 108/SC 5 (Condition
Monitoring and Diagnostics of Machines). Numerous ISO and ANSI standards
exist on balancing, balancing machines, balancing terminology, balance quality,
and the measurement and evaluation of mechanical vibration related to various
classes of rotating and reciprocating machinery. The National Electrical Manufac-
turers Association (NEMA), American Petroleum Institute (API), Compressed
Air and Gas Institute, and Hydraulic Institute publish standards on motors, gener-
ators, turbines, pumps, and compressors that may contain parts that are related to
shock and vibration of these machines. TC 108/SC 2 maintains liaisons with more
than a dozen different ISO and IEC technical committees and subcommittees
including IEC TC 104. TC 108/SC 5 maintains a liaison with IEC TC 2 (Rotating
Machinery). ISO TC 118/SC 3 (Pneumatic Tools and Machines) maintains liaisons
with ISO TC 108/SC 2 and TC 108/SC 4. CEN TC 231 has a number of published
standards related to the vibration of hand-held power tools, as well as guidance on
safety standards related to vibration. An additional program of work within CEN
TC 231 pertains to the vibration of a variety of hand-held power tools, e.g.,
grinders, drills and rotary hammers, chipping and riveting hammers, and hammers
for construction.

17.4 CHAPTER SEVENTEEN



Human Exposure to Shock and Vibration. The program of work on human
exposure to shock and vibration is assigned to ISO TC 108/SC 4 (Human Exposure
to Mechanical Vibration and Shock). ISO TC 108/SC 4 maintains liaisons with about
a dozen ISO technical committees and subcommittees including ISO TC 43
(Acoustics), as well as with other organizations such as the European Committee of
Associations of Manufacturers of Agricultural Machinery (CEMA), the Interna-
tional Maritime Organization (IMO), and the International Union of Railways
(UIC). There are a number of ISO and ANSI standards on exposure to whole-body
and hand-arm vibration including standards covering occupants of fixed-structures,
single shocks, guidance on safety aspects of tests and experiments, transmissibility of
gloves and resilient materials, and terminology. (See Chap. 41.)

Testing. Numerous standards and handbooks that cover shock and vibration test-
ing have been issued by ISO and IEC, as well as agencies of the U.S. government, in
particular the National Aeronautics and Space Administration (NASA) and the
Department of Defense (DoD). Although NASA and DoD standards and hand-
books are concerned primarily with aerospace vehicles and military hardware, many
are sufficiently general to have broad applications to commercial structures, vehi-
cles, and equipment.

International Standards. While IEC TC 104 (Environmental Conditions, Clas-
sification, and Methods of Test) has work programs devoted to a number of envi-
ronmental variables such as temperature and relative humidity, a portion of the
work is directed toward testing using shock and vibration. Specifically, a number of
documents in the IEC 60068-2 series of documents cover sinusoidal vibration,
broadband random vibration, shock, drop and topple, free fall, and bump testing.
ASTM publishes standards that address using shock and vibration to test unpack-
aged manufactured products, packaging systems, shipping containers, and materials.
ISO 8568 addresses shock testing machines. ISO TC 108 has a work item on the
analysis of the mechanical properties of visco-elastic materials using vibration, and
there are a number of ANSI-approved standards published on measuring the
mechanical properties of visco-elastic materials using vibration.

NASA Standards and Handbooks. NASA has issued three standards (STD)
and two handbooks (HDBK) related to shock and vibration testing that are
approved for NASA-wide application to launch vehicles and payloads. Descriptions
of the scopes of these publications follow. All of these publications are available via
the World Wide Web (www) at standards.nasa.gov.

The term vibroacoustics is defined as an environment induced by high-intensity
acoustic noise associated with various segments of the flight profile (see Chap. 32, of
this handbook). It manifests itself throughout the launch vehicle and payload struc-
ture in the form of transmitted acoustic excitation and as structure-borne random
vibration. The NASA standard NASA-STD-7001, “Payload Vibroacoustic Test Cri-
teria,” specifically addresses the acoustic and random vibration environments and
test levels associated with vibroacoustics.

Selected environmental exposure tests are contained in NASA-STD-7002, “Pay-
load Test Requirements.” This standard includes tests that are generally regarded as
the most critical and the ones having the highest cost and schedule impact.The stan-
dard also includes functional demonstration tests necessary to verify the capability
of the hardware to perform its intended function, with and without environmental
exposure. Test levels, factors, margins, durations, and other parameters are specified
where appropriate. In some cases, these specifications are expressed statistically or
are described by reference to other NASA standards.
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NASA-STD-7003, “Pyroshock Test Criteria,” provides a consistent methodology
for developing pyroshock test criteria for NASA spacecraft, payload, and launch
vehicle hardware during all test phases of the verification process.Various aspects of
pyroshock testing are discussed, including test environments, methods and facilities,
test margins and number of exposures, control tolerances (when applicable), data
acquisition and analysis, test tailoring, dynamic analysis, and prediction techniques
for pyroshock environments.

The NASA handbook NASA-HDBK-7004, “Force Limited Vibration Testing,”
establishes a methodology for conducting force-limited vibration tests for all NASA
flight projects.The methodology in the handbook may be followed by those desiring
to use force limiting without having to conduct an extensive literature search or
research and development effort before conducting the test.A monograph on force-
limited vibration testing is available for reference and is recommended for those
needing more detailed technical information (NASA-RP-1403).

NASA-HDBK-7005, “Dynamic Environmental Criteria,” summarizes proce-
dures for deriving design and test criteria for space vehicles exposed to a wide range
of shock and vibration environments. Included in this handbook are detailed discus-
sions of the machines and procedures approved by NASA for the shock and vibra-
tion testing of spacecraft and their components. Many of these machines and
procedures are equally applicable to the testing of commercial hardware.

DoD Standards. Despite a significant effort to modify or eliminate military
(MIL) standards and specifications in favor of commercial standards, a considerable
group of MIL standards still remain. In many cases, MIL standards are unique in
application and scope and, in some cases, more useful than similar commercial stan-
dards. A specific case in point is MIL-STD-810, “Environmental Engineering Con-
siderations and Laboratory Tests,” now in its “F” revision. This document covers
most environments, including shock and vibration. Through its many revisions, the
scope of the document has expanded to include new environments and most ground
and air platforms. Its principal contribution to product design engineering is its
emphasis on test tailoring, introduced in the “D” revision and expanded with later
revisions. This test concept is not emphasized in any commercial specification and
allows MIL-STD-810 to be used for both defense and commercial applications, and
for both U.S. and non-U.S. test programs.

Several useful MIL standards that include shock and vibration requirements 
are maintained and available. The most widely used are the latest revisions 
of MIL-STD-1540 and MIL-HDBK-340 on space vehicle shock and vibration,
MIL-S-901D on Navy shock, MIL-STD-781 on reliability, and MIL-STD-167 on
ship vibration (parts of this standard have been, or are in the process of being, con-
verted to ANSI or ISO standards). Nearly all of these standards can be located 
at the Document Automation and Production Service DoD Single Stock Point
(DoDSSP) web site. A complete collection of DoD specifications and standards is
indexed in the Acquisition Streamlining and Standardization Information System
(ASSIST), which is managed by the DoDSSP. The ASSIST Shopping Wizard web-
site provides the capability to request DoD standardization documents over the
Internet. Users may place orders for documents in paper and CD-ROM formats by
establishing a customer account with the DoDSSP. The U.S. Government Printing
Office allows the purchase of a variety of DoD and other U.S. Government Agency
publications.A catalog of government periodicals and subscription services is avail-
able from the Superintendent of Documents, U.S. Government Printing Office.
Most DoD standardization documents can also be obtained by contacting the con-
trolling military service. In the case of MIL-STD-810, for example, the controlling
military service is the U.S. Army.
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STANDARDS-DEVELOPING ORGANIZATIONS

AND SOURCES

Some societies and organizations involved in the production of standards are given
below. Sources for catalogs of standards and for purchasing standards are also given.
A significant amount of information concerning standards development, meetings,
organizations, catalogs, and procurement is readily available via the World Wide
Web (www) at the uniform resource locators (URLs) listed below. This list, while
extensive, is not intended to be all inclusive.

Acoustical Society of America (ASA)
Standards Secretariat
35 Pinelawn Road, Suite 114E
Melville, NY 11747 USA
Telephone: +1 631 390 0215
URL: asa.aip.org

American National Standards Institute (ANSI)
1819 L Street NW, 6th Floor
Washington, DC 20036 USA
Telephone: +1 202 293 8020
URL: www.ansi.org

American Society for Testing and Materials (ASTM)
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959 USA
Telephone: +1 610 832 9500
URL: www.astm.org

Electronic Industries Alliance (EIA)
Corporate Engineering Department
2500 Wilson Boulevard
Arlington, VA 22201 USA
Telephone: +1 703 907 7500
URL: www.eia.org

European Committee for Standardization (CEN)
Avenue Marnix 17
B 1050 Brussels, Belgium
Telephone: +32 2 550 08 11
URL: www.cen.eu/cenorm

Global Engineering Documents
15 Inverness Way East
Englewood, CO 80112 USA
Telephone: +1 800 854 7179
URL: global.ihs.com

International Electrotechnical Commission (IEC)
3, rue de Varembé
P.O. Box 131
CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11
URL: www.iec.ch
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International Organization for Standardization (ISO)
1, ch. de la Voie-Creuse
Case postale 56
CH-1211 Geneva 20, Switzerland
Telephone: +41 22 749 01 11
URL: www.iso.ch

Instrumentation, Systems, and Automation Society (ISA)
67 Alexander Drive
Research Triangle Park, NC 27709 USA
Telephone: +1 919 549 8411
URL: www.isa.org

NASA/Marshall Space Flight Center
Mail Code: ED41
Marshall Space Flight Center, AL 35812 USA
Attention: Paul Gill
Telephone: +1 256 544 2557
URL: standards.nasa.gov

Society of Automotive Engineers (SAE)
World Headquarters
400 Commonwealth Drive
Warrendale, PA 15096-0001 USA
Telephone: +1 724 776 4841
URL: www.sae.org

Society of Naval Architects and Marine Engineers (SNAME)
601 Pavonia Avenue
Jersey City, NJ 07306 USA
Telephone: +1 800 798 2188
URL: www.sname.org

U.S. Government Printing Office
Washington, DC 20402 USA
Attention: Superintendent of Documents
Telephone: +1 202 512 1704
URL: bookstore.gpo.gov/collections

U.S. National Committee of the IEC (USNC/IEC)
c/o American National Standards Institute
25 West 43d Street, Fourth Floor
New York, NY 10036 USA
Telephone: +1 212 642 4900
URL: www.ansi.org
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CHAPTER 18
TEST CRITERIA AND

SPECIFICATIONS

Allan G. Piersol

INTRODUCTION

This chapter covers the development of shock and vibration test criteria for mechan-
ical, electrical, electronic, or hydraulically powered equipment, for example, an
alternator for an automobile or an electronic instrument for an airplane.The empha-
sis throughout is on the selection of test criteria rather than the formulation of
design criteria, but specified shock and vibration test levels and durations are com-
monly used as design criteria as well. Following a brief overview of environmental
specifications, this chapter presents (1) a summary of the descriptions of shock and
vibration environments used to establish test criteria, (2) a discussion of the differ-
ent types of tests used to achieve various objectives, (3) procedures to select shock
and vibration test levels, (4) procedures to select vibration test durations, and (5)
general testing considerations.

ENVIRONMENTAL SPECIFICATIONS

An environmental specification is a written document that details the environmen-
tal conditions under which an item of equipment to be purchased must operate dur-
ing its service life. Several contracting agencies of the U.S. government and various
professional societies issue general environmental specifications for particular
classes of equipment (see Chap. 17), but deviations from the specified environmen-
tal conditions in such documents are permitted when more appropriate conditions
can be established by direct measurements or predictions of the environments of
concern. An environmental test specification is a written document that details the
specific criteria for an environmental test, as well as other matters such as the
preparation of the test item, identification of all test equipment and instrumenta-
tion, description of any test fixtures, instructions for mounting sensors, step-by-step
procedures for operating the test item (if operation is required), procedures for
taking data on the test item function and the applied environment, and perfor-
mance acceptability criteria. The test criteria (the magnitude and duration of the
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test excitation) in environmental test specifications often serve as design criteria as
well (see Chap. 40).

GENERAL TYPES OF ENVIRONMENTS

The environments that must be considered in equipment design and testing are listed
in Table 18.1. Those printed in boldface, namely, shock and vibration, are the ones of
special concern in this handbook. Shock and vibration environments may result from
the equipment operation (for example, the vibration caused by shaft unbalance in
equipment with a rotating element), but it is the external shock and vibration motions
transmitted into the equipment through its mounting points to the structure of the
system incorporating the equipment that are of primary interest here.The acoustical,
blast, fluid flow, and wind environments noted in Table 18.1 are often the original
source of the shock and vibration motions of the system structure that transmit into
the equipment, but the original source may also be a direct motion input to the sys-
tem, for example, earthquake inputs to a building or road roughness inputs to an
automobile. Such environments have complicated transmission patterns that are
modified or intensified by mechanical resonances of the system structure and, there-
fore, are appropriately described by frequency-dependent functions, i.e., spectra.

TABLE 18.1 Various Types of Environments to Which Equipment 
May Be Exposed

Acceleration (sustained) Fungus Salt spray
Acoustical noise Humidity Temperature (sustained)
Blast Mechanical shock Temperature cycling
Dust and sand Pressure (sustained) Vibration
Fluid flow Rain, hail, and snow Wind

In practice, for economy of effort, equipment is often designed and tested for
exposure to each of the environments listed in Table 18.1 as if they occur separately.
However, some of the environments in Table 18.1 may occur simultaneously and
have an additive effect; for example, a shock may occur during a period of high static
acceleration where the stress in the equipment due to the combination of the two
environments is greater than the stress due to either applied separately. Worse yet,
two environments may have a synergistic effect; for example, equipment may be
subject to high vibration during a period when the temperature exposure is also
high, and high temperatures cause a degradation of the equipment strength, making
it more vulnerable to vibration-induced failures. These matters must be carefully
evaluated during the definition of a test program to determine if simultaneous test-
ing for two or more environments is required.

SHOCK AND VIBRATION ENVIRONMENTS

From a testing viewpoint, it is important to carefully distinguish between a shock
environment and a vibration environment. In general, equipment is said to be
exposed to shock if it is subject to a relatively short-duration (transient) mechanical
excitation; equipment is said to be exposed to vibration if it is subject to a longer-
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duration mechanical excitation. If the basic properties of the vibration are time-
invariant, it is called stationary (or steady-state for periodic vibrations). However,
vibration environments are often nonstationary, i.e., one or more of their basic prop-
erties vary with time. If the properties change slowly relative to the lowest frequency
of the vibration, then the vibration can be analyzed to arrive at criteria for a station-
ary vibration test, as detailed later. Otherwise, the environment must be viewed as a
shock. Practical distinctions between shock and vibration environments cannot be
made on an absolute basis, independent of the equipment exposed to the environ-
ment. To be more specific, any mechanical device that is more or less linear can be
characterized by one or more resonance frequencies and damping coefficients (see
Chap. 2) or by a corresponding set of decaying transient responses after a momen-
tary excitation. In more analytical terms, the response characteristics of a mechani-
cal device are given by the unit impulse response function defined in Chap. 21. From
a testing viewpoint, an excitation whose duration is comparable to, or less than, the
response (or decay) time of the equipment is considered a shock, while an excitation
whose duration is long compared to the response time of the equipment is consid-
ered a vibration.

DESCRIPTIONS OF SHOCK AND VIBRATION

ENVIRONMENTS

The response of equipment to shock and vibration at its mounting points is depen-
dent on frequency. Hence, shock and vibration environments are usually described
by some type of spectrum; a spectrum is a description of the magnitude of the 
frequency components that constitute the shock or vibration. The most common
spectral descriptions of both deterministic and random shock and vibration envi-
ronments are summarized in Table 18.2 (see Chaps. 14, 19, and 20 for details). It is
common to present data for test specification purposes in terms of acceleration, pri-
marily because it is convenient to measure acceleration with accelerometers
described in Chap. 10. However, for shock data presented in the form of a shock
response spectrum, a response in terms of velocity or pseudo-velocity (see Chap. 20)
is often preferred to acceleration. This is because the shock response spectrum rep-
resents the peak response of a single-degree-of-freedom system, and modal (rela-
tive) velocity for such a response has a direct linear relationship to stress2,3 [see Eq.
(27.1)]. Nevertheless, the use of an acceleration parameter for shock response spec-
tra is not a problem in specifying test criteria as long as the criteria simulate the spec-
trum of the environment, and acceleration is used for both the environmental
description and the test criteria.

TABLE 18.2 Common Spectral Descriptions of Shock and Vibration Environments

Environment Characteristic Spectral description

Shock Deterministic Fourier (integral) spectrum (see Chap. 20)
Shock response spectrum (see Chaps. 8 and 20)

Random Energy spectral density (see Chap. 20 and Ref. 1)
Shock response spectrum (see Chaps. 8 and 20)

Vibration Deterministic Line spectrum (see Chaps. 14 and 19)
Random Power spectral density (see Chap. 19)
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The vibration environment for an item of equipment usually varies in magnitude
and spectral content during its service life. Similarly, a shock environment may
involve repetitive shocks with different magnitudes and spectral content. For reli-
ability tests discussed later in this chapter, it may be necessary to measure or predict
the spectra of the shock and/or vibration environment for all conditions (or a repre-
sentative sample thereof) throughout the service life and to formulate test criteria
that require a series of tests with several different magnitudes and spectral content.
For most testing applications, however, a test involving a single spectrum is desired
for convenience. To assure that the test produces a conservative result, a maximax
spectrum is used; a maximax spectrum is the envelope of the spectra for all condi-
tions throughout the service environment. Thus, the maximax spectrum may not
equal any of the individual spectra measured or predicted during the service envi-
ronment, since the maximum value at two different frequencies may occur at differ-
ent times.

TYPES OF SHOCK AND VIBRATION TESTS

An environmental test is any test of a device under specified environmental condi-
tions (or sometimes under the environment generated by a specified testing
machine) to determine whether the environment produces any deterioration of per-
formance or any damage or malfunction of the device; an environmental test may
also be distinguished by the objectives of the test. In assessing the effects of shock
and vibration on equipment, the types of tests most commonly performed fall into
the following categories:

1. Development
2. Qualification
3. Acceptance
4. Screening
5. Statistical reliability
6. Reliability growth

DEVELOPMENT TESTS

A development test (sometimes called an analytical test) is a test performed early in
a program to facilitate the design of a device or piece of equipment to withstand its
anticipated service environments. It may involve determining the resonance fre-
quency of a constituent component mounted inside the equipment by applying a
sinusoidal excitation with a slowing-varying frequency (often called a swept-sine-
wave test). Sinusoidal vibration is widely used as the excitation for development
tests because of its simplicity and well-defined deterministic properties. In contrast,
it may involve a more elaborate test to determine the normal modes and damping
ratio of the equipment structure as described in Chap. 21. A stationary random
vibration or a controlled shock excitation with appropriate data reduction software
can greatly reduce the time required to perform a more extensive modal analysis of
the equipment. In either type of test, the characteristics and magnitude of the exci-
tation used for the test are not related to the actual shock and/or vibration environ-
ment to which the equipment is exposed during its service use.
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QUALIFICATION TESTS

A qualification test is a test intended to verify that an equipment design is satisfac-
tory for its intended purpose in the anticipated service environments. Such a test is
commonly a contractual requirement, and hence, a specific test specification is usu-
ally involved. Preliminary qualification tests are sometimes performed on prototype
hardware to identify and correct design problems before the formal qualification
test is performed. Also, qualification test requirements might be based upon a gen-
eral environmental specification (see Chap. 17). In some cases, the specification may
require a test on a specific type of testing machine that produces a desired qualifica-
tion environment (see Chap. 27). However, contracts usually allow deviations from
the specified test levels and/or test durations in general environmental specifica-
tions, if it can be established that different test conditions would be more suitable for
the given equipment. In any case, the basic purpose of a qualification test requires
that the test conditions conservatively simulate the basic characteristics of the antic-
ipated service environments.

Some years ago, when test facilities were more limited, it was argued that shock
and vibration environments for equipment could be simulated for qualification test
purposes in terms of the damaging potential of the environment, without the need
for an accurate simulation of the detailed characteristics of the environment.4 For
example, it was assumed that random vibration could be simulated with sinusoidal
vibration designed to produce the same damage. The validity of such “equivalent
damage concepts” requires the assumption of a specific damage model to arrive at
an appropriate test level and duration. Since the assumed damage model might be
incorrect for the equipment of interest, there is a substantial increase in the risk that
the resulting test criteria will severely under- or overtest the equipment. With the
increasing size and flexibility of modern test facilities, the use of equivalent damage
concepts to arrive at test criteria is rarely required and should be avoided, although
equivalent damage concepts are still useful in arriving at criteria for “accelerated
tests,” as discussed later in this chapter. Whenever feasible, qualification tests should
be performed using an excitation that has the same basic characteristics as the envi-
ronment of concern; for example, random vibration environments should be simu-
lated with random vibration excitations, shock environments should be simulated with
shock excitations of similar duration, etc.

ACCEPTANCE TESTS

An acceptance test (sometimes called a production test or a quality control test) is a test
applied to production items to help ensure that a satisfactory quality of workmanship
and materials is maintained. For equipment whose failure in service might result in a
major financial loss or personal injury, all production items are subjected to an accep-
tance test. Otherwise, a statistical sample of production items is selected, and each item
is tested in accordance with an acceptance sampling plan that assures an acceptable
average outgoing quality.5 In either case, there are two basic approaches to acceptance
testing for shock and vibration environments.The first approach is to design a test that
will quickly reveal common workmanship errors and/or material defects as deter-
mined from prior experience and studies of failure data for the equipment, indepen-
dent of the characteristics of the service environment. For example, suppose a specific
type of electrical equipment has a history of malfunctions induced by scrap-wire or
poorly soldered wire junctions.Then, the application of sinusoidal vibration at the res-
onance frequencies of wire bundles will quickly reveal such problems and, hence, con-
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stitute a good test excitation even though there may be no sinusoidal vibrations in the
service environment.The second and more common approach is to apply an excitation
that simulates the shock and/or vibration environments anticipated in service, similar
to the qualification test but usually at a less conservative (lower) level.

SCREENING TESTS

A screening test is a test designed to quickly induce failures due to latent defects that
would otherwise occur later during service use so that they can be corrected before
delivery of the equipment, i.e., to detect workmanship errors and/or material defects
that will not cause an immediate failure, but will cause a failure before the equip-
ment has reached its design service life. Screening tests are similar to acceptance
tests, but usually are more severe in level and/or longer in duration. If performed at
all, screening tests are usually applied to all production items. Vibration screening
tests are commonly performed with the simultaneous application of temperature
cycling, a process referred to as environmental stress screening (ESS). The vibration
environment is sometimes applied using relatively inexpensive, mechanically or
pneumatically driven vibration testing machines (often referred to as impact or
repetitive shock machines) that allow little or no control over the spectrum of the
excitation (see Chap. 25). Hence, except perhaps for the overall level, the screening
test environment generally does not represent an accurate simulation of the service
environment for the equipment. Although there have been some efforts to stan-
dardize screening procedures,6 most details of a screening program are determined
by individual test specification writers and/or laboratory test managers. It should be
mentioned that ESS has led to derivative testing procedures commonly referred to
as highly accelerated life testing (HALT) and highly accelerated stress screening
(HASS).7 It should also be mentioned that there has been some controversy over
the merits of environmental stress screening as it has evolved over the years.8

STATISTICAL RELIABILITY TESTS

A statistical reliability test is a test performed on a large sample of production items
for a long duration to establish or verify an assigned reliability objective for the
equipment operating in its anticipated service environment, where the reliability
objective is usually stated in terms of a mean-time-to-failure (MTTF), or if all fail-
ures are assumed to be statistically independent, a mean-time-between-failures
(MTBF) or failure rate (the reciprocal of MTBF).To provide an accurate indication
of reliability, such tests must simulate the equipment shock and vibration environ-
ments with great accuracy. In some cases, rather than applying stationary vibration
at the measured or predicted maximax levels of the environment, even the nonsta-
tionary characteristics of the vibration are reproduced, often in combination with
shocks and other environments anticipated during the service life. The determina-
tion of reliability is accomplished by evaluating the times to individual failures, if
any, by conventional statistical techniques.9

RELIABILITY GROWTH TESTS

A reliability growth test is a test performed on one or a few prototype items at extreme
test levels to quickly cause failures and thus identify weaknesses in the equipment
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design. In many cases, the test level is increased in a stepwise manner to clearly iden-
tify the magnitude of the load needed to cause a specific type of failure. Design
changes are then made and the failure rate of the equipment is monitored by either
statistical reliability tests in the laboratory or evaluations of failure data from service
experience to verify that the design changes produced an improvement in reliability.
Unlike statistical reliability tests, reliability growth tests do not simulate the magni-
tudes of the service environments, although some effort is often made to simulate the
general characteristics of the environments; for example, random vibration would be
used to test equipment exposed to a random vibration service environment.

SELECTION OF SHOCK AND VIBRATION 

TEST LEVELS

The test level for a shock or vibration test is the spectrum of the excitation applied to
the equipment at its mounting points by the test machine. For tests that require a
simulation of the actual service shock and vibration environments (qualification,
reliability, and some acceptance tests), the selection of test levels involves four steps,
as follows:

1. Measurement or prediction of spectra for shock and vibration environments
2. Grouping of measured or predicted spectra into appropriate zones
3. Determination of zone limits
4. Selection of specified test levels

MEASUREMENT OR PREDICTION OF SPECTRA

Where equipment is to be installed in an existing system (for example, a new alter-
nator for an existing automobile), the shock and/or vibration response of the system
structure at the mounting points of the equipment can be determined by direct
measurements (see Chap. 15). However, where equipment is to be installed in a sys-
tem that has not yet been built and/or operated, the shock and/or vibration environ-
ment at the equipment mounting points must be predicted. Procedures for the
prediction of shock and vibration environments vary widely depending upon the
characteristics of environment and the system producing it. In general, however, pre-
diction procedures can be divided into the following broad categories:

Lumped-Parameter Modeling Procedures. At least crude predictions for the
shock and vibration response of a structural system at the mounting points of equip-
ment can be achieved using the lumped-parameter analysis procedures detailed in
Chap. 22. The accuracy of the resulting shock and vibration predictions depends
heavily upon the complexity of the system structure being modeled and the exact
analytical modeling procedure used.

Finite Element Method (FEM) Procedures. A popular modeling procedure for
the prediction of shock and vibration environments is the finite element method
(FEM) detailed in Chap. 23. Properly characterized shock and vibration excitations
can be applied to an FEM model to predict the structural response at any point of
interest. The FEM model can also be used to compute the frequency response func-
tions between excitation and response points needed to make predictions by the fre-
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quency response procedures discussed later. Depending on the complexity of the
structure being modeled, FEM procedures can generally produce reasonably accu-
rate shock and vibration predictions up to a frequency equivalent to about the 50th
normal mode of the structure.

Statistical Energy Analysis (SEA) Procedures. At frequencies above the
range where finite element method procedures are accurate, statistical energy
analysis (SEA) procedures described in Chap. 24 are commonly used to predict
vibration environments. Specifically, as frequency increases, the response of the sys-
tem structure can be predicted in terms of the space-averaged response for each of
a set of individual structural elements that are coupled to collectively describe the
system, where each element has near-homogeneous properties and light damping;
an example is a constant thickness panel. Such prediction procedures can be
applied to a wide range of structural systems if the assumptions detailed in Chap. 24
are satisfied.

Extrapolation Procedures. The spectra of the responses measured on one sys-
tem during its operation can often be used to predict the spectra in a newer model
of the system, assuming the old and new systems have a similar purpose and are of
broadly similar design, for example, a new airplane that flies faster but otherwise is
similar in structural design to an earlier model of the airplane. In such cases, the
shock and/or vibration responses of the new system at the structural locations of
equipment can be predicted, at least coarsely, by scaling the measurements made on
the previous system based upon the differences in at least two parameters, namely,
(1) the magnitude of the original excitation to the system structure and (2) the
weight of the system structure at the points where the equipment is mounted. Specif-
ically, as a first order of approximation, the shock and/or vibration magnitude on the
new system can be assumed to vary directly with the magnitude of the excitation and
inversely with the weight of the system structure. Such extrapolation techniques
have been widely used to predict spectra for the vibration response of new aero-
space vehicles3 and can often be applied to other types of systems as well.

GROUPING OF MEASURED OR PREDICTED SPECTRA INTO ZONES

The shock and vibration responses of system structures that support equipment are
typically nonhomogeneous in space, sometimes to the extent that the spectra of the
responses vary substantially from one mounting point to another for a single item
of equipment. At relatively low frequencies, corresponding to frequencies below
about the fiftieth normal mode of the system structure (see Chap. 21), finite ele-
ment method models for the system structure and the mounted equipment can be
used to predict the motions at the specific equipment attachment points. It is more
common, however, to define shock and vibration environments by making mea-
surements or predictions at selected points on the system structure that do not cor-
respond to the exact mounting points for equipment, or if they do, the equipment is
not present during the measurements or accurately modeled for the predictions.
Hence, it is necessary to separate the measured or predicted responses at various
points on the system structure into groups, where the responses in each group have
broadly similar spectra that can be represented for test purposes by a single spec-
trum. A zone is defined as a region on the system structure that includes those
points where the measured or predicted shock and/or vibration responses have
broadly similar spectra. It is clear that a zone should correspond to a region of
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interest in the formulation of shock and vibration test criteria for equipment, i.e., a
single zone should include all the attachment points for at least one item of equip-
ment, and preferably, for several items of equipment. However, a zone need not be
a single contiguous structural region. For example, all frames of a given size in an
airplane, no matter where they are located, might constitute a single zone if the
responses of those frames are similar.

The determination of zones is usually based upon engineering judgment and
experience. For example, given a system with frame-panel construction, engineering
judgment dictates that frames and panels should represent different zones, since the
responses of light panels will generally be greater than the much heavier frames.
Also, the responses perpendicular to the surface of the panels are generally greater
than the responses in the plane of the panels, so the responses along these two axes
might be divided into separate zones. A visual inspection of the spectra for the
measured or predicted responses also can be used to group locations with spectra of
similar magnitudes to arrive at appropriate zones. In any case, it is desirable to min-
imize the number of zones used to describe the shock and vibration responses over
those areas of the system structure where equipment will be mounted so as to mini-
mize the number of individual spectra required to test all the equipment for that
system.

DETERMINATION OF ZONE LIMITS

A zone limit (also called the maximum expected environment) is a single spectrum
that will conservatively bound the measured or predicted spectra at most or all
points within the zone, without severely exceeding the spectrum at any one point. A
zone limit may be determined using any one of several procedures.3 The most com-
mon procedure is to envelop the measured or predicted spectra in the zone, but a
more rigorous approach is to compute a tolerance limit for the spectra. Specifically,
given n measurements of a random variable x, an upper tolerance limit is defined as
that value of x (denoted by Lx) that will exceed at least β fraction of all values of x
with a confidence coefficient of γ.The fraction β represents the minimum probability
that a randomly selected value of x will be less than Lx; the confidence coefficient γ
can be interpreted as the probability that the Lx computed for a future set of data
will indeed exceed at least β fraction of all values of x. Tolerance limits are com-
monly expressed in terms of the ratio (100β)/(100γ). For example, a tolerance limit
determined for β = 0.95 and γ = 0.50 is called the 95/50 normal tolerance limit. In the
context of shock and/or vibration measurements or predictions, x represents the
spectral value at a specific frequency (see Table 18.2) for the response of the system
structure at a randomly selected point within a given zone, where x differs from
point-to-point within the zone due to the spatial variability of the response. How-
ever, x may also differ due to other factors, such as variations in the response from
one system to another of the same design or from one environmental exposure to
another of the same system. In selecting a sample of measured or predicted spectra
to compute a tolerance limit, beyond the spectra at different locations within a zone,
it is wise to include spectra from different systems of the same design and different
environmental exposures of the same system, if feasible, so that all sources of vari-
ability are represented in the measured or predicted spectra.

Tolerance limits are most easily computed when the random variable is nor-
mally distributed (see Chap. 19). The point-to-point (spatial) variation of the shock
and vibration responses of system structures is generally not normally distributed,
but there is empirical evidence that the logarithm of the responses does have an
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approximately normal distribution. Hence, by simply making the logarithmic trans-
formation

y = log10x (18.1)

where x is the spectral value at a specific frequency of the response within a zone, the
transformed variable y can be assumed to have a normal distribution. For n sample
values of y, a normal tolerance limit is given by5

Ly(n,β,γ) = y� + ksy (18.2)

where y� is the sample average and sy is the sample standard deviation of the n trans-
formed spectral values computed as follows:

�y = �
n

i = 1
yi sy = ���

n

i = 1
(yi − �y)2 (18.3)

The term k in Eq. (18.2) is called the normal tolerance factor and is a tabulated value;
a short tabulation of k for selected values of n, β, and γ, is presented in Table 18.3.
The normal tolerance limit for the transformed variable y is converted to the origi-
nal engineering units of x by

Lx(n,β,γ) = 10Ly(n,β,γ) (18.4)

To simplify test criteria, normal tolerance limits are often smoothed using a series of
straight lines, usually no more than seven with slopes of 0, ±3, or ±6 dB.

As an illustration, Fig. 18.1 shows the range of the maximax power spectra for 
n = 12 vibration measurements made at different locations in a selected zone of the
structure of a large space vehicle during lift-off. Also shown in this figure are the
unsmoothed and smoothed normal tolerance limit versus frequency computed with
β = 0.95 and γ = 0.50 (the 95/50 limit). Note that the normal tolerance limit at most
frequencies is higher than the largest of the 12 spectral values from which the limit
is computed. However, a normal tolerance limit could be either higher or lower than
the largest spectral values from which the limit is computed, depending on the val-
ues of n, β, and γ.

1
�
n − 1

1
�
n
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TABLE 18.3 Normal Tolerance Factors for Upper Tolerance Limit

γ = 0.50 γ = 0.75 γ = 0.90

n β = 0.90 β = 0.95 β = 0.99 β = 0.90 β = 0.95 β = 0.99 β = 0.90 β = 0.95 β = 0.99

3 1.50 1.94 2.76 2.50 3.15 4.40 4.26 5.31 7.34
4 1.42 1.83 2.60 2.13 2.68 3.73 3.19 3.96 5.44
5 1.38 1.78 2.53 1.96 2.46 3.42 2.74 3.40 4.67
7 1.35 1.73 2.46 1.79 2.25 3.13 2.33 2.89 3.97

10 1.33 1.71 2.42 1.67 2.10 2.93 2.06 2.57 3.53
15 1.31 1.68 2.39 1.58 1.99 2.78 1.87 2.33 3.21
20 1.30 1.67 2.37 1.53 1.93 2.70 1.76 2.21 3.05
30 1.29 1.66 2.35 1.48 1.87 2.61 1.66 2.08 2.88
50 1.29 1.65 2.34 1.43 1.81 2.54 1.56 1.96 2.74
∞ 1.28 1.64 2.33 1.28 1.64 2.33 1.28 1.64 2.33
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FIGURE 18.1 95/50 normal tolerance limit for spectra of 12 vibration measurements.

SELECTION OF FINAL TEST LEVELS

A test level is the spectrum of the shock or vibration environment that is specified for
testing purposes, i.e., the spectrum given in a final test specification. The determina-
tion of a test level based upon a computed zone limit requires the selection of a
value for β, the fraction of the locations within a zone where the spectra of the shock
and/or vibration responses of the system structure will be exceeded by the zone (tol-
erance) limit. This selection is often made somewhat arbitrarily, with values in the
range 0.90 ≤ β ≤ 0.99 being the most common for acceptance and qualification tests.
However, the value of β used to arrive at a test level can be optimized based upon an
assessment of the adverse consequences (the potential cost) of an undertest versus
an overtest. Also, even with an optimum selection, modifications to the test level
may be required to account for the interactions of the equipment and the system
structure and other considerations.

Optimum Test Level Selection. A number of procedures have been developed3

that yield an optimum test level for equipment in terms of a percentile of the envi-
ronmental distribution (which is essentially the value of β for a tolerance limit) as a
function of a “cost” ratio CT /CF, where CT is the cost of a test failure and CF is the cost
of a service failure. Some of the procedures assume the equipment being tested has
already been manufactured in quantity, raising the possibility that a test failure will
lead to refurbishing costs, while others account for a safety factor in the equipment
design or a test factor based upon the assumed strength of the item being tested.The
simplest test level selection rule, which applies to the acceptance testing of a single
item of equipment, is given by3

β = (18.5)
1

��
1 + (CT/CF)



As an illustration, consider an item of equipment where a failure during test could
be corrected by a relatively simple replacement of an inexpensive component, but
a failure during service would be catastrophic, perhaps resulting in personal injury.
According to Eq. (18.5), the item should be tested to a very severe level relative to
the measured or predicted shock and/or vibration environment so as to sharply
minimize the risk of an undertest; for example, if a service failure is assessed to be
1000 times as costly as a test failure, β = 0.999. On the other hand, consider an item
where a failure in test would lead to a difficult and expensive redesign, but a fail-
ure during service would not be catastrophic.According to Eq. (18.5), the test level
now should be moderate relative to the measured or predicted shock and/or vibra-
tion environment so as to minimize the risk of an overtest; for example, if a service
failure is assessed to be only 9 times as costly as a test failure, then β = 0.90. Note
that the selection procedure does not require the determination of quantitative
costs in dollars, but only relative costs, which can be interpreted in qualitative
terms. This allows such factors as the consequences of a possible delivery delay
caused by a test failure or customer dissatisfaction caused by a service failure to 
be considered. Also, the conservatism of the test level can be further increased 
or decreased by selecting a larger or smaller value of γ for the tolerance limit 
computation.

It should be mentioned that there has been a movement in some industries, par-
ticularly the aerospace industry,3 to standardize the computation of maximum
expected environments using the 95/50 normal tolerance limit on the logarithms of
the measured spectral values in a zone, independent of the cost considerations dis-
cussed above. This has been done to make the maximum expected environments
computed by different organizations directly comparable in statistical terms. It is
commonly argued that the test margin, to be discussed shortly, adds sufficient con-
servatism to the test levels to obscure differences in the selected tolerance factor.

Equipment-Structure Interactions. Test levels are commonly specified in terms
of a motion parameter, for example, g 2/Hz versus frequency for a random vibration
test. However, at the resonance frequencies of relatively heavy items of equipment,
the apparent mass of the equipment dramatically increases, causing the equipment
to behave like a dynamic vibration absorber on the system structure to which the
equipment is mounted (see Chap. 6). If the test machine is made to deliver the spec-
ified motion to the equipment at its resonance frequencies, a severe overtest may
occur. This problem is sometimes addressed by placing limits on the response of the
equipment or by allowing “notches” in the specified test spectrum to be introduced
at the frequencies of strong resonances of the equipment. The best approach, how-
ever, is to derive a second spectrum for the limiting force at the mounting points of
the equipment and establish criteria for a dual control test that limits both the input
force and the input motion to the equipment.10

Added Test Level Factors. For qualification tests where the item of equipment
being tested will not be used in service, it is common to add a factor (often referred
to as a test margin) to the derived maximum expected environment to arrive at a
final specified test level. Such factors are usually justified to account for uncertain-
ties not considered in the determination of the maximum expected environment,
such as unknown variabilities in the equipment strength or its possible service use.
These factors are sometimes selected rather arbitrarily, with typical values ranging
from 3 to 6 dB above the maximum expected environment.
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SELECTION OF VIBRATION TEST DURATIONS

The test duration for a vibration test is the total time the excitation is applied to the
equipment at its mounting points by the test machine. In some cases, the test dura-
tion is not relevant to the purpose of the test, for example, a development test. In
many cases, however, an appropriate simulation of the total duration of the vibration
environment anticipated in service is an important part of the test criteria. This is
particularly true of qualification and statistical reliability tests, where the purpose is
to detect design inadequacies that may lead to failures of any type during exposure
to the service vibration environment, including “wearout” failures. For shock envi-
ronments, this means exposing the equipment to repeated simulations of all the
shocks anticipated during its service life, which can usually be accomplished in a rea-
sonable period of time. For vibration environments, however, this means exposing
the equipment to a simulation of the anticipated service vibration environment for a
duration equivalent to the service life of the equipment, which may be thousands of
hours.Vibration environments usually vary widely in overall level and perhaps spec-
tral content during the equipment service life, for example, equipment on an auto-
mobile or truck in normal service use. As noted earlier in this chapter, statistical
reliability tests are sometimes performed with a duration similar to the anticipated
service life of the equipment. For qualification tests, however, it is usual to compress
a long, time-varying service environment into a stationary test level of much shorter
duration.9 To do this, the following steps are required:

1. Assume a time-dependent failure model for the equipment
2. Compress the time-varying magnitudes of the environment into a single test level

corresponding to a conservative estimate of the maximum magnitude of the envi-
ronment

3. In some cases, increase the test level beyond the maximum magnitude of the
environment to further accelerate the test

FAILURE MODELS

A failure of an item of equipment is defined as any deterioration of performance or
any damage or malfunction that prevents the equipment from accomplishing its
intended purpose.There are two basic types of failures that may be caused by vibra-
tion:

1. Hard failure. A failure involving permanent physical damage that makes the
equipment unable to perform its intended purpose, even after the vibration is ter-
minated. Hard failures generally result in observable damage, such as the fracture
of a structural element or the permanent disability of an electronic element.

2. Soft failure. A failure involving a malfunction or deterioration of performance
during the vibration exposure that makes the equipment unable to accomplish its
intended purpose, but after the vibration is terminated, the equipment does not
reveal any damage and functions properly. Soft failures most commonly occur in
electrical, electronic, and/or optical elements, although soft failures may occa-
sionally occur in complex mechanical elements, such as gyroscopic devices.

A failure mechanism is the specific means by which an item of equipment is dam-
aged by exposure to an environment. All failure mechanisms are a function of the

TEST CRITERIA AND SPECIFICATIONS 18.13



magnitude of the vibration exposure.A time-dependent failure mechanism is a function
of both the magnitude and the duration of the vibration exposure. Soft failures during
exposure to a vibration environment are rarely time-dependent, i.e., they usually occur
immediately at the start of the vibration exposure.On the other hand,hard failures usu-
ally are time-dependent, although there are some exceptions. For example, if a vibra-
tion environment produces stresses that exceed the ultimate strength of a critical
element in the equipment, a fracture will occur immediately at the start of the vibration
exposure. See Chaps. 33, 34, and 40 for further discussions of equipment failures.

To establish appropriate test durations for qualification vibration tests, only time-
dependent failure mechanisms (usually producing hard failures) are of interest.
Common examples of time-dependent failure mechanisms for equipment exposed
to vibration environments are fatigue damage, force contact wear, relative velocity
wear, and the loosening of bolts or rivets. A failure model is an analytical relation-
ship between the time-to-failure of the equipment during exposure to a vibration
environment and the magnitude of the vibration environment. For a wide class of
time-dependent failure mechanisms, the time-to-failure τ for a stationary vibration
excitation can be approximated by the inverse power law given by

τ = c σ−b (18.6)

where σ is the stress in the equipment caused by the vibration (or any measure of the
vibration magnitude that is linearly related to stress), and b and c are constants
related to the specific failure mechanism. From Chap. 33, if the endurance limit is
ignored, the fatigue endurance curves for common metals fit the form of Eq. (18.6).

Using Eq. (18.6) and assuming a vibration test is performed that accurately sim-
ulates the basic characteristics (for example, random versus periodic) and the spec-
trum of a service vibration environment, the time required to produce a similar
amount of damage in the test environment Tt and the time in the service environ-
ment Te are related by

Tt = � 	b

Te (18.7)

where σ is the rms value of the vibration, and the subscripts t and e denote the test
and service environments, respectively. For random vibrations defined in terms of
power spectra [i.e., W(f ) defined in Chap. 19], Eq. (18.7) becomes

Tt = � 	b/2
Te (18.8)

The value of the power b in Eqs. (18.7) and (18.8) varies widely for different failure
mechanisms. For metal fatigue damage, a value of b = 8 is reasonable for many com-
mon materials (see Chap. 33) and is recommended in Ref. 3. However, a value of 
b = 4 is usually more appropriate for the typical failure mechanisms in electrical and
electronic equipment.11

COMPRESSING TIME-VARYING SERVICE ENVIRONMENTS

For those vibration environments that vary substantially in severity during the equip-
ment service life, the duration of the environment can often be reduced for testing pur-
poses by using Eq. (18.7) to scale the less severe vibration levels to the most severe
levels that occur during the service life. Such scaling procedures are most applicable to
environments that vary in overall level but not substantially in spectral content. For

We( f )
�
Wt( f )

σe�
σt
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example, consider an item of electrical equipment designed for a motor vehicle with a
service life of 4000 hours. Assume the anticipated service vibration environment for
the vehicle at the equipment mounting points has the rms values summarized in Table
18.4. Further assume b = 4 in Eq. (18.7), and the vibrations during the various service
conditions have a similar spectral content.Table 18.4 indicates the damage potential of
the 4000-hour service vibration environment can be simulated by a vibration test with
a duration of 80 hours at the maximum service vibration level.

For those vibration environments where the spectral content and the overall lev-
els change during service operations, the test duration computations illustrated in
Table 18.4 must be made on a frequency-by-frequency basis using Eq. (18.8) or a
similar expression for the appropriate spectral description in Table 18.2. This will
result in a different test duration at each frequency, leading to two possible testing
options: (1) a series of tests, each covering a different frequency range with a differ-
ent test duration or (2) a single test with a test duration equal to the longest test
duration computed at any frequency.The second option is usually the more practical
and ensures a conservative test.

ACCELERATED TESTS

An accelerated test is a test where the test duration is reduced by increasing the test
level in a manner that will maintain the same environment-induced damage to the
equipment. The determination of a test duration for a stationary vibration test that
produces the same damage as a nonstationary vibration environment, as detailed in
the preceding section, constitutes the most desirable form of accelerated testing
because the test level never exceeds the maximum vibration level that the equip-
ment will experience during its service environment. Furthermore, most of the dam-
age experienced by equipment in service usually occurs during exposure to the
maximum vibration level in the service environment, which typically covers a small
fraction of the total service duration (see Table 18.4). In such cases, reducing the rel-
atively long durations of the less severe vibrations by scaling to the maximum level
according to Eq. (18.7) does not introduce a major error, even if the exponent in Eq.
(18.7) is inaccurate.

Highly Accelerated Tests. Situations sometimes arise where scaling the less
severe segments of a nonstationary vibration environment to a stationary vibration
level corresponding to the maximum level of the environment may yield a test dura-
tion that is still too long to be practical; for example, the test duration of 80 hours
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TABLE 18.4 Determination of Equivalent Duration for Automobile Equipment 
Vibration Environment

Duration on road rms vibration on Equivalent duration on
Type of road segment segment, hours road segment, g road segment A, hours

A. Unpaved secondary roads 40 3 40
B. Improved secondary roads 460 1.4 22
C. Primary roads 1500 0.9 12
D. Major highways 2000 0.7 6

Total equivalent duration on road segment A (hours) 80



computed for the 4000-hour service environment in Table 18.4 may still be too long
for testing purposes. In such a case, it is common to further reduce the test duration
by increasing the test level beyond the maximum level the equipment will experience
during its anticipated service environment. Indeed, if no limit is placed on the rms test
level in Eq. (18.7), the test duration theoretically can be made as short as desired, pro-
vided the ultimate strength of the equipment structure is not exceeded. However,
increasing the test level beyond the maximum level during the anticipated service
environment introduces major uncertainties in the test results, particularly if the
equipment is fabricated using different materials and/or incorporates electrical, elec-
tronic, and/or optical elements. The problem is that the failure mechanisms of some
elements may not comply with the inverse power law in Eq. (18.6). Furthermore, even
if all failure mechanisms do comply with Eq. (18.6), the exponent b may vary from
one element to another within the equipment. Hence, increasing the test level to
accelerate the test rapidly in compliance with Eq. (18.7) may cause some elements of
the equipment to be undertested and others to be overtested.The result could be the
occurrence of unrepresentative failures during the accelerated test.11 It is for these
reasons that highly accelerated testing should be pursued only with great caution.

Durability and Functional Tests. A common procedure to suppress unrepresen-
tative failures that may be caused by rapidly accelerating a vibration test of equip-
ment with a long service life is to perform two separate tests, namely, a durability test
and a functional test.A durability test is intended to reveal only time-dependent fail-
ures and is rapidly accelerated to produce the same damage as the entire duration of
the service vibration environment based upon a specific damage model, for example,
Eq. (18.7). The equipment is not required to function during the durability test, and
any failures that are not time-dependent are ignored.A functional test is intended to
reveal failures that are not time-dependent (i.e., failures related only to the vibration
level) and is not accelerated with test levels that exceed the maximum expected
vibration level during the service environment. The equipment is required to func-
tion during the test, but since the failures of interest are not time-dependent, the test
duration is not critical; for example, the test duration is often fixed by the time
required to fully operate the equipment and verify that it properly performs its
intended purpose.

SHOCK AND VIBRATION TESTING

The laboratory machinery used to perform vibration tests and shock tests are
detailed in Chaps. 25 through 28. In all cases, there are several issues that must be
carefully considered in performing such tests, the most important being:

1. Identification of test failures
2. Type of excitation to be used
3. Single- versus multiple-axis excitation
4. Test fixtures

IDENTIFICATION OF TEST FAILURES

In all shock and vibration tests of equipment, it is important to carefully establish
what types of equipment malfunctions or anomalies will be considered failures. This
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determination depends heavily on the purpose of the test and sometimes on the
judgment of the purchaser of the equipment. Here are a few examples:

1. Since a qualification test is intended to identify design problems, failures during
the test that are clearly due to workmanship errors or material defects are usually
ignored; i.e., the equipment is repaired and the test is continued.

2. Since the test level for a highly accelerated qualification test is based upon a spe-
cific failure model, failures during the test that are not consistent with the failure
model should be carefully evaluated and ignored if they are determined to
involve a failure mechanism that is not time-dependent.

3. During durability tests of equipment, if a fatigue crack forms in the equipment
structure that does not propagate to a fracture, whether the fatigue crack consti-
tutes a failure or the length of the fatigue crack that constitutes a failure must be
specified.

4. During functional tests of electrical, electronic, and/or optical equipment, if there
is measurable deterioration in the performance of the equipment during the test,
the exact degree of deterioration that prevents the equipment from performing
its intended purpose must be specified.

TYPES OF EXCITATION

Shock tests are sometimes performed using specified test machines, but more often
are performed using more general test machines that can produce transients with a
desired shock response spectrum (see Chaps. 27 and 28). Although vibration envi-
ronments may be simulated by mounting the equipment in a prototype system and
reproducing the actual environment for the system, it is more common to apply the
vibration directly to the equipment mounting points using vibration testing
machines described in Chap. 25.

Random Tests. Random excitations are used to simulate random vibration in
those tests where an accurate representation of the environment is desired, specifi-
cally, qualification, reliability, and some acceptance tests. The most commonly used
random test machines produce a near-gaussian vibration. If the actual environment
is random but not gaussian, a gaussian simulation is still usually acceptable since the
response of the equipment exposed to the environment will be near-gaussian at its
resonance frequencies, assuming the equipment response is linear; this is because
equipment resonances constitute narrowband filtering operations that suppress
deviations from the gaussian form in the vibration response of the equipment.12

Sine-Wave Tests. Sine-wave excitations are used to simulate the fixed-frequency
periodic vibrations produced by constant-speed rotating machines and reciprocating
engines. Sine-wave excitations are sometimes superimposed on random excitations
for those situations where the service vibration environment involves both. Sine-
wave excitations fixed sequentially at the resonance frequencies of an equipment
item (often referred to as a dwell sine test) are sometimes used in development tests,
as well as in durability tests, to evaluate the fatigue resistance of the equipment.

Swept-Sine-Wave Tests. Sweep-sine-wave excitations are produced by continu-
ously varying the frequency of a sine wave in a linear or logarithmic manner. Such
excitations are used to simulate the vibration environments produced by variable-
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speed rotating machines and reciprocating engines. The usual approach is to make
the sweep rate sufficiently slow to allow the equipment being tested to reach a near-
full (steady-state) response as the swept-sine-wave excitation passes through each
resonance frequency. Swept-sine-wave excitations are also used for development
tests to identify resonance frequencies and sometimes to estimate frequency
response functions (see Chap. 21).

MULTIPLE-AXIS EXCITATIONS

Shock and vibration environments are typically multiple-axial; i.e., the excitations
occur simultaneously along all three orthogonal axes of the equipment. Multiple-
axis shock and vibration test facilities are often used to simulate low-frequency
shock and vibration environments, generally below 50 Hz, such as earthquake
motions (see Chap. 29). Also, multiple-axis vibration test facilities have been devel-
oped for higher-frequency vibration excitations (up to 2000 Hz), but it is more com-
mon to perform shock and vibration tests using machines that apply the excitation
sequentially along one axis at a time, i.e., machines that deliver rectilinear motion
only (see Chaps. 25 through 28). Single-axis testing introduces an additional uncer-
tainty of unknown magnitude in the accuracy of the test simulation, but there is
debate as to whether the removal of this uncertainty justifies the high cost and com-
plexity of multiple-axis test facilities.

TEST FIXTURES

A test fixture is a special structure that allows the test item to be attached to the table
of a shock or vibration test machine. Test fixtures are required for almost all shock
and vibration tests of equipment because the mounting hole locations on the equip-
ment and the test machine table do not correspond. For the usual case where the test
machine generates rectilinear motion normal to the table surface, a test fixture is
also necessary to reorient the equipment relative to the table so that vibratory
motion can be delivered along the lateral axes of the equipment, i.e., the axes paral-
lel to the plane of the equipment mounting points. This requires a versatile test fix-
ture between the table and the equipment, or perhaps three different test fixtures. If
the direction of gravity is important to the equipment, the test machine must be
rotated from vertical to horizontal, or vice versa, to meet the test conditions.

For equipment that is small relative to the test machine table, L-shaped test fix-
tures with side gussets are commonly used to deliver excitation along the lateral axes
of the equipment as illustrated Fig. 18.2. Unless designed with great care, such fix-
tures are likely to have resonances in the test frequency range. In principle, the con-
sequent spectral peaks and valleys due to fixture resonances can be flattened out by
electronic equalization of the test machine table motion (see Chap. 26), but this is
difficult if the damping of the fixture is low. The best approach is to design the fix-
ture to have, if possible, no resonances in the test frequency range.

For equipment that is large relative to the test machine table, excitation along the
lateral axes of the equipment is commonly achieved by mounting the equipment on
a horizontal plate driven by the test machine rotated into the horizontal plane,
where the plate is separated from the flat opposing surface of a massive block by an
oil film or hydrostatic oil bearings as shown in Fig. 18.3. The oil film or hydrostatic
bearings provide little shearing restraint but give great stiffness normal to the sur-
face, the stiffness being distributed uniformly over the complete horizontal area.
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Accordingly, a relatively light moving plate can be vibrated that has the properties
of the massive rigid block in the direction normal to its plane. See Refs. 7 and 13 for
further discussions of vibration and shock test fixturing.
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CHAPTER 19
VIBRATION DATA

ANALYSIS

Allan G. Piersol

INTRODUCTION

Vibration data are usually acquired in the form of continuous electrical (analog) sig-
nals generated by transducers (see Chap. 10), where each analog signal represents
the instantaneous value of a strain, pressure, force, or motion parameter (displace-
ment, velocity, or acceleration) as a function of time. Such a signal is commonly
referred to as a time history. A sample record is defined as the time history repre-
senting a single vibration measurement x(t) over a finite duration T. Although sam-
ple records are usually acquired in the form of time histories, any other variable of
interest can replace time t as the independent variable for analysis purposes. For
example, road roughness data are commonly acquired as sample records of road ele-
vation x versus distance d, that is, x(d); 0 ≤ d < D, where D is the length of the record.
However, for clarity, all discussions and equations in this chapter are presented in
terms of sample time-history records, where it is understood that any other variable
can be substituted for time.

It should be mentioned that vibration data are sometimes analyzed online by
direct operations on the acquired transducer output signals using specialized data
analysis instruments.The most common vibration data analysis in such cases usually
involves a frequency decomposition of the time history data (the computation of a
spectrum), as detailed in Chap. 14. This chapter is concerned with the more detailed
data analysis operations that are often performed on stored time histories of the
acquired vibration data.

CLASSIFICATIONS OF VIBRATION DATA

The appropriate analysis procedures for vibration environments depend heavily
upon certain basic characteristics of the vibration. The most important distinctions
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are defined in Chap. 1 and illustrated in Fig. 19.1. These definitions may be summa-
rized as follows:

1. A stationary vibration is one whose basic properties do not vary with time. Sta-
tionary vibrations typically occur when the operating and/or environmental condi-
tions producing the vibration are time invariant. For example, the vibration
environment for a motor vehicle driving over a homogeneous road at constant
speed and with a constant engine rpm will be stationary.

2. A nonstationary vibration is one whose basic properties vary with time, but
slowly relative to the lowest frequency of the vibration. For example, the vibration
environment for a motor vehicle during acceleration from zero to highway speed
will be nonstationary. Those dynamic environments that change rapidly relative to
the lowest frequency in the environment are considered transients or shocks, which
are addressed in Chap. 20.

3. A deterministic vibration is one whose value at any time can be predicted from
its value at any other time. It follows that sample records of a deterministic vibration
collected repeatedly under similar conditions will have similar time histories. For
example, the vibration environments of rotating machines and reciprocating engines
(see Chap. 37) are generally deterministic.

4. A random vibration is one whose instantaneous magnitude is not specified at
any given time. The instantaneous magnitudes of a random vibration are specified
only by probability functions giving the probable fraction of the total time that the
magnitude (or some sequence of magnitudes) lies within a specified range. From
another viewpoint, a random vibration can be thought of as a single physical real-
ization, x(t), of a random process, which theoretically is described by an ensemble
of all possible physical realizations denoted by {x(t)}.1 Virtually all stationary ran-
dom vibrations can be represented by an ergodic random process (see Chap. 1),
meaning the properties of the random process {x(t)} can be described by time aver-
ages over a signal sample record x(t). It follows that the sample records of a sta-
tionary random vibration collected repeatedly under similar conditions will have
time histories that differ in detail but have the same average properties. For exam-
ple, the vibrations induced by earthquakes, turbulent flow, wind, and jet noise (see
Chaps. 29 through 32) are generally random.

FIGURE 19.1 Classifications of vibration environments.



5. A mixed vibration is one that includes a combination of deterministic and ran-
dom components.To some degree, most vibration environments are mixed, although
either a deterministic or random component will often dominate.

The next section in this chapter summarizes the quantitative descriptions of
vibration environments. This is followed by a discussion of the important prelimi-
nary steps in preparing measured vibration data for analysis, and the specific analy-
sis procedures for measured vibration data.

QUANTITATIVE DESCRIPTIONS 

OF STATIONARY VIBRATIONS

The properties of stationary vibration environments, both deterministic and ran-
dom, that are of primary interest to engineering applications are now summarized
by functional relationships that lead directly to the applied computational algo-
rithms used to compute the desired properties from sample records of measured
vibration data.

OVERALL VALUES

The most fundamental descriptions of a stationary vibration with a time history x(t)
are given by overall values. In general, various different overall values might be
determined, but often the mean value μx, the mean-square value ψ2

x, and/or the vari-
ance σ2

x are the only overall values of interest. These values for a sample record x(t)
with duration T are theoretically given by1,2

Mean value: μx = lim
T → ∞

�T

0
x(t)dt

Mean-square value: ψ2
x = lim

T → ∞
�T

0
x2(t)dt (19.1)

Variance: σ2
x = lim

T → ∞
�T

0
[x(t) − μx]2dt

It can be shown1 that the three quantities defined in Eq. (19.1) are interrelated by

ψ2
x = μ2

x + σ2
x (19.2)

Hence, a knowledge of any two quantities determines the third. The positive square
root of the mean-square value and the variance, ψx and σx, are called the root-mean-
square (rms) value and the standard deviation, respectively.

The mean value defines the central tendency (static value) of the vibration, while
the standard deviation defines the dispersion of the vibration, each with the same
units as the vibration. The rms value is a measure of both the central tendency and
dispersion. In many cases, one or more of the following will be true: (a) the mean
value of the vibration is zero, (b) the vibration transducer cannot produce a static
(dc) output corresponding to a mean value (e.g., piezoelectric accelerometers),
and/or (c) a mean value cannot be measured because the data acquisition system is

1
�
T

1
�
T

1
�
T
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ac coupled, that is, it will not transmit dc. In these cases, the rms value of the vibra-
tion is the same as its standard deviation, that is, ψx = σx.

FOURIER TRANSFORMS

Since frequency domain descriptions of vibrations are generally of the greatest engi-
neering value, the Fourier transform plays a major role in both the theoretical defi-
nitions of properties and the analysis algorithms for vibration data. The Fourier
transform of a sample record x(t) of duration T is defined as

X(f,T) = �T

0
x(t)e−j2πftdt = �T

0
x(t) cos (2πft)dt − j�T

0
x(t) sin (2πft)dt (19.3)

where j = �−1�. Three properties of the definition in Eq. (19.3) should be noted, as
follows:

1. The Fourier transform is generally a complex number that is defined for both
positive and negative frequencies, that is, X(f,T); −∞ < f < ∞. However,
X(−f,T) = X*(f,T), where the asterisk denotes the complex conjugate, meaning
that values at mathematically negative frequencies are redundant and provide no
information beyond that provided by the values at positive frequencies. Since
engineers typically think of frequency as a positive value, it is common to present
finite Fourier transforms as 2X(f,T); 0 < f < ∞.

2. Fourier transforms are often defined as a function of radial frequency ω in radi-
ans/sec, as opposed to cyclical frequency f in Hz, particularly for analytical appli-
cations. However, data analysis is usually accomplished in terms of cyclical
frequency f, as defined in Eq. (19.3). The two definitions are interrelated by
X(f,T) = 2π X(ω,T).

3. The Fourier transform X(f,T) is equivalent to the Fourier series of x(t) assumed
to have a period T.

See Chap. 14 for details on the computation of Fourier transforms from a sample
time-history record, x(t), with a duration of T seconds.

STATIONARY DETERMINISTIC VIBRATIONS

Stationary deterministic vibration environments generally fall into one of two cate-
gories, namely, periodic vibrations or almost-periodic vibrations.

Periodic Vibrations. Periodic vibrations are those with time histories that exactly
repeat themselves after a time interval TP, that is, x(t) = x(t + iTP); i = 1, 2, 3, . . . ,
where TP is called the period of the vibration. All periodic vibrations can be decom-
posed into a Fourier series, which consists of a collection of commensurately related
sine waves,1,2 that is,

x(t) = a0 + �
k

ak sin (2πkf1t + θk) k = 1, 2, 3, . . . (19.4)

where a0 is the mean value, kf1 is the kth frequency component (harmonic), and ak

and θk are the amplitude and phase angle associated with the kth frequency compo-
nent of the periodic vibration. The k = 1 component is called the fundamental fre-
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quency of the periodic vibration, and is given by f1 = 1/TP. The magnitudes of the fre-
quency components in Eq. (19.4) are given by

Lx(f) = 0 > f (19.5)

where X(f,TP) is as defined in Eq. (19.3) with T = TP, the period of the vibration. A
plot of Lx(f) versus frequency is called a line spectrum or a linear spectrum. The
phase angles, θk; k = 1, 2, 3, . . . , are usually ignored, but these phase values should be
retained if the time history is not retained, since both the magnitude and phase val-
ues in Eq. (19.4) are required to reconstruct the time history.

Periodic vibrations are usually produced by the mechanical excitations of rotat-
ing machines and reciprocating engines operating with a constant rotational speed.
They are also produced by the aerodynamic excitations from large fans and pro-
pellers, again operating at a constant rotational speed. An illustration of the time
history and line spectrum for a periodic vibration composed of three harmonic com-
ponents (k = 1, 2, and 3) is shown in Fig. 19.2.

2|X(f,TP)|
��

TP

FIGURE 19.2 Time history and line spectrum for periodic vibration.

Almost-Periodic Vibrations. Although periodic vibrations can be decomposed
into a collection of commensurately related sine waves, as given by Eq. (19.4), it does
not follow that the sum of two or more independent sinusoidal excitations will pro-
duce a periodic vibration. In fact, the sum of such independent sine waves will be
periodic only if the ratios of all pairs of frequencies create rational numbers. Those
deterministic vibrations that do not have commensurately related frequency com-
ponents are called almost-periodic1 (also called quasi-periodic or complex) vibra-
tions. Nevertheless, such vibrations can be described by a line spectrum based upon
a relationship similar to Eq. (19.4), except the commensurately related frequencies
kf1 are replaced by independent frequencies fk; k = 1, 2, 3, . . . . As for periodic vibra-
tions, the magnitude of the frequency components for almost-periodic vibrations
can be described by a line spectrum defined in Eq. (19.5), except TP → ∞.

Almost-periodic vibrations often occur when two or more independent periodic
excitations are summed. For example, the vibration produced by two independent
rotating machines that are not synchronized or geared together will usually be
almost-periodic rather than periodic. An illustration of the time history and line
spectrum for an almost-periodic vibration composed of the sum of two sine waves
that are not commensurately related is shown in Fig. 19.3.
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STATIONARY RANDOM VIBRATIONS

By definition, random vibrations cannot be described by an explicit mathematical
function and, hence, must be described in statistical terms.This can be done (a) in the
amplitude domain by probability functions, (b) in the time domain by correlation
functions, and/or (c) in the frequency domain by spectral density functions.

Probability Density Functions. The probability density function of a stationary
random vibration x(t) may be defined as

p(x) = lim
Τ → ∞

(19.6)

where T(x,Δx) is the time that x(t) is within the magnitude interval Δx centered at x
during the sample record duration T. The integral of the probability density function
between any two magnitudes x1 and x2 defines the probability at any future instant
that the value of x(t) will fall between x1 and x2, that is,

Prob[x1 < x(t) ≤ x2] = �x2

x1

p(x)dx (19.7)

For the special case where the lower limit of integration in Eq. (19.7) is x1 = −∞,
the resulting function is called the cumulative probability distribution function, P(x)
(often referred to as simply the probability distribution function), that is,

P(x) = �x

−∞
p(x)dx (19.8)

In terms of the probability distribution function, the probability at any future
instant that the value of x(t) will fall between x1 and x2 is now given by

Prob[x1 < x(t) ≤ x2] = P(x2)—P(x1) (19.9)

Illustrations of probability density and distribution functions for a typical sta-
tionary random vibration are shown in Fig. 19.4. Note that since the limiting opera-
tions in Eq. (19.6) can never be achieved in practice, probability density functions
and all derivative functions thereof can only be estimated with potential bias and
random errors, as discussed later.

T(x,Δx)
�

T
1

�Δx

FIGURE 19.3 Time history and line spectrum for almost-periodic vibration.

Δx → 0



Due to the practical implications of the central limit theorem in statistics,1 there
is a strong tendency for most stationary random vibration data to have a specific
type of probability density function called the normal or gaussian probability density
function, given in normalized form by

p(z) = e−z2/2 z = (x − μx)/σx (19.10)

where μx and σx are the mean value and standard deviation, respectively, of the data, as
defined in Eqs. (19.1). It can be shown3 that all linear operations on a gaussian random
variable produce another gaussian random variable. Furthermore, all linear opera-
tions that limit the frequency range of the input random variable tend to suppress all
deviations from the gaussian form in the output random variable.4 Since the response
of most physical systems, like mechanical structures, is dominated by the response of
the system at its normal mode frequencies (see Chap. 1), the vibration response of the
system is commonly more gaussian in character than its excitation, assuming the sys-
tem is linear. It is for this reason that the computation of a probability density func-
tion is often omitted in the analysis of vibration data representing the response of a
physical system of interest; it is simply assumed the response has a gaussian probabil-
ity density function. However, a computed probability density function can provide a
valuable tool for the detection of anomalies in the measured data introduced by data
acquisition system errors,5 as well as the detection of nonlinear characteristics in the
system response.3

Correlation Functions. Given a stationary random vibration x(t), the autocorre-
lation function Rxx(τ) of x(t) is given by

Rxx(τ) = lim
T → ∞

�T

0
x(t) x(t + τ)dτ (19.11)

1
�
T

1
��
���2π�
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FIGURE 19.4 Examples of the probability distribu-
tions of a random variable x. (A) Cumulative (probabil-
ity) distribution function, P(x). (B) Probability density
function p(x).
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where τ is a time delay (plus or minus). The autocorrelation function is essentially a
measure of the linear relationship (correlation) between the values of the random
vibration at any two instances t and t + τ. Note that for τ = 0, the value of the auto-
correlation function is simply its mean square value as defined in Eq. (19.1), i.e.,
Rxx(0) = ψ2

x.The autocorrelation function, as defined in Eq. (19.11), is rarely of direct
interest in the analysis of stationary random vibration data. However, the Fourier
transform of the autocorrelation function yields one of the most important descrip-
tive properties of a stationary random vibration, namely, the power spectral density
function, as defined in Chap. 14 and discussed next in this chapter.

Given two stationary random vibrations, x(t) and y(t), the cross-correlation func-
tion Rxy(τ) between x(t) and y(t) is given by

Rxy(τ) = lim
T → ∞

�T

0
x(t) y(t + τ)dτ (19.12)

where, again, τ is a time delay (plus or minus). The cross-correlation function is a
measure of the relationship (correlation) between two random vibrations at any
instance t with a time delay τ between the two vibration time histories. The cross-
correlation function is sometimes of direct interest in the analysis of stationary ran-
dom vibration data, particularly for defining propagation paths in noise and
vibration control problems.6,7 However, as for the autocorrelation function, the
Fourier transform of the cross-correlation function yields what is generally a more
important descriptive property of two stationary random vibrations, namely, the
cross-spectral density function, to be discussed shortly. Note that since the limiting
operation in Eqs. (19.11) and (19.12) can never be achieved in practice, correlation
functions can only be estimated with a potential random error, to be discussed later.

Power Spectral Density Function. The power spectral density function (also
called the autospectral density function, or more simply the power spectrum or
autospectrum) of a stationary random vibration x(t) may be defined simply as the
Fourier transform of the autocorrelation function of x(t), as discussed in the preced-
ing section. From Chap. 14, however, the power spectrum of x(t) may be defined in a
manner more relevant to data analysis algorithms by

Wxx(f) = lim
T → ∞

E[|X(f,T)|2] f > 0 (19.13)

where E[ ] denotes the expected value of [ ], which implies an ensemble average,
and X(f,T) is defined in Eq. (19.3). Note that the power spectrum Wxx(f) in Eq.
(19.13) is defined for positive frequencies only, and is often referred to as a one-
sided spectrum.

The power spectrum describes the frequency content of the vibration and, hence, is
generally the most important and widely used function for engineering applications,6,8

which are facilitated by three important properties of power spectra, as follows:

1. Given two or more statistically independent vibrations, the power spectrum for
the sum of the vibrations is equal to the sum of the power spectra for the indi-
vidual vibrations, that is,

Wxx(f) = �
i

Wii(f) i = 1, 2, 3, . . . (19.14)

2
�
T

1
�
T



2. The area under the power spectrum between any two frequencies, fa and fb,
equals the mean square value of the vibration in the frequency range from fa to
fb, that is,

ψ2
x(fa,fb) = �fb

fa
Wxx(f)df (19.15)

3. Given an excitation x(t) to a structural system with a frequency response function
H(f) (see Chap. 21), the power spectrum of the response y(t) is given by the prod-
uct of the power spectrum of the excitation and the squared magnitude of the fre-
quency response function, that is,

Wyy(f) = |H(f)|2 Wxx(f) (19.16)

Illustrations of the time histories and autospectra for both wide-bandwidth and
narrow-bandwidth random vibrations are shown in Fig. 19.5.

Cross-Spectral Density Functions. Given two stationary random vibrations
x(t) and y(t), the cross-spectral density function (also called the cross spectrum) is
defined as

Wxy(f) = lim
T → ∞

E[X*(f,T)Y(f,T)] f > 0 (19.17)
2
�
T
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FIGURE 19.5 Time histories and autospectra for wide-bandwidth (A) and narrow-bandwidth (B)
random vibrations.

(A)

(B)
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where E[ ] is the expected value of [ ], which implies an ensemble average, X*(f,T) is
the complex conjugate of the Fourier transform of x(t), as defined in Eq. (19.3), and
Y(f) is the finite Fourier transform of y(t), as defined in Eq. (19.3) with y(t) replac-
ing x(t).

The cross spectrum is generally a complex number that measures the linear rela-
tionship between two random vibrations as a function of frequency with a possible
phase shift between the vibrations. Specifically, the cross spectrum can be written as

Wxy(f) = |Wxy(f)|e−jθxy(f) θxy(f) = 2πfτ(f) (19.18)

where τ(f) is the time delay between x(t) and y(t) at frequency f. An important appli-
cation of the cross spectrum is as follows. Given a random excitation x(t) to a struc-
ture with a frequency response function H(f) (see Chap. 21), the cross spectrum
between the excitation x(t) and the response y(t) is given by the product of the
power spectrum of the excitation and the frequency response function, H(f), that is,

Wxy(f) = H(f)Wxx(f) (19.19)

Note that since the expected value and limiting operations in Eqs. (19.13) and
(19.17) can never be achieved in practice, power and cross-spectral density functions
and all derivative functions thereof can only be estimated with potential bias and
random errors, as discussed later.

Coherence Functions. From Chap. 21, the coherence function between two ran-
dom vibrations x(t) and y(t) is given by

γ2
xy(f) = f > 0 (19.20)

where all terms are as defined in Eqs. (19.13) and (19.17). The coherence function is
bounded at all frequencies by zero and unity, where γ2

xy(f) = 0 means there is no lin-
ear relationship between x(t) and y(t) at the frequency f (the two vibrations are
uncorrelated) and γ2

xy(f) = 1 means there is a perfect linear relationship between x(t)
and y(t) at the frequency f (one vibration can be exactly predicted from the other).
This property leads to an important application of the coherence function. Specifi-
cally, given a stationary random vibration y(t) = x(t) + n(t), where n(t) represents
extraneous noise, including other vibrations that are not correlated with x(t), then

Wxx(f) = γ2
xy(f) Wyy(f) (19.21)

The result in Eq. (19.22) is referred to as the coherent output power relationship.1

The coherence function is also an important parameter in establishing the statistical
sampling errors in various spectral estimates to be discussed later.

Other Functions. There are various other specialized functions that have impor-
tant applications for certain advanced stationary random data analysis problems,
including the following:

1. Cepstrum functions, which have important applications to machinery condition
monitoring9

|Wxy(f)|2
��
Wxx(f)Wyy(f)



2. Hilbert transforms, which can be used to determine the causality between two
measurements1 and certain properties of modulation processes1

3. Conditioned spectral density and coherence functions, which have important
applications to the analysis of structural vibration responses to multiple excita-
tions that are partially correlated,1,6 as well as to the analysis of the vibration
responses of nonlinear systems.3,6

4. Higher-order spectral density functions, such as bi-spectra and tri-spectra, which
have applications to the analysis of the vibration responses of nonlinear systems.3

5. Cyclostationary functions, which have important applications to machinery fault
diagnosis procedures.10

6. Wavelet analysis, which provides a decomposition of a vibration time-history
record into a set of orthogonal time-domain functions that can be used for vari-
ous advanced analysis operations11

7. Parametric spectral analysis, which involves fitting a multipole filter describing a
power spectrum to the time-history record of the vibration using one of several
optimum curve-fitting procedures12

QUANTITATIVE DESCRIPTIONS OF

NONSTATIONARY VIBRATIONS

Unlike stationary vibrations, the properties of nonstationary vibrations must be
described as a function of time, which theoretically requires instantaneous averages
computed over an ensemble of sample records, {x(t)}, acquired under statistically
similar conditions. In this context, the overall values for stationary vibrations in 
Eq. (19.1) are given for nonstationary vibrations by

Mean value: μx(t) = E[x(t)]

Mean-square value: ψ2
x(t) = E[x2(t)] (19.22)

Variance: σ2
x(t) = E[{x(t) − μx(t)}2]

where E[ ] denotes the expected value of [ ], which implies an ensemble average.
Equation (19.2) applies to the values in Eq. (19.22) at each time t, and the interpre-
tations of these values following Eq. (19.2) apply.

NONSTATIONARY DETERMINISTIC VIBRATIONS

Nonstationary deterministic vibrations are defined here as those vibrations that
would be periodic under constant conditions, but where the conditions are time-
varying such that the instantaneous magnitude and/or the fundamental frequency of
the vibration versus time vary slowly compared to the fundamental frequency of the
vibration (often called phase coherent vibrations). In other words, the vibration can
be described by Eq. (19.4) where the magnitude and phase terms, ak and θk, are
replaced by time-varying magnitude and phase terms ak(t) and θk(t) and/or the fun-
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Another way to describe the frequency-time characteristics of a nonstationary
deterministic vibration is by the Wigner distribution, defined as1,13

WDxx(f,t) = �∞

−∞
x�t − 	x�t + 	e−j2πfτ dτ (19.24)

The Wigner distribution is similar to the instantaneous power spectrum discussed
later in this chapter, and has interesting theoretical properties.13 However, it often
produces negative spectral values, which are difficult to interpret for most engineer-
ing applications, and offers few advantages over the instantaneous line spectrum
given by Eq. (19.23).

NONSTATIONARY RANDOM VIBRATIONS

There are several theoretical ways to describe nonstationary random data,1 includ-
ing generalized spectra defined for two frequency variables that provide rigorous
excitation-response relationships, even for time-varying linear systems. From a data
analysis viewpoint, however, the most useful theoretical description for nonstation-
ary random vibrations is provided by the instantaneous power spectral density func-
tion (also called the instantaneous power spectrum or instantaneous autospectrum).
The instantaneous power spectrum is defined by1

τ
�
2

τ
�
2
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damental frequency f1 is replaced by a time-varying fundamental frequency f1(t),
that is,

x(t) = a0(t) + �
k

ak(t) cos [2πkf1(t) + θk(t)] (19.23)

A similar nonstationary deterministic vibration is given by Eq. (19.23) with kf1(t)
replaced by fk(t). Nonstationary deterministic vibrations described by Eq. (19.23)
are commonly displayed as a three-dimensional plot of the magnitude of the time-
varying coefficients versus time and frequency. Such a plot is often referred to as an
instantaneous line spectrum. An illustration of the time history and instantaneous
line spectrum for a single instantaneous frequency component with linearly increas-
ing magnitude and frequency is shown in Fig. 19.6.

FIGURE 19.6 Time history and instantaneous line spectrum for sine wave with slowly
increasing frequency and amplitude.
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Wxx(f,t) = � E�x�t − 	 x �t + 	e−j2πfτ dτ (19.25)

where E[ ] denotes the expected value of [ ], which implies an ensemble average.
Note that the instantaneous power spectrum is essentially the Wigner distribution
defined in Eq. (19.24), except the product of the values of x(t) at two different times
is averaged.

Like the Wigner distribution, the instantaneous power spectrum can have nega-
tive values at some frequencies and times.1 For example, let a nonstationary random
process be defined as

{x(t)} = [cos 2πf0t]{u(t)} (19.26)

where {u(t)} is a narrow-bandwidth stationary random process with a mean value of
zero and a standard deviation of unity, and the cosine term is a modulating function.
Substituting Eq. (19.26) for Eq. (19.25) yields

Wxx(f,t) = [Wuu(f − f0) + Wuu(f + f0)] + cos (4πf0t)Wuu(f) (19.27)

where Wuu(f) is the power spectrum of the stationary component {u(t)}. The instan-
taneous power spectrum given by Eq. (19.27) is plotted in Fig. 19.7. Note that the
instantaneous power spectrum consists of two stationary components (often called
sidebands) that are offset in frequency from the center frequency f1 of {u(t)} by plus
and minus the modulating frequency f0, and a time-varying component at the center

1
�
2

1
�
4

τ
�
2

τ
�
2

FIGURE 19.7 Instantaneous power spectrum for cosine-modulated, narrow-bandwidth random
vibration.



frequency f1 of {u(t)} that oscillates between positive and negative values. Further
note that for nonstationary vibration environments, as defined in this chapter, a
modulating frequency is small compared to the lowest frequency of the stationary
component, that is, f0 << f1 − B/2, where B is the bandwidth of the stationary compo-
nent. It follows that the stationary and time-varying spectral components of the
instantaneous power spectrum will heavily overlap and, hence, eliminate negative
spectral values at most times and frequencies.

PRELIMINARY DATA ANALYSIS

CONSIDERATIONS

Before the detailed analysis of vibration data is initiated, careful consideration
should be given to the following:

1. Final engineering applications of the analyzed data
2. Stationary sample record durations for the data analysis
3. Validation and editing of the data
4. Data storage
5. Analog-to-digital conversion

The first two matters should actually be considered prior to the acquisition of the data,
but in any case should be carefully reviewed prior to the initiation of the data analysis.

ENGINEERING APPLICATIONS OF DATA ANALYSIS

Numerous possible applications might motivate the acquisition and analysis of vibra-
tion data, including the applications in this handbook summarized in Table 19.1.
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TABLE 19.1 Applications of Analyzed Vibration Data

Application Chapter

Formulation of test criteria and 
verification of test results 19, 20

Formulation of design criteria 40

Condition monitoring of machinery 16

Modal analysis and testing 21

Assessing the vibration response 
of structures 23, 24, 25

Assessing the effects of vibration on 
humans 41

Prediction of structural failures and 
fatigue damage 33, 34

Calibration of transducers 11

Evaluation of vibration responses of 
nonlinear systems 4



The final application for the data is important in determining which properties 
of the data should be computed. In most cases, the primary property of interest
will be some form of a frequency spectrum. However, there may be applications
that require other types of analysis. For example, fatigue damage predictions for 
random vibration environments generally require some form of amplitude dis-
tribution analysis, as detailed in Chap. 33. These matters should be thoroughly
reviewed prior to initiating data analysis, not only to ensure the needed data
properties are computed, but also to avoid computing large amounts of unneeded
information.

STATIONARY SAMPLE RECORD DURATIONS

It is clear from the descriptions of vibrations in preceding sections that stationary
vibrations are much easier to analyze than nonstationary vibrations. It follows that
an effort should be made to collect stationary sample records of vibration data for
analysis. This is easily accomplished for the vibration data produced by laboratory
experiments, since most such experiments are performed under constant conditions
that naturally produce stationary results. On the other hand, the vibration data col-
lected from measurements of actual vibration environments are commonly nonsta-
tionary. Even in this case, measurement programs can often be designed to produce
stationary data for analysis purposes. For example, the vibration environment for a
motor vehicle during normal service operations is generally nonstationary. How-
ever, if the vehicle is operated over a homogeneous road at constant speed and
engine rpm, the resulting vibration levels will be approximately stationary. It follows
that the vibration environment of the vehicle under all conditions can be measured
and analyzed from a collection of stationary sample records, each representing a
specific road condition, vehicle speed, and/or engine rpm, that together cover all the
operating conditions for the vehicle. Whether a laboratory experiment or a field
experiment, the vibration data acquired for analysis should be forced to be station-
ary when possible.

Some vibrations are produced by excitations that cannot be forced to be station-
ary. Examples include the response of structures to wind loads (see Chap. 31) and
ocean waves (see Chap. 30). Even in these cases, however, it is often possible to iden-
tify and select piecewise stationary segments from a long sample record for data
analysis purposes. On the other hand, there are some types of vibration environ-
ments that are inherently nonstationary, for example, a laboratory vibration test
involving a sweep-sine excitation (see Chap. 18) or the vibration environment of a
space vehicle during launch. In these situations, some type of nonstationary data
analysis procedure must be employed.

DATA VALIDATION AND EDITING

Every effort should be made to acquire accurate vibration data, as outlined in
Chap. 15. However, all vibration data collected and stored for later analysis should
be validated and, if necessary, edited to remove anomalies prior to analysis. The
four most common and serious anomalies in acquired vibration data are as fol-
lows:5

1. Signal clipping, which is a limiting on one or both sides of the time-history record,
is caused by too high a gain setting on one or more data acquisition instruments.
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Severe clipping will reduce the rms value of the data and introduce spurious high-
frequency components.

2. Excessive instrumentation noise, which appears in the data as broad bandwidth
random noise, is caused by too low a gain setting on one or more of the data
acquisition instruments. Severe instrumentation noise will sum with random
vibration data, increasing the rms value of the data and obscuring the spectral
characteristics of the data.

3. Intermittent noise spikes, which appear as one or more sharp spikes in the time-
history record, are usually caused by a faulty connector in the data acquisition
system, but may also occur due to a faulty transmission in telemetry data. Inter-
mittent noise spikes will often severely distort the computed spectral characteris-
tics of the data.

4. Power-line pickup, which appears as a sine wave with a frequency of 60 Hz in
North America and 50 Hz in many other regions of the world, is caused by faulty
shielding and/or grounding of the data acquisition system. Power-line pickup will
cause a spectral component in the data at the power-line frequency and, if severe,
may saturate one or more of the data acquisition instruments.

These and other anomalies can often be detected by a visual inspection of the time-
history record of the measured vibration5 or, for data at frequencies above 50 Hz, by
simply listening to the vibration signal with a headset during the data acquisition or
the playback of stored sample records. The hearing system of an experienced vibra-
tion data analyst can be a powerful detector of data anomalies.

In many cases, the anomalies in acquired vibration data cannot be corrected, but
there are important exceptions. For example, power-line pickup can easily be
removed from data by interpolation procedures in the frequency domain, assuming
the power-line pickup did not saturate a data acquisition instrument and the data
do not include an actual periodic component at the power-line frequency. Similarly,
intermittent noise spikes can often be removed from the data by interpolation pro-
cedures in the time domain. For stationary random vibration data with even the
most severe clipping, accurate spectral information can often be recovered by spe-
cialized analysis procedures.1 See Ref. 5 for details and illustrations.

DATA STORAGE

In some cases, the analysis of sample records of vibration data is accomplished
online using real-time data analysis equipment or appropriate online computer
programs (see Chap. 14), but it is more common to input the sample records into
some storage medium for later analysis.2 In either case, since virtually all modern
vibration data analysis is accomplished using digital techniques, each analog sam-
ple record, x(t); 0 ≤ t ≤ T, is usually converted immediately to a digital sample
record, x(nΔt); n = 0, 1, 2, . . . , (N − 1), where Δt is the sampling interval in seconds
and NΔt = T. This translation into a digital format is accomplished using an analog-
to-digital converter (see Chap. 13). The storage of digital sample records can then
be accomplished by directly inputting the data into the random access memory
(RAM) or hard disk (HD) on a digital computer or, for long-term storage, a remov-
able storage medium such as a digital tape recorder, digital video disk (DVD), or
compact disk/read-only memory (CD/ROM).
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ANALOG-TO-DIGITAL CONVERSION

The analog-to-digital (A/D) conversion operation discussed in Chap. 13 introduces
two potential errors that must be carefully suppressed, namely, aliasing errors and
quantization errors.

Aliasing Error. The first potential error arises because at least two sample values
are needed to define one cycle of a vibration signal.This imposes an upper frequency
limit on the digital data given by1,2

fA = 1/(2Δt) (19.28)

where fA is called the Nyquist frequency in Hz. Any signal content in the sample
record above the Nyquist frequency fA will fold back around fA and sum with the sig-
nal content below fA, often causing a severe distortion of the data referred to as an
aliasing error. Aliasing can be suppressed by low-pass filtering the analog signals
from the transducers before the A/D conversion, where the low-pass filter cut-off
frequency is set at fc = 0.5 fA to 0.8 fA, depending on the roll-off rate of the low-pass
filter. See Chap. 13 for details.

Quantization Error. The second potential error arises because a continuous ana-
log signal is being converted into a finite set of numbers.This introduces a round-off
error commonly referred to as the quantization error or digital noise. The round-off
error is established by the A/D conversion word size, which is the number of binary
digits (bits) used to describe each data value. Specifically, a word size of w provides
2w discrete values (see Chap. 13). Assuming the full range of the A/D converter is
used and allowing one bit for sign designation, the peak signal-to-rms noise ratio of
the digitized data in dB is given by1,2

PS/N(dB) = 6(w − 1) + 10.8 (19.29)

The rms signal-to-noise ratio (S/N) for the converter is then given by Eq. (19.29)
minus the peak-to-rms value in dB for the signal being converted. For example, if the
vibration signal were a sine wave, 3 dB would be subtracted from Eq. (19.29) to
obtain the S/N, since the peak-to-rms ratio for a sine wave is 1/�2� = −3 dB. Modern
A/D converters typically employ word sizes of w ≥ 16 bits, corresponding to a
PS/N(dB) ≥ 100 dB. The actual PS/N may be somewhat less than indicated by Eq.
(19.29) because of miscellaneous errors in the converter that reduce the effective
word size.1 Nevertheless, if the full range of the converter is used, the digital noise
level will usually be sufficiently low for a proper analysis of the data, and often lower
than the noise level of the transducer and analog instrumentation preceding the A/D
converter. On the other hand, if the full range of the converter is not used, the digi-
tal noise could restrict the dynamic range of the analyzed data.

VIBRATION DATA ANALYSIS PROCEDURES

The algorithms for analyzing vibration data evolve directly from the equations for
the quantitative descriptions presented earlier, but without the limiting operations.
Although usually computed from sample records in the form of a digital time series,
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x(nΔt); n = 0, 1, 2 . . . , all analysis procedures are presented in terms of both analog
equations and digital algorithms for clarity.

THE DISCRETE FOURIER TRANSFORM

Many of the analysis products for both deterministic and random vibration data
require the computation of the Fourier transform defined in Eq. (19.3). In digital
terms where the sample record x(t) = x(nΔt), this Fourier transform, often called a
discrete Fourier transform (DFT), is given by 

X(mΔf) = Δt �
N − 1

n = 0
x(nΔt) exp [−j2πmΔf nΔt]; m = 0, 1, 2, . . . , (N − 1) (19.30)

As discussed in Chap. 14, the DFT can be computed with remarkable efficiency
using a fast Fourier transform (FFT) algorithm. Note that the DFT defines N dis-
crete frequency values for N discrete time values with an inherent frequency resolu-
tion of

Δf = (19.31)

However, the Nyquist frequency defined in Eq. (19.28) occurs at m = (N/2). Hence,
only the first [(N/2) + 1] frequency components represent unique values; the last
[(N/2) − 1] frequency components constitute the redundant values representing the
negative frequency components in Eq. (19.3).

PROCEDURES FOR STATIONARY DETERMINISTIC DATA ANALYSIS

The analog equations and digital algorithms for the analysis of stationary determin-
istic vibration data are summarized in Table 19.2. The hat (^) over the symbol for
each computed parameter in Table 19.2 denotes an estimate as opposed to an exact
value.

1
�
NΔt

TABLE 19.2 Summary of Algorithms for Stationary Deterministic Vibration Data Analysis

Function Analog equation Digital algorithm

Mean value μ̂x = �T

0
x(t)dt μ̂x = �

N − 1

n = 0
x(nΔt)

Mean-square value ψ̂2
x = �T

0
x2(t)dt ψ̂2

x = �
N − 1

n = 0
x2(nΔt)

Variance σ̂2
x = �T

0
[x(t) − μ̂x]2dt σ̂2

x = �
N − 1

n = 0
[x(nΔt) − μ̂x]2

Line spectrum* L̂x(f) = |X(f,T)|; f > 0 L̂x(mΔf) = |X(mΔf)|;

m = 1, 2, . . . , � − 1	
*X(f,T) defined in Eq. (19.3), X(mΔf) defined in Eq. (19.30).

N
�
2

2
�
NΔt

2
�
T

1
�
N − 1

1
�
T

1
�
N

1
�
T

1
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N
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Overall Values. The mean, mean-square, and variance values for stationary deter-
ministic vibrations are estimated from a sample record using Eq. (19.1) with a finite
value for the averaging time T, as shown in Table 19.2. For periodic data, as defined
by Eq. (19.4), the averaging time should ideally cover an integer multiple of periods,
that is,

T = iTP i = 1, 2, 3, . . . (19.32)

where TP is the period of the data. However, since the period of a measured periodic
vibration is probably not known prior to estimating its overall values, it is unlikely in
practice that the averaging time will comply with Eq. (19.32). This leads to a trunca-
tion error that diminishes as the averaging time T increases, and is generally negligi-
ble (less than 3 percent) if T > 10TP. For almost-periodic vibration data, there will
always be a truncation error, but again it will be negligible if T > 10T1 where T1 is the
period of the lowest frequency in the data.

Line Spectra. The line spectrum for a periodic signal, as defined in Eq. (19.5), will
be exact as long as the averaging time complies with Eq. (19.32). Again, compliance
with Eq. (19.32) is unlikely in practice for periodic data and is not possible for
almost-periodic data, so a line spectrum estimate will generally involve a truncation
error. Specifically, rather than a single spectral line at the frequency of each har-
monic component of the periodic vibration, as illustrated in Fig. 19.2, spectral lines
will occur at all frequencies given by

fk = k/T k = 1, 2, 3, . . . (19.33)

where T ≠ iTP; i = 1, 2, 3, . . . . The largest spectral lines will fall at those frequencies
nearest the frequency of the harmonic components of the vibration, but they will
underestimate the magnitudes of the harmonic components. Furthermore, the com-
puted spectral lines will fall off about each harmonic frequency as shown in Fig. 14.8.
This allows a second type of error, referred to as the leakage error, where the mag-
nitude of any one harmonic component can influence the computed values of neigh-
boring harmonic components. Of course, these errors diminish rapidly as T >> TP for
periodic data, or T >> T1 for almost-periodic data where T1 is the period of the low-
est frequency in the data. In addition, sample record-tapering operations (see Chap.
14) or interpolation algorithms2 can be used to suppress these errors.

PROCEDURES FOR STATIONARY RANDOM DATA ANALYSIS

The analog equations and digital algorithms for the analysis of stationary random
vibration data are summarized in Table 19.3. As before, the hat (^) over the symbol
for each computed function in Table 19.3 denotes an estimate as opposed to an exact
value. Unlike deterministic data, the estimation of parameters for random vibration
data will involve statistical sampling errors of two types, namely, (a) a random error
and (b) a bias (systematic) error. It is convenient to present these errors in normal-
ized terms. Specifically, for an estimate φ̂ of a parameter φ ≠ 0,

Random error: εr[φ̂] = σ[φ̂]/φ (19.34a)

Bias error: εb[φ̂] = (E[φ̂] − φ)/φ (19.34b)
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where σ[φ̂] is the standard deviation of the estimate φ̂ and E[ ] denotes the expected
value. For example, if the random error for an estimate φ̂ is εr[φ̂] = 0.1, this means that
the estimate ̂φ is a random variable with a standard deviation that is 10 percent of the
value of the parameter φ being estimated. If the bias error is εb[φ̂] = −0.1, this means
the estimate φ̂ is systematically 10 percent less than the value of the parameter φ
being estimated; note that the bias error can be either positive or negative. The ran-
dom and bias errors for the various estimates in Table 19.3 are summarized in Table
19.4.
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TABLE 19.3 Summary of Algorithms for Stationary Random Vibration Data Analysis

Function Analog equation* Digital algorithm*

Mean, mean- Same as in Table 19.2 Same as in Table 19.2
square, and 
variance values

Probability
density

p̂(x) = p̂(x) =

function

Power 
spectrum

Ŵxx(f) = �
nd

i = 1
|Xi(f,T)|2; f > 0 Ŵxx(mΔf) = �

nd

i = 1
|Xi(mΔf)|2;

m = 1,2, . . . , � − 1	

Cross-spectrum Ŵxy(f) = �
nd

i = 1
X*( f,T)Y( f,T); Ŵxy(mΔf) = �

nd

i = 1
Xi

*(mΔf)Yi(mΔf);

f > 0 m = 1,2, . . . , � − 1	

Coherence γ̂ 2
xy(f) = ; f > 0 γ̂ 2

xy(mΔf) =
function

m = 1,2, . . . , � − 1	

Frequency Ĥxy(f) = ; f > 0 Ĥxy(mΔf) = ;
response
function

m = 1,2, . . . , � − 1	
Coherent Ŵxx(f) = γ̂xy(f)Ŵyy(f); f > 0 Ŵxx(mΔf) = γ̂ 2

xy(mΔf)Ŵyy(mΔf);
output
power m = 1,2, . . . , � − 1	
function

*X(f,T) defined in Eq. (19.3), X(mΔf ) defined in Eq. (19.30).
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N
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2
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Overall Values. The mean, mean-square, and variance values for a stationary ran-
dom vibration are estimated from a sample record using Eq. (19.1) with a finite
value for the averaging time T in the same way as for stationary deterministic vibra-
tion data, as shown in Table 19.2. For random data, however, truncation errors are
replaced by the random errors given in Table 19.4, where it is assumed that the data
have a uniform power spectrum over a frequency range with a bandwidth B. Since
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TABLE 19.4 Statistical Sampling Errors for Stationary Random Vibration Data Analysis

Function Random error Bias error

Mean value εr[μ̂x] = � 	 None

Mean-square εr[ψ̂x] = � 	 + � 	 None
value

Variance εr[σ̂2
x] = None

Probability εr[p̂(x)] ≤ εb[p̂(x)] =
density function

Power spectrum* εr[Ŵxx(f)] = εb[Ŵxx(f)] = − � 	
2

Cross-spectrum εr[|Ŵxy(f)|] = εb[Ŵxy(f)] =
magnitude*

Cross-spectrum σr[|θ̂xy(f)|] = **
phase*

Coherence εr[|γ̂ 2
xy(f)|] = εb[γ̂ 2

xy(f)] = 
function*

Frequency εr[|Ĥxy(f)|] = **
response
function
magnitude*

Frequency σr[|φ̂xy(f )|] = **
response
function
phase*

Coherent output εr[γ̂xy(f)Ŵyy(f)] = **
power spectrum*

* nd can be replaced by BeTr when overlapped processing is employed.
** There are several sources of bias errors,1,14 but they usually will be small if the bias error for the power

spectral density estimate is small.
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vibration data rarely have uniform power spectra, the error formulas for the overall
values provide only coarse approximations for the random errors to be expected.
However, for sample records of adequate duration to provide reasonably accurate
power spectra estimates, to be detailed shortly, the random error in overall value
estimates will generally be negligible.

Probability Density Functions. The probability density function for a stationary
random vibration is estimated from a sample record using Eq. (19.6) with finite val-
ues for the averaging time T and an amplitude window width Δx, as shown in Table
19.3. In this table, T(x,Δx) is the total time the analog record x(t) falls within the
amplitude window Δx centered at x, and N(x,Δx) is the total number of values of the
digital record x(nΔt), n = 0, 1, 2, . . . , that fall within the amplitude window Δx cen-
tered at x. Probability density estimates for random vibration data will involve both
a bias error and a random error, as summarized in Table 19.4.The bias error is a func-
tion of the second derivative of the probability density versus amplitude, which gen-
erally is not known prior to the analysis. However, if the probability density function
is relatively smooth and the analysis is performed with an amplitude window width
of Δx ≤ 0.1 σx, experience suggests the bias error will typically be less than 5 percent
for all values of x. The random error shown in Table 19.4 is only a bound; the actual
random error depends on the power spectrum of the data,1 but in most cases will be
small if the sample record duration is adequate to provide accurate power spectra
estimates.

Power Spectra. Referring to Table 19.3, there are two basic ways to estimate the
power spectrum from a sample record of a stationary random vibration, as follows:

Ensemble-Averaging Procedure. The first approach to the estimation of a
power spectrum is based upon the definition in Eq. (19.3), and involves the follow-
ing primary steps:1

1. Given a sample record of total duration Tr = ndNΔt, divide the record into an
ensemble of nd contiguous segments, each of duration T = NΔt.

2. Apply an appropriate tapering operation to each segment of duration T = NΔt to
suppress side-lobe leakage (see Chap. 14).

3. Compute a “raw” power spectrum from each segment of duration T = NΔt, which
will produce N/2 spectral values at positive frequencies with a resolution of Δf =
1/T = 1/(NΔt).

4. Average the “raw” power spectra values from the nd segments to obtain a power
spectrum estimate with nd averages and a frequency resolution of Be = Δf.

The averaging operation over the ensemble of nd estimates simulates the expected
value operation in Eq. (19.13), and determines the random error in the estimate
given in Table 19.4.The resolution bandwidth Be = 1/(NΔt) determines the maximum
bias error in the estimate given in Table 19.4, which for structural vibration data typ-
ically occurs at peaks and notches in the power spectrum caused by the resonant
response of the structure at a frequency fr with a damping ratio ζ. See Chap. 14 for
details on the computation of power spectra for random data, including overlapped
processing and “zoom” transform procedures.

Frequency-Averaging Procedure. The ensemble-averaging procedure can be
replaced by a frequency-averaging procedure, as follows:1

1. Given a sample record of total duration Tr = ndNΔt, compute a raw power spec-
trum over the entire duration of the sample record, which will produce ndN/2
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spectral estimates at positive frequencies with a resolution of Be = 1/Tr =
1/(ndNΔt).

2. Divide the frequency range of the spectral components into a collection of con-
tiguous frequency segments, each containing nd spectral components.

3. Average the spectral components in each of the frequency segments to obtain the
power spectrum estimate.

The averaging over nd spectral components in a frequency segment produces the same
random error in Table 19.4 as averaging over nd raw power spectra estimates in the
ensemble-averaging procedure. In addition, for the same values of N and nd, the fre-
quency resolution is the same as for the ensemble-averaging procedure, meaning the
bias error in Table 19.4 is essentially the same. However, the bandwidth for the various
frequency segments need not be a constant. Any desired variation in the bandwidth
can be introduced, including a bandwidth that increases linearly with its center fre-
quency (commonly referred to as a constant percentage frequency resolution).

Optimum Resolution Bandwidth Selections. A common problem in the esti-
mation of power spectra from sample records of stationary random vibration data is
the selection of an appropriate resolution bandwidth, Be = 1/T = 1/(NΔt). One
approach to this problem is to select that resolution bandwidth that will minimize
the total mean square error in the estimate given by

ε2 = εr
2 + ε2

b (19.35)

where εr and εb are defined in Eq. (19.34). From Table 19.4, the maximum mean-
square error for power spectral density estimates of structural vibration data is
approximated by

ε2[Ŵxx(f)] = + � 	
4

(19.36)

where ζ is the damping ratio of the structure at the resonance frequency fr . Taking
the derivative of Eq. (19.36) with respect to Be and equating to zero yields the reso-
lution bandwidth that will minimize the mean-square error as

B0(f) ≅ 2 (19.37)

Note in Eq. (19.37) that the optimum resolution bandwidth B0(f) is a function of the
−1⁄5 power of the sample record duration, Tr, meaning the optimum resolution band-
width is relatively insensitive to the sample record duration. Further, the optimum
resolution bandwidth B0(f) is proportional to the 4⁄5 power of the product ζf. Assum-
ing all structural resonances have approximately the same damping, this means a
constant percentage resolution bandwidth will provide near-optimum results in
terms of a minimum mean square error in the power spectrum estimate. For exam-
ple, assume the vibration response of a structure exposed to a random excitation is
measured with a total sample record duration of Tr = 10 sec. Further assume all res-
onant modes of the structure have a damping ratio of ζ = 0.05. From Eq. (19.37), the
optimum resolution bandwidth for the computation of a power spectrum of the
structural vibration is B0(f) = 0.115f 4/5. Hence, if the frequency range of the analysis
is, say, 10 Hz to 1000 Hz, the optimum resolution bandwidth for the analysis
increases from B0 = 0.726 Hz at f = 10 Hz [B0(f) = 0.0726f ] to B0 = 28.9 Hz at f = 1000
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Hz [B0(f) = 0.0280 f ]. It follows that a 1⁄12 octave bandwidth resolution, which is
equivalent to Be(f) = 0.058f, will provide relatively good spectral estimates over the
frequency range of interest.

Cross Spectra. Referring to Table 19.3 and Eq. (19.17), the computational ap-
proach for estimating the cross-spectrum between two sample records x(t) and y(t) is
the same as described for power spectra, except |X(f)|2 is replaced by X*(f)Y(f).
Referring to Table 19.4, the random errors in the magnitude and phase of a cross-
spectrum estimate are heavily dependent on the coherence function, as defined in
Eq. (19.20). Specifically, if the coherence at any frequency is unity, this means the two
sample records, x(t) and y(t), are linearly related and the normalized random error in
the estimate is the same as for a power spectrum estimate. On the other hand, if the
coherence is zero, then x(t) and y(t) are unrelated and the normalized random error
in any estimate that may be computed is infinite. In practice, the true value of the
coherence is not known, so sample estimates of the coherence, to be discussed shortly,
would be used in the error formula shown in Table 19.4. There are several sources of
bias errors for cross-spectra estimates,1,10 but these bias errors will generally be minor
if the bias errors in the power spectra estimates for the two sample records are small
and there is no major time delay between the two sample records.

Other Spectral Functions. Referring to Table 19.3, the frequency response,
coherence, and coherent output power functions defined in Eqs. (19.19) through
(19.21) are estimated from sample records using the appropriate estimates for the
power spectra, cross spectra, and coherence functions of the data. From Table 19.4,
as for the cross spectrum, the random errors for estimates of these functions are
heavily dependent on the coherence function. There are several sources of bias
errors in the estimates of these functions,1,10 but the bias errors will generally be
minor if the bias errors in the power spectra estimates used to compute the functions
is small and there is no major time delay between the two sample records.

PROCEDURES FOR NONSTATIONARY DATA ANALYSIS

As noted earlier, nonstationary vibration data are defined here as those whose basic
properties vary slowly relative to the period of the lowest frequency in the vibration
time history. Under this definition, the analog equations and digital algorithms for the
analysis of nonstationary vibration data from a single sample record x(t) are essen-
tially the same as summarized in Tables 19.2 and 19.3, except the computations are
performed over each of a sequence of short, contiguous segments of the data where
each segment is sufficiently short not to smooth out the nonstationary characteristics
of the data. In other words, given a nonstationary sample record x(t) of total duration
Tr, the record is assumed to be a sequence of piecewise stationary segments, each cov-
ering the interval

iT to (i + 1)T = iNΔt to (i + 1)NΔt i = 0, 1, 2, . . . (19.38)

In many cases, rather than computing the estimates over the contiguous segments
defined in Eq. (19.38), a new segment is initiated every digital increment Δt such that
each covers the interval

iΔt to (i + N)Δt i = 0, 1, 2, . . . (19.39)
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The computation of estimates over the intervals defined in either Eq. (19.38) or
(19.39) is commonly referred to as a running average (also called a moving average).
Whether the averaging is performed over segments given by Eq. (19.38) or (19.39), the
primary problem is to select an appropriate averaging time, T = NΔt, for the estimates.

Overall Average Values for Deterministic Data. Referring to Table 19.2, the
optimum averaging time for the computation of time-varying mean, mean square,
and variance values for nonstationary deterministic vibration data is bounded as fol-
lows. At the lower end, the averaging time must be at least as long as the period for
periodic data or the period of the lowest frequency component for almost-periodic
data. At the upper end, the averaging time must be sufficiently short to not smooth
out the time-varying properties in the data.This selection is usually accomplished by
trial-and-error procedures, as illustrated shortly.

Overall Average Values for Random Data. The optimum averaging time for the
computation of time-varying mean, mean square, and variance values for nonsta-
tionary random vibration data is bounded as for nonstationary deterministic data
with one difference, namely, the computations for random data will involve a statis-
tical sampling (random) error, as summarized in Table 19.4. To minimize these ran-
dom errors, an averaging time that is as close as feasible to the upper bound noted
for deterministic data is desirable.Analytical procedures to select an optimum aver-
aging time that will minimize the mean-square error of the resulting time-varying
average value have been formulated,1 but they require a knowledge of the power
spectrum of the data, which is normally not available when overall average values
are being estimated. Hence, it is more common to select an averaging time by trial-
and-error procedures, as follows:

1. Compute a running average for the overall value of interest using either Eq.
(19.38) or (19.39) with an averaging time, T = NΔt, that is too short to smooth out
the variations with time in the overall value being estimated.

2. Continuously recompute the running average with an increasing averaging time
until it is clear that the averaging time is smoothing out variations with time in the
overall value being estimated.

3. Choose that averaging time for the analysis that is just short of the averaging time
that clearly smoothes out variations with time in the overall value being estimated.

This procedure is illustrated in Fig. 19.8, which shows running average estimates for
the time-varying mean-square value of a nonstationary random vibration record
computed with averaging times of T = 0.1, 1.0, and 3.0 sec. Note that the running aver-
age estimates with T = 0.1 sec reveal substantial random variations from one estimate
to the next, indicative of excessive random estimation errors, while the estimates with
T = 3 sec reveal a clear smoothing of the nonstationary trend in the data, indicative of
an excessive time interval bias error.The averaging time of T = 1 sec provides a good
compromise between the suppression of random and bias errors in the data analysis.

Time-Varying Line Spectra for Deterministic Data. The most common way to
analyze the spectral characteristics of time-varying deterministic vibration data is to
approximate the instantaneous line spectrum illustrated in Fig. 19.6 by the computa-
tion of a sequence of line spectra over the time intervals defined in Eq. (19.38) or
(19.39). The resulting collection of line spectra is commonly referred to as a waterfall
plot or a cascade plot. An illustration of a waterfall plot computed from a sample
record of nonstationary deterministic vibration data is shown in Fig. 14.23.



For a spectral analysis using Fourier transforms, the averaging time T = NΔt and
the frequency resolution Δf = 1/T = 1/(NΔt) are obviously interrelated. It follows that
there must always be a compromise between these two analysis parameters. On the
one hand, the averaging time must be longer than the period of the lowest instanta-
neous frequency component in the data at any time covered by the sample record.
On the other hand, the frequency resolution must be narrower than the minimum
frequency separation of any two instantaneous frequency components in the data at
any time covered by the sample record. This compromise will generally be achiev-
able for nonstationary deterministic vibration data that would be periodic if they
were stationary. In this case, assuming the maximum period at any time covered by
the sample record is TP, it follows that Δf < 1/TP if T > TP. However, for almost-
periodic deterministic vibration data, there may be two spectral components that, at
some instant, might be separated by less than Δf = 1/T where T > T1. See Chap. 14 for
further details on the computation of waterfall plots and other procedures for the
analysis of nonstationary deterministic vibration data.

Time-Varying Power Spectra for Random Data. The computation of a time-
varying power spectrum for nonstationary random vibration data is essentially the
same as for the computation of a time-varying line spectrum for nonstationary
deterministic data discussed in the previous section, with one important exception.
Referring to the computational algorithm for the power spectrum in Table 19.3 and
the estimation errors in Table 19.4, there will be substantial statistical sampling
errors in the power spectrum estimate for each of the piecewise stationary segments
of duration T, as defined in Eq. (19.38) or (19.39), unless the duration T is relatively
long compared to the period of the lowest frequency of interest in the data. Hence,
it is critical that the duration T of the piecewise stationary segments be as long as
feasible without unduly smoothing the nonstationary trends in the data. A common
approach to selecting the segment duration T is to use the maximum value of T for
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the computation of the time-varying variance of the nonstationary random data by
the trial-and-error procedure illustrated in Fig. 19.8.

Concerning the resolution bandwidth Be for the computation of the power spec-
trum of each piecewise stationary segment, Eq. (19.37) applies. Hence, it follows that
a frequency resolution bandwidth Be that is approximately proportional to the cen-
ter frequency of the bandwidth would be a near optimum selection from the view-
point of minimizing the total mean-square error for bias and random errors in the
resulting estimates. This means that the most logical computational procedure for
estimating the power spectrum of each segment would be to compute the Fourier
transform over the entire segment duration and then use the frequency-averaging
procedure described earlier for the analysis of stationary random data.

Finally, it should be noted that there is a more rigorous procedure for the opti-
mum selection of not only the resolution bandwidth, but also the segment duration,
that will minimize the total mean square error including both frequency resolution
and time resolution bias errors, as well as random errors in nonstationary random
vibration data analysis, as detailed in Ref. 1. However, for most nonstationary vibra-
tion data acquired in practice, it is rare for one to have a sufficient knowledge of the
time-varying characteristics of the data to allow an accurate application of the more
rigorous procedure.
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CHAPTER 20
SHOCK DATA ANALYSIS

Sheldon Rubin
Kjell Ahlin

INTRODUCTION

This chapter discusses the interpretation of shock measurements and the reduction
of data to a form adapted to further engineering use. Methods of data reduction also
are discussed.A shock measurement is a trace giving the value of a shock parameter
versus time over the duration of the shock, referred to hereafter as a time history.
The shock parameter may define a motion (such as displacement, velocity, or accel-
eration) or a load (such as force, pressure, stress, or torque). It is assumed that any
corrections that should be applied to eliminate distortions resulting from the instru-
mentation have been made.The trace may be a pulse or transient. Concepts in vibra-
tion data analysis are discussed in Chap. 19.

Examples of sources of shock to which this discussion applies are earthquakes
(see Chap. 29), free-fall impacts, collisions, explosions, gunfire, projectile impacts,
high-speed fluid entry, aircraft landing and braking loads, and spacecraft launch and
staging loads.

BASIC CONSIDERATIONS

Often, a shock measurement in the form of a time history of a motion or loading
parameter is not useful directly for engineering purposes. Reduction to a different
form is then necessary, the type of data reduction employed depending upon the
ultimate use of the data.

Comparison of Measured Results with Theoretical Prediction. The correlation
of experimentally determined and theoretically predicted results by comparison of
records of time histories is difficult. Generally, it is impractical in theoretical analy-
ses to give consideration to all the effects which may influence the experimentally
obtained results. For example, the measured shock often includes the vibrational
response of the structure to which the shock-measuring device is attached. Such
vibration obscures the determination of the shock input for which an applicable the-
ory is being tested; thus, data reduction is useful in minimizing or eliminating the
irrelevancies of the measured data to permit ready comparison of theory with cor-
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responding aspects of the experiment. It often is impossible to make such compar-
isons on the basis of original time histories.

Calculation of Structural Response. In the design of equipment to withstand
shock, the required strength of the equipment is indicated by its response to the
shock. The response may be measured in terms of the deflection of a member of the
equipment relative to another member or by the magnitude of the dynamic loads
imposed upon the equipment. The structural response can be calculated from the
time history by known means. If the structure is modeled with the use of finite ele-
ment methods (see Chap. 23), the calculation time often is considerable. For lumped-
parameter models of simple structures see Chaps. 1, 2, and 3. To calculate the
structural response in a time-efficient way, a digital filter method combined with
modal superposition may be used (see Ref. 1).This is the same method as used for the
single-degree-of-freedom (SDOF) system calculation for shock response spectrum.

Laboratory Simulation of Measured Shock. Because of the difficulty of using
analytical methods in the design of equipment to withstand shock, it is common
practice to prove the design of equipments by laboratory tests that simulate the
anticipated actual shock conditions. Unless the shock can be defined by one of a
few simple functions, it is not feasible to reproduce in the laboratory the complete
time history of the actual shock experienced in service. Instead, the objective is to
synthesize a shock having the characteristics and severity considered significant in
causing damage to equipment.Then the data reduction method is selected so that it
extracts from the original time history the parameters that are useful in specifying
an appropriate laboratory shock test. Shock testing machines are discussed in
Chaps. 27 and 28.

EXAMPLES OF SHOCK MOTIONS

Five examples of shock motions are illustrated in Fig. 20.1 to show typical character-
istics and to aid in the comparison of the various techniques of data reduction. The
acceleration impulse and the acceleration step are the classical limiting cases of
shock motions. The half-sine pulse of acceleration, the decaying sinusoidal accelera-
tion, and the complex oscillatory-type motion typify shock motions encountered fre-
quently in practice.

In selecting data reduction methods to be used in a particular circumstance, the
applicable physical conditions must be considered. The original record, usually a
time history, may indicate any of several physical parameters; e.g., acceleration,
force, velocity, or pressure. Data reduction methods discussed in subsequent sections
of this chapter are applicable to a time history of any parameter. For purposes of
illustration in the following examples, the primary time history is that of accelera-
tion; time histories of velocity and displacement are derived therefrom by integra-
tion. These examples are included to show characteristic features of typical shock
motions and to demonstrate data reduction methods.

ACCELERATION IMPULSE OR STEP VELOCITY

The delta function d(t) is defined mathematically as a function consisting of an infinite
ordinate (acceleration) occurring in a vanishingly small interval of abscissa (time) at
time t = 0 such that the area under the curve is unity. An acceleration time history of
this form is shown diagrammatically in Fig. 20.1A. If the velocity and displacement
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are zero at time t = 0, the corresponding velocity time history is the velocity step and
the corresponding displacement time history is a line of constant slope, as shown in
the figure. The mathematical expressions describing these time histories are

ü(t) = u̇0d(t) (20.1)

where d(t) = 0 when t ≠ 0, d(t) = ∞ when t = 0, and �∞

−∞
d(t) dt = 1. The acceleration can

be expressed alternatively as

ü(t) = lim
� → 0

u̇0/� [0 < t < �] (20.2)
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where ü(t) = 0 when t < 0 and t > �. The corresponding expressions for velocity and
displacement for the initial conditions u = u̇ = 0 when t < 0 are

u̇(t) = u̇0 [t > 0] (20.3)

u(t) = u̇0t [t > 0] (20.4)

ACCELERATION STEP

The unit step function 1(t) is defined mathematically as a function which has a value
of zero at time less than zero (t < 0) and a value of unity at time greater than zero 
(t > 0). The mathematical expression describing the acceleration step is

ü(t) = ü01(t) (20.5)

where 1(t) = 1 for t > 0 and 1(t) = 0 for t < 0. An acceleration time history of the unit
step function is shown in Fig. 20.1B; the corresponding velocity and displacement
time histories are also shown for the initial conditions u = u̇ = 0 when t = 0.

u̇(t) = ü0t [t > 0] (20.6)

u(t) = 1⁄2ü0t2 [t > 0] (20.7)

The unit step function is the time integral of the delta function:

1(t) = �t

−∞
d(t) dt [t > 0] (20.8)

HALF-SINE ACCELERATION

A half-sine pulse of acceleration of duration τ is shown in Fig. 20.1C; the correspon-
ding velocity and displacement time histories also are shown, for the initial condi-
tions u = u̇ = 0 when t = 0. The applicable mathematical expressions are

ü(t) = ü0 sin � 	 [0 < t < τ]

ü(t) = 0 when t < 0 and t > τ
(20.9)

u̇(t) = �1 − cos 	 [0 < t < τ]

u̇(t) = [t > τ]
(20.10)

u(t) = � − sin 	 [0 < t < τ]

u(t) = � − 1	 [t > τ]

(20.11)

This example is typical of a class of shock motions in the form of acceleration pulses
not having infinite slopes.
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DECAYING SINUSOIDAL ACCELERATION

A decaying sinusoidal trace of acceleration is shown in Fig. 20.1D; the corresponding
time histories of velocity and displacement also are shown for the initial conditions
u̇ = −u̇0 and u = 0 when t = 0. The applicable mathematical expression is

ü(t) = e−ζ1ω1t sin (�1� −� ζ�1
2�ω1t + sin−1 (2ζ1�1� −� ζ�1

2�)) [t > 0] (20.12)

where ω1 is the frequency of the vibration and ζ1 is the fraction of critical damping
corresponding to the decrement of the decay. Corresponding expressions for veloc-
ity and displacement are

u̇(t) = e−ζ1ω1t cos (�1� −� ζ�1
2� ω1t + sin−1 ζ1) [t > 0] (20.13)

where u̇(t) = −u̇0 when t < 0.

u(t) = − e−ζ1ω1t sin (�1� −� ζ�1
2�ω1t) [t > 0] (20.14)

where u(t) = −u̇0t when t < 0.

COMPLEX SHOCK MOTION

The trace shown in Fig. 20.1E is an acceleration time history representing typical
field data. It cannot be defined by an analytic function. Consequently, the corre-
sponding velocity and displacement time histories can be obtained only by integra-
tion of the acceleration time history.

CONCEPTS OF DATA REDUCTION

Consideration of the engineering uses of shock measurements indicates two basically
different methods for describing a shock: (1) a description of the shock in terms of its
inherent properties, in the time domain or in the frequency domain; and (2) a descrip-
tion of the shock in terms of the effect on structures when the shock acts as the exci-
tation. The latter is designated reduction to the response domain. The following
sections discuss concepts of data reduction to the frequency and response domains.

Whenever practical, the original time history should be retained even though the
information included therein is reduced to another form. The purpose of data reduc-
tion is to make the data more useful for some particular application. The reduced
data usually have a more limited range of applicability than the original time history.
These limitations must be borne in mind if the data are to be applied intelligently.

DATA REDUCTION TO THE FREQUENCY DOMAIN

Any nonperiodic function can be represented as the superposition of sinusoidal
components, each with its characteristic amplitude and phase.2 This superposition is
the Fourier spectrum, as defined in Eq. (20.15). It is analogous to the Fourier com-

u̇0��
ω1�1� −� ζ�1

2�

u̇0�
�1� −� ζ�1

2�

u̇0ω1�
�1� −� ζ�1

2�
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ponents of a periodic function (Chap. 19). The Fourier components of a periodic
function occur at discrete frequencies, and the composite function is obtained by
superposition of components. By contrast, the classical Fourier spectrum for a non-
periodic function is a continuous function of frequency, and the composite function
is achieved by integration. Fourier spectra can be defined and computed as a func-
tion of either radial frequency ω in radians/sec or cyclical frequency f in Hz, that is,

F1(f ) = �∞

−∞
x(t)e−f 2πfr dt or F2(ω) = �∞

−∞
x(t)e−jωt dt (20.15)

Where the two functions are related by F2 (ω) = 2πF1( f). The Fourier spectrum is a
complex function denoted by a bold F.The following sections discuss the application
of the continuous Fourier spectrum to describe the shock motions illustrated in Fig.
20.1. A discrete realization of the Fourier spectrum is given by Eq. (19.30).

Acceleration Impulse. Using the definition of the acceleration pulse given by Eq.
(20.5) and substituting this for f(t) in Eq. (20.15),

F(ω) = lim
� → 0

��

0
e−jωt dt (20.16)

Carrying out the integration,

F(ω) = lim
� → 0

= u̇0 (20.17A)

The corresponding amplitude and phase spectra are

F(ω) = u̇0; θ(ω) = 0 (20.17B)

These spectra are shown in Fig. 20.2A. The magnitude of the Fourier amplitude spec-
trum is a constant, independent of frequency, equal to the area under the acceleration-
time curve.

The physical significance of the spectra in Fig. 20.2A is shown in Fig. 20.3, where the
rectangular acceleration pulse of magnitude u̇0/� and duration t = � is shown as approx-
imated by superposed sinusoidal components for several different upper limits of 
frequency for the components.With the frequency limit ωl = 4/�, the pulse has a notice-
ably rounded contour formed by the superposition of all components whose frequen-
cies are less than ωl. These components tend to add in the time interval 0 < t < � and,
though existing for all time from −∞ to +∞, cancel each other outside this interval, so
that ü approaches zero. When ωl = 16/�, the pulse is more nearly rectangular and 
ü approaches zero more rapidly for time t < 0 and t > �.When ωl = ∞, the superposition
of sinusoidal components gives ü = u̇0/� for the time interval of the pulse, and ü = u̇0/2�
at t = 0 and t = �. The components cancel completely for all other times. As � → 0 and
ωl → ∞, the infinitely large number of superimposed frequency components gives 
ü = ∞ at t = 0. The same general result is obtained when the Fourier components of
other forms of ü(t) are superimposed.

Acceleration Step. The Fourier spectrum of the acceleration step does not exist
in the strict sense since the integrand of Eq. (20.15) does not tend to zero as ω → ∞.
Using a convergence factor, the Fourier transform is found by substituting ü(t) for
x(t) in Eq. (20.15):

F(ω − ja) = �∞

0
ü0e−j(ω − ja)t dt = (20.18)

ü0�
j(ω − ja)

u̇0(1 − e−jω�)
��

jω�

u̇0�
�
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Taking the limit as a → 0,

F(ω) = (20.19)

The amplitude and phase spectra are

F(ω) = ; θ(ω) = − (20.20)

These spectra are shown in Fig. 20.2B; the amplitude spectrum decreases as fre-
quency increases, whereas the phase is a constant independent of frequency. Note
that the spectrum of Eq. (20.19) is 1/jω times the spectrum for the impulse given by
Eq. (20.17A).

π
�
2

ü0�
ω

ü0�
jω
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FIGURE 20.2 Fourier amplitude and phase spectra for the shock motions in Fig. 20.1.



Half-sine Acceleration. Substitution of the half-sine acceleration time history,
Eq. (20.9), into Eq. (20.15) gives

F(ω) = �τ

0
ü0 sin e−jωt dt (20.21)

Performing the indicated integration gives

F(ω) = (1 + e−jωτ) [ω ≠ π/τ]

F(ω) = − [ω = π/τ]

(20.22)

The  expressions for the spectra of amplitude and phase are

F(ω) = 
 
 [ω ≠ π/τ]

F(ω) = [ω = π/τ]

(20.23)

θ(ω) = − + nπ (20.24)
ωτ
�
2

ü0τ�
2

cos (ωτ/2)
��
1 − (ωτ/π)2

2ü0τ�
π

jü0τ�
2

ü0τ/π
��
1 − (ωτ/π)2

πt
�
τ
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FIGURE 20.3 Time histories which result from
the superposition of the Fourier components of a
rectangular pulse for several different upper limits
of frequency ωl of the components.



where n is the smallest integer that prevents |θ(ω)| from exceeding 3π/2.The Fourier
spectra of the half-sine pulse of acceleration are plotted in Fig. 20.2C.

Decaying Sinusoidal Acceleration. The application of Eq. (20.15) to the decay-
ing sinusoidal acceleration defined by Eq. (20.12) gives the following expression for
the Fourier spectrum:

F(ω) = u̇0 (20.25)

This can be converted to a spectrum of absolute values, specifically

F(ω) = u̇0 � (20.26)

Also, a spectrum of phase angle:

θ(ω) = −tan−1 (20.27)

These spectra are shown in Fig. 20.2D for a value of ζ = 0.1.The peak in the amplitude
spectrum near the frequency ω1 indicates a strong concentration of Fourier compo-
nents near the frequency of occurrence of the oscillations in the shock motion.

Complex Shock. The complex shock motion shown in Fig. 20.2E is the result of
actual measurements; hence, its functional form is unknown. Its Fourier spectrum
must be computed numerically. The Fourier spectrum shown in Fig. 20.2E was eval-
uated digitally using 100 time increments of 0.00015-sec duration. The peaks in the
amplitude spectrum indicate concentrations of sinusoidal components near the fre-
quencies of various oscillations in the shock motion. The portion of the phase spec-
trum at the high frequencies creates an appearance of discontinuity. If the phase
angle were not returned to zero each time it passed through −360°, as a convenience
in plotting, the curve would be continuous.

Application of the Fourier Spectrum. The Fourier spectrum description of a
shock is useful in linear analysis when the properties of a structure on which the
shock acts are defined as a function of frequency. Such properties are designated by
the general term frequency response function; in shock and vibration technology,
commonly used frequency response functions are mechanical impedance, mobility,
and transmissibility. Such functions are often inappropriately called “transfer func-
tions.” This terminology should be reserved for functions of the Laplace variable
(see Chaps. 8 and 21).

When a shock acts on a structure, the structure responds in a manner that is
essentially oscillatory. The frequencies that appear predominantly in the response
are (1) the preponderant frequencies of the shock and (2) the natural frequencies of
the structure. The Fourier spectrum of the response R(ω) is the product of the
Fourier spectrum of the shock F(ω) and an appropriate frequency response function
for the structure. For example, if F(ω) and R(ω) are Fourier spectra of acceleration,
the frequency response function is the transmissibility of the structure, i.e., the ratio
of acceleration at the responding station to the acceleration at the driving station, as
a function of frequency. However, if R(ω) is a Fourier spectrum of velocity and F(ω)
is a Fourier spectrum of force, the frequency response function is mobility as a func-
tion of frequency.

2ζ1(ω/ω1)3

���
(1 − ω2/ω1

2) + (2ζ1ω/ω1)2

1 + (2ζ1ω/ω1)2

���
(1 − ω2/ω1

2)2 + (2ζ1ω/ω1)2

1 + j2ζ1ω/ω1
���
(1 − ω2/ω1

2) + j2ζ1ω/ω1
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The Fourier spectrum also finds application in evaluating the effect of a load
upon a shock source. A source of shock generally consists of a means of shock exci-
tation and a resilient structure through which the excitation is transmitted to a load.
Consequently, the character of the shock delivered by the resilient structure of the
shock source is influenced by the nature of the load being driven. The characteris-
tics of the source and load may be defined in terms of mechanical impedance or
mobility (see Chap. 9). If the shock motion at the source output is measured with no
load and expressed in terms of its Fourier spectrum, the effect of the load upon this
shock motion can be determined as detailed in Chap. 21. The resultant motion with
the load attached is described by its Fourier spectrum.

The frequency response function of a structure may be determined by applying a
force to the structure and noting the response. The applied force may be transient,
sinusoidal, or random. In the case of a transient force, it is usually applied with the
use of a hammer, while the other types of forces are applied using a shaker (see
Chap. 21).

DATA REDUCTION TO THE RESPONSE DOMAIN

A structure or physical system has a characteristic response to a particular shock
applied as an excitation to the structure. The magnitudes of the response peaks can
be used to define certain effects of the shock by considering systematically the prop-
erties of the system and relating the peak responses to such properties.This is in con-
trast to the Fourier spectrum description of a shock in the following respects:

1. Whereas the Fourier spectrum defines the shock in terms of the amplitudes and
phase relations of its frequency components, the response spectrum describes
only the effect of the shock upon a structure in terms of peak responses. This
effect is of considerable significance in the design of equipments and in the spec-
ification of laboratory tests.

2. The time history of a shock cannot be determined from the knowledge of the peak
responses of a system excited by the shock; i.e., the calculation of peak responses is
an irreversible operation. This contrasts with the Fourier spectrum, where the
Fourier spectrum can be determined from the time history, and vice versa.

By limiting consideration to the response of a linear, viscously damped single-
degree-of-freedom structure with lumped parameters (hereafter referred to as a
simple structure and illustrated in Fig. 20.4), there are only two structural parameters
upon which the response depends: (1) the undamped natural frequency and (2) the
fraction of critical damping, or equivalently, the resonant gain Q. With only two
parameters involved, it is feasible to obtain from the shock measurement a system-
atic presentation of the peak responses of many simple structures. This process is
termed data reduction to the response domain. This type of reduced data applies
directly to a system that responds in an SDOF; it is useful to some extent by normal-
mode superposition to evaluate the response of a linear system that responds in
more than one DOF. The conditions of a particular application determine the mag-
nitude of errors resulting from superposition.2–5

Shock Response Spectrum. The response of a system to a shock can be ex-
pressed as the time history of a parameter that describes the motion of the system.
For a simple system, the magnitudes of the response peaks can be summarized as a
function of the natural frequency or natural period of the responding system, at vari-
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FIGURE 20.4 Representation of a simple structure used to accomplish the data reduc-
tion of a shock motion to the response domain.

ous values of the fraction of critical damping. This type of presentation is termed a
shock response spectrum, or simply a response spectrum or a shock spectrum.

Parameters for the Shock Response Spectrum. The peak response of the simple
structure may be defined, as a function of natural frequency, in terms of any one of
several parameters that describe its motion. The parameters often are related to
each other by the characteristics of the structure. However, inasmuch as one of the
advantages of the shock response spectrum method of data reduction and presenta-
tion is convenience of application to physical situations, it is advantageous to give
careful consideration in advance to the particular parameter that is best adapted to
the attainment of particular objectives. Referring to the simple structure shown in
Fig. 20.4, the following significant parameters may be determined directly from
measurements on the structure:

1. Absolute displacement x(t) of mass m. This indicates the displacement of the
responding structure with reference to an inertial reference plane, i.e., coordinate
axes fixed in space.

2. Relative displacement δ(t) of mass m. This indicates the displacement of the re-
sponding structure relative to its support, a quantity useful for evaluating the dis-
tortions and strains within the responding structure.

3. Absolute velocity ẋ(t) of mass m. This quantity is useful for determining the
kinetic energy of the structure.

4. Relative velocity ̇δ(t) of mass m. This quantity is useful for determining the stresses
generated within the responding structure due to viscous damping and the maxi-
mum energy dissipated by the responding structure.

5. Absolute acceleration ẍ(t) of mass m. This quantity is useful for determining the
stresses generated within the responding structure due to the combined elastic
and damping reactions of the structure.

6. The relative displacement response may be multiplied by the angular natural fre-
quency ωn of the simple structure to create a pseudo-velocity response.

The equivalent static acceleration is that steadily applied acceleration, expressed
as a multiple of the acceleration of gravity, which distorts the structure to the maxi-
mum distortion resulting from the action of the shock.6 For the simple structure of
Fig. 20.4, the relative displacement response δ indicates the distortion under the



shock condition. The corresponding distortion under static conditions, in a 1g gravi-
tational field, is

δst = = (20.28)

By analogy, the maximum distortion under the shock condition is

δmax = (20.29)

where Aeq is the equivalent static acceleration in units of gravitational acceleration.
From Eq. (20.29),

Aeq = (20.30)

The maximum relative displacement δmax and the equivalent static acceleration Aeq

are directly proportional.
If the shock is a loading parameter, such as force, pressure, or torque, as a func-

tion of time, the corresponding equivalent static parameter is an equivalent static
force, pressure, or torque, respectively. Since the supporting structure is assumed to
be motionless when a shock loading acts, the relative response motions and absolute
response motions become identical.

The differential equation of motion for the system shown in Fig. 20.4 is

−ẍ(t) + 2ζωnδ̇(t) + ωn
2δ(t) = 0 (20.31)

where ωn is the undamped natural frequency and ζ is the fraction of critical damp-
ing. When ζ = 0, ẍmax = Aeqg; this follows directly from the relation of Eq. (20.29).
When ζ ≠ 0, the acceleration ẍ experienced by the mass m results from forces trans-
mitted by the spring k and the damper c. Thus, in a damped system, the maximum
acceleration of mass m is not exactly equal to the equivalent static acceleration.
However, in most mechanical structures, the damping is relatively small; therefore,
the equivalent static acceleration and the maximum absolute acceleration often are
interchangeable with negligible error.

Calculation of Shock Response Spectrum. The relative displacement response
of a simple structure (Fig. 20.4) resulting from a shock defined by the acceleration
ü(t) of the support is given by the Duhamel integral 7

δ(t) = �t

0
ü(tv)e−ζωn(t − tv) sin ωd(t − tv) dtv (20.32)

where ωn = (k/m)1/2 is the undamped natural frequency, ζ = c/2mωn is the fraction of
critical damping, and ωd = ωn(1 − ζ2)1/2 is the damped natural frequency. The excita-
tion ü(tv) is defined as a function of the variable of integration tv, and the response
δ(t) is a function of time t. The relative displacement δ and relative velocity δ̇ are
considered to be zero when t = 0. The equivalent static acceleration, defined by Eq.
(20.30), as a function of ωn and ζ is

Aeq(ωn,ζ) = δmax(ωn,ζ) (20.33)

If a shock loading such as the input force F(t) rather than an input motion acts on
the simple structure, the response is

δ(t) = �t

0
F(tv)e−ζωn(t − tv) sin ωd(t − tv) dtv (20.34)

1
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ωn
2

�
g

1
�
ωd

δmaxωn
2

�
g

Aeqg�
ωn

2

g
�
ωn

2

mg
�

k

20.12 CHAPTER TWENTY



and an equivalent static force is given by

Feq(ωn,ζ) = kδmax(ωn,ζ) = mωn
2δmax(ωn,ζ) (20.35)

The equivalent static force is related to equivalent static acceleration by

Feq(ωn,ζ) = mAeq(ωn,ζ) (20.36)

It is often of interest to determine the maximum relative displacement of the sim-
ple structure in Fig. 20.4 in both a positive and a negative direction. If ü(t) is positive
as shown, positive values of ẍ(t) represent upward acceleration of the mass m. Ini-
tially, the spring is compressed and the positive direction of δ(t) is taken to be posi-
tive as shown. Conversely, negative values of δ(t) represent extension of spring k
from its original position. It is possible that the ultimate use of the reduced data
would require that both extension and compression of spring k be determined. Cor-
respondingly, a positive and a negative sign may be associated with an equivalent
static acceleration Aeq of the support, so that Aeq

+ is an upward acceleration produc-
ing a positive deflection δ and Aeq

− is a downward acceleration producing a negative
deflection δ.

For some purposes it is desirable to distinguish between the maximum response
which occurs during the time in which the measured shock acts and the maximum
response which occurs during the free vibration existing after the shock has termi-
nated. The shock spectrum based on the former is called a primary shock response
spectrum and that based on the latter is called a residual shock response spectrum.
For instance, the response δ(t) to the half-sine pulse in Fig. 20.1C occurring during
the period (t < τ) is the primary response and the response δ(t) occurring during the
period (t > τ) is the residual response. Reference is made to primary and residual
shock response spectra in the next section, “Examples of Shock Response Spectra”
and in the section entitled “Relationship Between Shock Response Spectrum and
Fourier Spectrum.”

Standard for Calculation of Response Spectra. For calculation of the shock
response spectrum there is an ISO standard.8 In the standard, a shock response spec-
trum is the response to a given acceleration of a set of single-degree-of-freedom
mass-damper-spring oscillators. The given acceleration is applied to the base of all
oscillators, and the maximum responses of each oscillator versus the natural fre-
quency make up the spectrum.

Each SDOF system has a unique set of defining parameters: mass m, damping
constant c, and spring constant k.

A given acceleration a1 is applied to the base. If the response is measured as the
acceleration of the SDOF mass a2, then the transfer function G(s) is given by:

G(s) = �
a
a

2

1

(
(
s
s
)
)

� = �
ms2

cs
+

+
cs

k
+ k

� (20.37)

where s is the Laplace variable (complex frequency s) in radians per second. The
SDOF system is normally characterized by its (undamped) natural frequency fn, in
hertz, and the resonance gain Q (Q-factor):

fn = �
2
1
π
� ���m

k
� (20.38)

Q = �
�

c
�km
� (20.39)
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The transfer function may then be rewritten as

G(s) = = (20.40)

with ωn being the angular natural frequency in radians per second.
Equation (20.40) defines the transfer function used. The maximum is approxi-

mately Q, and the maximum occurs approximately at fn Hz. The approximation is
more accurate the larger the Q-value is. Instead of the resonant gain Q, the damping
ratio, fraction of critical damping ζ, may be used. ζ is often expressed in percent of
critical damping.

ζ = = (20.41)

To calculate the response, a digital filter method is used. In the standard, the filter
coefficients are given for many different variations of shock spectra, such as relative
displacement and pseudo-velocity. Here only the basic algorithm for acceleration
response is given.

The standard deals with the processing of the signal when it exists as a digital
record, sampled with a sampling frequency of fs Hz, corresponding to a time interval
between samples of T seconds, T = 1/fs .

The digital filters corresponding to different SDOF system responses are second-
order filters, with the general z-transform expression8

H(z) = (20.42)

The filter expression corresponds to a difference equation describing how to cal-
culate the response time series yn when the input acceleration time series xn is given:

yn = β0 · xn + β1 · xn−1 + β2 · xn−2 − α1 · yn−1 − α2 · yn−2 (20.43)

Filter coefficients for the absolute acceleration response:

β0 = 1 − exp (−A) · sin (B)/B

β1 = 2exp (−A) · {sin (B)/B − cos (B)}

β2 = exp (−2A) −exp (−A) · sin (B)/B (20.44)

α1 = −2exp (−A) · cos (B)

α2 = exp (−2A)

where A =

B = ωn · T · �1 −��
Sampling Frequency Consideration. The ramp invariant algorithm contains a

bias error, which is dependent on the sampling frequency. There is also an error to
consider when the maximum value is to be found in the sampled output. Consider-

1
�
4Q2

ωn · T
�

2Q
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���
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ing these two error sources, there is a recommendation in the standard.The sampling
frequency should be at least 10 times the highest significant frequency content of the
input waveform. Formulas for the errors are given in the standard.

Examples of Shock Response Spectra. In this section the shock response spec-
tra are presented for the five acceleration time histories in Fig. 20.1 These spectra,
shown in Fig. 20.5, are expressed in terms of equivalent static acceleration for the
undamped responding structure, for ζ = 0.1, 0.5, and other selected fractions of criti-
cal damping. Both the maximum positive and the maximum negative responses are
indicated. In addition, a number of relative displacement response time histories 
δ(t) are plotted to show the nature of the responses. A large number of shock
response spectra, based on various response parameters, are given in Chap. 8.

ACCELERATION IMPULSE: The application of Eq. (20.32) to the acceleration
impulse shown in Fig. 20.1A and defined by Eq. (20.1) yields

δ(t) = e−ζωnt sin ωdt [ζ <1] (20.45)

This response is plotted in Fig. 20.5A for ζ = 0, 0.1, and 0.5. The response peaks are
reached at the times t = (cos−1 ζ)/ωd, cos−1 ζ increasing by π for each succeeding peak.
The values of the response at the peaks are

δ(i)
max(ωn,ζ) = exp �− [cos−1 ζ + (i − 1)π]	 [0 < cos−1 ζ ≤ π/2]

(20.46)

where i is the number of the peak (i = 1 for the first positive peak, i = 2 for the first
negative peak, etc.).

The largest positive response occurs at the first peak, i.e., when i = 1, and is shown
by the solid dots in Fig. 20.5. Hence, the equivalent static acceleration in the positive
direction is obtained by substitution of Eq. (20.45) into Eq. (20.33) with i = 1:

Aeq
+ (ωn,ζ) = exp �− cos−1 ζ	 (20.47)

The equivalent static acceleration in the negative direction is calculated from the
maximum relative deflection at the second peak, i.e., when i = 2, and is shown by the
hollow dots in Fig. 20.5A:

Aeq
− (ωn,ζ) = exp �− (cos−1 ζ + π)	 (20.48)

The resulting shock spectrum is shown in Fig. 20.5 with curves for ζ = 0, 0.1, 0.5, and
1.0. At any value of damping, a shock response spectrum is a straight line passing
through the origin. The peak distortion of the structure δmax is inversely propor-
tional to frequency. Thus, the relative displacement of the mass increases as the
natural frequency decreases, whereas the equivalent static acceleration has an op-
posite trend.

ACCELERATION STEP: The response of a simple structure to the acceleration step
in Fig. 20.1B is found by substituting from Eq. (20.5) in Eq. (20.32) and integrating:

δ(t) = �1 − cos (ωdt − sin−1 ζ) [ζ < 1] (20.49)
e−ζωnt

�
�1� −� ζ�2�

ü0�
ωn

2

ζ
�
�1� −� ζ�2�

ωnu̇0�
g

ζ
�
�1� −� ζ�2�

ωnu̇0�
g

ζ
�
�1� −� ζ�2�

u̇0�
ωn

u̇0�
ωd

SHOCK DATA ANALYSIS 20.15



2
0
.1

6



2
0
.1

7

FIGURE 20.5 Time-histories of response to shock motions defined in Fig. 20.1 and corresponding shock
response spectra.



The responses δ(t) are shown in Fig. 20.5B for ζ = 0, 0.1, and 0.5. The response over-
shoots the value ü0/ωn

2 and then oscillates about this value as a mean with diminish-
ing amplitude as energy is dissipated by damping.An overshoot to 2ü0/ωn

2 occurs for
zero damping. A response δ = ü0/ωn

2 would result from a steady application of the
acceleration ü0.

The response maxima and minima occur at the times t = iπ/ωd, i = 0 providing the
first minimum and i = 1 the first maximum. The maximum values of the relative dis-
placement response are

δmax(ωn,ζ) = �1 + exp �− 	 [i odd] (20.50)

The largest positive response occurs at the first maximum, i.e., where i = 1, and is
shown by the solid symbols in Fig. 20.5B. The equivalent static acceleration in the pos-
itive direction is obtained by substitution of Eq. (20.50) into Eq. (20.33) with i = 1:

Aeq
+ (ωn,ζ) = �1 + exp �− 	 (20.51a)

The greatest negative response is zero; it occurs at t = 0, independent of the value of
damping, as shown by open symbols in Fig. 23.7B. Thus, the equivalent static accel-
eration in the negative direction is

Aeq
− (ωn,ζ) = 0 (20.51b)

Since the equivalent static acceleration is independent of natural frequency, the
shock response spectrum curves shown in Fig. 20.5B are horizontal lines. The sym-
bols shown on the shock response spectra correspond to the responses shown.

The equivalent static acceleration for an undamped simple structure is twice the
value of the acceleration step ü0 /g. As the damping increases, the overshoot in
response decreases; there is no overshoot when the structure is critically damped.

HALF-SINE ACCELERATION: The expressions for the response of the damped sim-
ple structure to the half-sine acceleration of Eq. (20.9) are too involved to have gen-
eral usefulness. For an undamped system, the response δ(t) is

δ(t) = � 	 [sin ωnt − (ωnτ/π) sin (πt/τ)] [0 < t ≤ τ]

δ(t) = � 	 2 cos � 	 sin �ωn�t − 	 [t > τ]

(20.52)

For zero damping the residual response is sinusoidal with constant amplitude.
The first maximum in the response of a simple structure with natural frequency less
than π/τ occurs during the residual response; i.e., after t = τ. As a result, the magni-
tude of each succeeding response peak is the same as that of the first maximum.Thus
the positive and negative shock response spectrum curves are equal for ωn ≤ π/τ.The
dot-dash curve in Fig. 20.5C is an example of the response at a natural frequency of
2π/3τ. The peak positive response is indicated by a solid circle, the peak negative
response by an open circle. The positive and negative shock response spectrum val-
ues derived from this response are shown on the undamped (ζ = 0) shock response
spectrum curves at the right-hand side of Fig. 20.5C, using the same symbols.

At natural frequencies below π/2τ, the shock response spectra for an undamped
system are very nearly linear with a slope ±2ü0τ/πg. In this low-frequency region the
response is essentially impulsive; i.e., the maximum response is approximately the
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same as that due to an ideal acceleration impulse (Fig. 20.5A) having a velocity
change u̇0 equal to the area under the half-sine acceleration time history.

The response at the natural frequency 3π/τ is the dotted curve in Fig. 20.5C. The
displacement and velocity response are both zero at the end of the pulse, and hence
no residual response occurs. The solid and open triangles indicate the peak positive
and negative response, the latter being zero.The corresponding points appear on the
undamped shock response spectrum curves. As shown by the negative undamped
shock response spectrum curve, the residual spectrum goes to zero for all odd multi-
ples of π/τ above 3π/τ.

As the natural frequency increases above 3π/τ, the response attains the character
of relatively low amplitude oscillations occurring with the half-sine pulse shape as a
mean. An example of this type of response is shown by the solid curve for ωn = 8π/τ.
The largest positive response is slightly higher than ü0/ωn

2, and the residual response
occurs at a relatively low level. The solid and open square symbols indicate the
largest positive and negative responses.

As the natural frequency becomes extremely high, the response follows the half-
sine shape very closely. In the limit, the natural frequency becomes infinite and the
response approaches the half-sine wave shown in Fig. 20.5C. For natural frequencies
greater than 5π/τ, the response tends to follow the input and the largest response is
within 20 percent of the response due to a static application of the peak input accel-
eration. This portion of the shock response spectrum is sometimes referred to as the
“static region” (see “Limiting Values of Shock Response Spectrum,” below).

The equivalent static acceleration without damping for the positive direction is

Aeq
+ (ωn,0) = � 	 cos � 	 �ωn ≤ 

Aeq
+ (ωn,0) = � 	 sin � 	 �ωn > 

(20.53)

where i is the positive integer which maximizes the value of the sine term while the
argument remains less than π. In the negative direction the peak response always
occurs during the residual response; thus, it is given by the absolute value of the first
of the expressions in Eq. (20.53):

Aeq
− (ωn,0) = � 	 cos � 	 (20.54)

Shock response spectra for damped systems are commonly found by use of a dig-
ital computer. Spectra for ζ = 0.1 and 0.5 are shown in Fig. 20.5C.

The response of a damped structure whose natural frequency is less than π/2τ is
essentially impulsive; i.e., the shock response spectra in this frequency region are
substantially identical to the spectra for the acceleration impulse in Fig. 20.5A.
Except near the zeros in the negative spectrum for an undamped system, damping
reduces the peak response. For the positive spectra, the effect is small in the static
region since the response tends to follow the input for all values of damping. The
greatest effect of damping is seen in the negative spectra because it affects the decay
of response oscillations at the natural frequency of the structure.

DECAYING SINUSOIDAL ACCELERATION: Although analytical expressions for the
response of a simple structure to the decaying sinusoidal acceleration shown in Fig.
20.1D are available, calculation of spectra is impractical without use of a computer.
Figure 20.5D shows spectra for several values of damping in the decaying sinu-
soidal acceleration. In the low-frequency region (ωn < 0.2ω1), the response is essen-
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tially impulsive. The area under the acceleration time history of the decaying sinu-
soid is u̇0; hence, the response of a very low frequency structure is similar to the
response to an acceleration impulse of magnitude u̇0.

When the natural frequency of the responding system approximates the fre-
quency ω1 of the oscillations in the decaying sinusoid, a resonant type of buildup
tends to occur in the response oscillations.The region in the neighborhood of ω1 = ωn

may be termed a quasi-resonant region of the shock response spectrum. Responses
for ζ = 0, 0.1, and 0.5 and ωn = ω1 are shown in Fig. 20.5D. In the absence of damping
in the responding system, the rate of buildup diminishes with time and the amplitude
of the response oscillations levels off as the input acceleration decays to very small
values. Small damping in the responding system, e.g., ζ = 0.1, reduces the initial rate
of buildup and causes the response to decay to zero after a maximum is reached.
When damping is as large as ζ = 0.5, no buildup occurs.

COMPLEX SHOCK: The shock spectra for the complex shock of Fig. 20.2E are
shown in Fig. 20.5E. Time histories of the response of a system with a natural fre-
quency of 1250 Hz also are shown. The ordinate of the spectrum plot is equivalent
static acceleration, and the abscissa is the natural frequency in hertz. Three pro-
nounced peaks appear in the spectra for zero damping, at approximately 1250 Hz,
1900 Hz, and 2350 Hz. Such peaks indicate a concentration of frequency content in
the shock, similar to the spectra for the decaying sinusoid in Fig. 20.5D. Other peaks
in the shock spectra for an undamped system indicate less significant oscillatory
behavior in the shock. The two lower frequencies at which the pronounced peaks
occur correlate with the peaks in the Fourier spectrum of the same shock, as shown
in Fig. 20.2E. The highest frequency at which a pronounced peak occurs is above the
range for which the Fourier spectrum was calculated.

Because of response limitations of the analysis, the shock spectra do not extend
below 200 Hz. Since the duration of the complex shock of Fig. 20.1E is about 0.016
sec, an impulsive-type response occurs only for natural frequencies well below 200
Hz. As a result, no impulsive region appears in the shock response spectra. There is
no static region of the spectra shown because calculations were not extended to a
sufficiently high frequency.

In general, the equivalent static acceleration Aeq is reduced by additional damp-
ing in the responding structure system except in the region of valleys in the shock
spectra, where damping may increase the magnitude of the spectrum. Positive and
negative spectra tend to be approximately equal in magnitude at any value of damp-
ing; thus, the spectra for a complex oscillatory type of shock may be based on peak
response independent of sign to a good approximation.

Limiting Values of Shock Response Spectrum. The response data provided by
the shock response spectrum sometimes can be abstracted to simplified parameters
that are useful for certain purposes. In general, this cannot be done without definite
information on the ultimate use of the reduced data, particularly the natural fre-
quencies of the structures upon which the shock acts. Two important cases are dis-
cussed in the following sections.

IMPULSE OR VELOCITY CHANGE: The duration of a shock sometimes is much
smaller than the natural period of a structure upon which it acts. Then the entire
response of the structure is essentially a function of the area under the time history
of the shock, described in terms of acceleration or a loading parameter such as force,
pressure, or torque. Consequently, the shock has an effect which is equivalent to that
produced by an impulse of infinitesimally short duration, i.e., an ideal impulse.

The shock response spectrum of an ideal impulse is shown in Fig. 20.5A. All equiv-
alent static acceleration curves are straight lines passing through the origin. The por-
tion of the spectrum exhibiting such straight-line characteristics is termed the

20.20 CHAPTER TWENTY



impulsive region. The shock response
spectrum of the half-sine acceleration
pulse has an impulsive region when ωn is
less than approximately π/2τ, as shown in
Fig. 20.5C. If the area under a time his-
tory of acceleration or shock loading is
not zero or infinite, an impulsive region
exists in the shock response spectrum.
The extent of the region on the natural
frequency axis depends on the shape and
duration of the shock.

The portions adjacent to the origin of
the positive shock response spectra of
an undamped system for several sin-
gle pulses of acceleration are shown in
Fig. 20.6. To illustrate the impulsive na-
ture, each spectrum is normalized with
respect to the peak impulsive response
ωn Δu̇/g, where Δu̇ is the area under the
corresponding acceleration time history.
Hence, the spectra indicate an impulsive
response where the ordinate is approxi-
mately 1. The response to a single pulse
of acceleration is impulsive within a tol-
erance of 10 percent if ωn < π/4τ; i.e., fn <

1/8τ, where fn is the natural frequency of the responding structure in hertz and τ is
the pulse duration in seconds. This result also applies when the responding system is
damped.Thus, it is possible to reduce the description of a shock pulse to a designated
velocity change when the natural frequency of the responding structure is less than
a specified value. The magnitude of the velocity change is the area under the accel-
eration pulse:

Δu̇ = �τ

0
ü(t) dt (20.55)

PEAK ACCELERATION OR LOADING: The natural frequency of a structure 
responding to a shock sometimes is sufficiently high that the response oscillations of
the structure at its natural frequency have a relatively small amplitude. Examples of
such responses are shown in Fig. 20.5C for ωn = 8π/τ and ζ = 0, 0.1, 0.5.As a result, the
maximum response of the structure is approximately equal to the maximum accel-
eration of the shock and is termed equivalent static response. The magnitude of the
spectra in such a static region is determined principally by the peak value of the
shock acceleration or loading. Portions of the positive spectra of an undamped sys-
tem in the region of high natural frequencies are shown in Fig. 20.7 for a number of
acceleration pulses. Each spectrum is normalized with respect to the maximum
acceleration of the pulse. If the ordinate is approximately 1, the shock response spec-
trum curves behave approximately in a static manner.

The limit of the static region in terms of the natural frequency of the structure is
more a function of the slope of the acceleration time history than of the duration of
the pulse. Hence, the horizontal axis of the shock response spectra in Fig. 20.7 is
given in terms of the ratio of the rise time τr to the maximum value of the pulse. As
shown in Fig. 20.7, the peak response to a single pulse of acceleration is approxi-
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mately equal to the maximum accelera-
tion of the pulse, within a tolerance of 20
percent, if ωn > 2.5π/τr; i.e., fn > 1.25/τr,
where fn is the natural frequency of the
responding structure in hertz and τr is
the rise time to the peak value in sec-
onds.The tolerance of 20 percent applies
to an undamped system; for a damped
system, the tolerance is lower, as indi-
cated in Fig. 20.5C.

The concept of the static region also
can be applied to complex shocks. Sup-
pose the shock is oscillatory, as shown in
Fig. 20.1E. If the response to such a shock
is to be nearly static, the response to each
of the succession of pulses that make up
the shock must be nearly static. This is
most significant for pulses of large mag-
nitude because they determine the ordi-
nate of the spectrum in the static region.
Therefore, the shock response spectrum

for a complex shock in the static region is based upon the pulses of greatest magnitude
and shortest rise time.

Relationship Between Shock Response Spectrum and Fourier Spectrum.
Although the shock response spectrum and the Fourier spectrum are fundamentally
different, there is a partial correlation between them. A direct relationship exists
between a running Fourier spectrum, to be defined subsequently, and the response
of an undamped simple structure. A consequence is a simple relationship between
the Fourier spectrum of absolute values and the peak residual response of an
undamped simple structure.

For the case of zero damping, Eq. (20.32) provides the relative displacement
response

δ(ωn,t) = �t

0
ü(tv) sin ωn(t − tv) dtv (20.56)

A form better suited to our needs here is

δ(ωn,t) = I �ejωnt �t

0
ü(tv) e−jωntv dtv (20.57)

The integral above is seen to be the Fourier spectrum of the portion of ü(t) which lies
in the time interval from zero to t, evaluated at the natural frequency ωn. Such a
time-dependent spectrum can be termed a “running Fourier spectrum” and denoted
by F(ω,t):

F(ω,t) = �t

0
ü(tv)e−jωtv dtv (20.58)

It is assumed that the excitation vanishes for t < 0. The integral in Eq. (20.57) can be
replaced by F(ωn,t); and after taking the imaginary part

δ(ωn,t) = F(ωn,t) sin [ωnt + θ(ωn,t)] (20.59)
1

�
ωn

1
�
ωn

1
�
ωn
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where F(ωn,t) and θ(ωn,t) are the magnitude and phase of the running Fourier spec-
trum. Equation (20.59) provides the previously mentioned direct relationship
between undamped structural response and the running Fourier spectrum.

When the running time t exceeds τ, the duration of ü(t), the running Fourier spec-
trum becomes the usual spectrum, with τ used in place of the infinite upper limit of
the integral. Consequently, Eq. (20.59) yields the sinusoidal residual relative dis-
placement for t > τ:

δr(ωn,t) = F(ωn) sin [ωnt + θ(ωn)] (20.60)

The amplitude of this residual deflection and the corresponding equivalent static
acceleration are

(δr)max = F(ωn)

(Aeq)r = = F(ωn)

(20.61)

This result is clearly evident for the Fourier spectrum and undamped shock response
spectrum of the acceleration impulse. The Fourier spectrum is the horizontal line
(independent of frequency) shown in Fig. 20.2A and the shock response spectrum is
the inclined straight line (increasing linearly with frequency) shown in Fig. 20.5A.
Since the impulse exists only at t = 0, the entire response is residual. The undamped
shock spectra in the impulsive region of the half-sine pulse and the decaying sinu-
soidal acceleration, Fig. 20.5C and D, respectively, also are related to the Fourier spec-
tra of these shocks, Fig. 20.5C and D, in a similar manner. This results from the fact
that the maximum response occurs in the residual motion for systems with small nat-
ural frequencies. Another example is the entire negative shock response spectrum
with no damping for the half-sine pulse in Fig. 20.5C, whose values are ωn/g times the
values of the Fourier spectrum in Fig. 20.2C.
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CHAPTER 21
EXPERIMENTAL MODAL

ANALYSIS

Randall J. Allemang
David L. Brown

INTRODUCTION

Experimental modal analysis is the process of determining the modal parameters
(natural frequencies, damping factors, modal vectors, and modal scaling) of a linear,
time-invariant system. The modal parameters are often determined by analytical
means, such as finite element analysis. One common reason for experimental modal
analysis is the verification/correction of the results of the analytical approach. Often,
an analytical model does not exist and the modal parameters determined experi-
mentally serve as the model for future evaluations such as structural modifications.
Predominately, experimental modal analysis is used to explain a dynamics problem
(vibration or acoustic) whose solution is not obvious from intuition, analytical mod-
els, or previous experience.

The process of determining modal parameters from experimental data involves
several phases. The success of the experimental modal analysis process depends
upon having very specific goals for the test situation. Every phase of the process is
affected by the goals which are established, particularly with respect to the errors
associated with that phase. One possible delineation of these phases is as follows:

Modal analysis theory refers to that portion of classical vibrations that
explains, theoretically, the existence of natural frequencies, damping factors,
mode shapes, and modal scaling for linear systems. This theory includes both
lumped-parameter, or discrete, models as well as continuous models that rep-
resent the distribution of mass, damping, and stiffness. Since most current
modal parameter estimation methods are based upon frequency response
functions (FRFs) or impulse response functions (IRFs), modal analysis theory
also includes the theoretical definition of these functions with respect to mass,
damping, and stiffness as well. Modal analysis theory also includes the con-
cepts of real normal modes as well as complex modes of vibration as possible
solutions for the modal parameters.1–3

Experimental modal analysis methods involve the theoretical relationship
between measured quantities and the classic vibration theory often repre-
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sented as matrix differential equations.All commonly used methods trace from
the matrix differential equations but yield a final mathematical form in terms
of measured raw input and output data in the time or frequency domains or
some form of processed data such as FRFs or IRFs. Since most current modal
parameter estimation methods are based upon FRFs or IRFs, experimental
methods that are based upon these functions are of primary concern.

Modal data acquisition involves the practical aspects of acquiring the data
that is required to serve as input to the modal parameter estimation phase.
This data can be the raw time-domain input and output data or the processed
data in terms of FRFs and IRFs. Much care must be taken to ensure that the
data match the requirements of the theory as well as the requirements of the
numerical algorithm involved in the modal parameter estimation. The theo-
retical requirements involve concerns such as system linearity as well as time
invariance of system parameters. The numerical algorithms are particularly
concerned with the bias errors in the data as well as with any overall dynamic
range considerations.4–7

Modal parameter estimation is concerned with the practical problem of
estimating the modal parameters, based upon a choice of mathematical model
as justified by the experimental modal analysis method, from the measured
data.8–12

Modal data presentation/validation is that process of providing a physical
view or interpretation of the modal parameters. For example, this may simply
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be the numerical tabulation of the frequency, damping, and modal vectors,
along with the associated geometry of the measured degrees of freedom
(DOF). More often, modal data presentation involves the plotting and anima-
tion of such information.

Figure 21.1 is a representation of all phases of the process. In this example, a con-
tinuous beam is being evaluated for the first few modes of vibration. Modal analysis
theory explains that this is a linear system and that the modal vectors of this system
should be real normal modes.The experimental modal analysis method that has been
used is based upon the FRF relationships to the matrix differential equations of
motion. At each measured DOF, the imaginary part of the FRF for that measured
response DOF and a common input DOF is superimposed perpendicular to the beam.
Naturally, the modal data acquisition in this example involves the estimation of FRFs
for each DOF shown.The FRFs are complex-valued functions, and only the imaginary
portion of each function is shown. One method of modal parameter estimation sug-
gests that for systems with light damping and widely spaced modes, the imaginary part
of the FRF, at the damped natural frequency, may be used as an estimate of the modal
coefficient for that response DOF.The damped natural frequency can be identified as
the frequency of the positive and negative peaks in the imaginary part of the FRFs.
The damping can be estimated from the sharpness of the peaks. In this abbreviated
way, the modal parameters have been estimated. Modal data presentation for this case
is shown as the lines connecting the peaks. While animation is possible, a reasonable
interpretation of the modal vector can be gained in this case from plotting alone.

MEASUREMENT DEGREES OF FREEDOM

The development of any theoretical concept in the area of vibrations, including modal
analysis, depends upon an understanding of the concept of the number of degrees of
freedom (n) of a system. This concept is extremely important to the area of modal
analysis, since the number of modes of vibration of a mechanical system is equal to
the number of DOF. From a practical point of view, the relationship between this
theoretical definition of the number of DOF and the number of measurement DOF
(No, Ni) is often confusing. For this reason, the concept of degree of freedom is re-
viewed as a preliminary to the following experimental modal analysis material.

To begin with, the basic definition that is normally associated with the concept of
the number of DOF involves the following statement: The number of degrees of free-
dom for a mechanical system is equal to the number of independent coordinates (or
minimum number of coordinates) that is required to locate and orient each mass in the
mechanical system at any instant in time. As this definition is applied to a point mass,
three DOF are required, since the location of the point mass involves knowing the x,
y, and z translations of the center of gravity of the point mass. As this definition is
applied to a rigid-body mass, six DOF are required, since θx, θy, and θz rotations are
required in addition to the x, y, and z translations in order to define both the orien-
tation and the location of the rigid-body mass at any instant in time. As this defini-
tion is extended to any general deformable body, the number of DOF is essentially
infinite. While this is theoretically true, it is quite common, particularly with respect
to finite element methods, to view the general deformable body in terms of a large
number of physical points of interest, with six DOF for each of the physical points.
In this way, the infinite number of DOF can be reduced to a large but finite number.

When measurement limitations are imposed upon this theoretical concept of the
number of DOF of a mechanical system, the difference between the theoretical
number of DOF (n) and the number of measurement DOF (No, Ni) begins to evolve.
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Initially, for a general deformable body, the number of DOF (n) can be considered
to be infinite or equal to some large finite number if a limited set of physical points
of interest is considered, as discussed in the previous paragraph. The first measure-
ment limitation that needs to be considered is that there is normally a limited fre-
quency range that is of interest to the analysis. As this limitation is considered, the
number of DOF of this system that are of interest is now reduced from infinity to a
reasonable finite number.The next measurement limitation that needs to be consid-
ered involves the physical limitation of the measurement system in terms of ampli-
tude. A common limitation of transducers, signal conditioning, and data acquisition
systems results in a dynamic range of 80 to 100 dB (104 to 105) in the measurement.
This means that the number of DOF is reduced further due to the dynamic range
limitations of the measurement instrumentation. Finally, since few rotational trans-
ducers exist at this time, the normal measurements that are made involve only trans-
lational quantities (displacement, velocity, acceleration, force) and thus do not
include rotational effects, or rotational degrees of freedom (RDOF). In summary,
even for the general deformable body, the theoretical number of DOF that are of
interest is limited to a very reasonable finite value (n = 1 − 50). Therefore, this num-
ber of DOF (n) is the number of modes of vibration that are of interest.

Finally, then, the number of measurement degrees of freedom (No, Ni) can be de-
fined as the number of physical locations at which measurements are made multiplied
by the number of measurements made at each physical location. Since the physical
locations are chosen somewhat arbitrarily, and certainly without exact knowledge of
the modes of vibration that are of interest, there is no specific relationship between the
number of DOF (n) and the number of measurement DOF (No, Ni). In general, in
order to define n modes of vibration of a mechanical system, No or Ni must be equal to
or larger than n. Note also that even though No or Ni is larger than n, this is not a guar-
antee that n modes of vibration can be found from the measurement DOF. The mea-
surement DOF must include physical locations that allow a unique determination of
the n modes of vibration. For example, if none of the measurement DOF are located
on a portion of the mechanical system that is active in one of the n modes of vibration,
portions of the modal parameters for this mode of vibration cannot be found.

In the development of material in the following text, the assumption is made that
a set of measurement DOF exists and allows for n modes of vibration to be deter-
mined. In reality, either No or Ni is always chosen to be much larger than n, since a
prior knowledge of the modes of vibration is not available. If the set of No or Ni mea-
surement degrees of freedom is large enough and if the measurement DOF are dis-
tributed uniformly over the general deformable body, the n modes of vibration are
normally found.

Throughout this experimental modal analysis reference, the frequency response
function Hpq notation is used to describe the measurement of the response at mea-
surement DOF p resulting from an input applied at measurement DOF q. The sin-
gle subscript p or q refers to a single sensor aligned in a specific direction (�X, Y, or
Z) at a physical location on or within the structure.

BASIC ASSUMPTIONS

There are four basic assumptions concerning any structure that are made in order to
perform an experimental modal analysis.

The first basic assumption is that the structure is linear; that is, the response of the
structure to any combination of forces, simultaneously applied, is the sum of the indi-
vidual responses to each of the forces acting alone. For a wide variety of structures,
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this is a very good assumption. When a structure is linear, its behavior can be char-
acterized by a controlled excitation experiment in which the forces applied to the
structure have a form convenient for measurement and parameter estimation rather
than being similar to the forces that are actually applied to the structure in its nor-
mal environment. For many important kinds of structures, however, the assumption
of linearity is not valid.Where experimental modal analysis is applied in these cases,
it is hoped that the linear model that is identified provides a reasonable approxima-
tion of the structure’s behavior.

The second basic assumption is that the structure is time invariant; that is, the
parameters that are to be determined are constants. In general, a system which is
not time invariant has components whose mass, stiffness, or damping depends on
factors that are not measured or are not included in the model. For example, some
components may be temperature dependent. In this case, since temperature effects
are not measured, the temperature of the component is an unknown time-varying
signal. Hence, the component has time-varying characteristics. Therefore, the modal
parameters determined by any measurement and estimation process for this case
depend on the time (and the associated temperature dependence) when the mea-
surements are made. If the structure that is tested changes with time, then mea-
surements made at the end of the test period determine a different set of modal
parameters than measurements made at the beginning of the test period. Thus, the
measurements made at the two different times are inconsistent, violating the assump-
tion of time invariance.

The third basic assumption is that the structure obeys Maxwell’s reciprocity; that is,
a force applied at degree of freedom p causes a response at DOF q that is the same
as the response at DOF p caused by the same force applied at DOF q. With respect
to frequency response function measurements, the FRF between points p and q
determined by exciting at p and measuring the response at q is the same FRF found
by exciting at q and measuring the response at p (Hpq = Hqp).

The fourth basic assumption is that the structure is observable; that is, the input/
output measurements that are made contain enough information to generate an ade-
quate behavioral model of the structure. Structures and machines which have loose
components, or, more generally, which have DOF of motion that are not measured,
are not completely observable. For example, consider the motion of a partially filled
tank of liquid when complicated sloshing of the fluid occurs. Sometimes enough data
can be collected so that the system is observable under the form chosen for the
model, while at other times an impractical amount of data is required. This assump-
tion is particularly relevant to the fact that the data normally describes an incom-
plete model of the structure.This occurs in at least two different ways. First, the data
is normally limited to a minimum and maximum frequency as well as a limited fre-
quency resolution. Second, no information is available relative to local rotations due
to a lack of transducers available in this area.

MODAL ANALYSIS THEORY

While modal analysis theory has not changed over the last century, the application of
the theory to experimentally measured data has changed significantly. The advances
of recent years, with respect to measurement and analysis capabilities, have caused a
reevaluation of the aspects of the theory that relate to the practical world of testing.
With this in mind, the aspect of transform relationships has taken on renewed impor-
tance, since digital forms of the integral transforms are in constant use. The theory
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from the vibrations point of view involves a more thorough understanding of how the
structural parameters of mass, damping, and stiffness relate to the impulse response
function (time domain), the frequency response function (Fourier or frequency do-
main), and the transfer function (Laplace domain) for single- and multiple-degree-of-
freedom systems.

SINGLE-DEGREE-OF-FREEDOM SYSTEMS

In order to understand modal analysis, the complete comprehension of single-degree-
of-freedom systems is necessary. In particular, the complete familiarity with SDOF
systems as presented and evaluated in the time, frequency (Fourier), and Laplace
domains serves as the basis for many of the models that are used in modal parame-
ter estimation. This SDOF approach is trivial from a modal analysis perspective,
since no modal vectors exist. The true importance of this approach results from the
fact that the MDOF case can be viewed as simply a linear superposition of SDOF
systems.

The general mathematical representation of an SDOF system is expressed in Eq.
(21.1):

m ẍ(t) + c ẋ(t) + k x(t) = f(t) (21.1)

where m = mass constant
c = damping constant
k = stiffness constant

This differential equation yields a characteristic equation of the following form:

m s2 + c s + k = 0 (21.2)

where s = complex-valued frequency variable (Laplace variable)

This characteristic equation of an SDOF system has two roots, λ1 and λ2, which are:

λ1 = σ1 + j ω1 λ2 = σ2 + j ω2 (21.3)

where σ1 = damping factor for mode 1
ω1 = damped natural frequency for mode 1

Thus, the complementary solution of Eq. (21.1) is:

x(t) = Aeλ1t + Beλ2t (21.4)

A and B are complex-valued constants determined from the initial conditions im-
posed on the system at time t = 0.

For most real structures, unless active damping systems are present, the damping
factor is negative and the damping ratio is rarely greater than 10 percent. For this
reason, all further discussion is restricted to underdamped systems (ζ < 1). With ref-
erence to Eq. (21.2), this means that the two roots λ1,2 are always complex conju-
gates.Also, the two coefficients A and B are complex conjugates of one another. For
an underdamped system, the roots of the characteristic equation can be written as:

λ1 = σ1 + j ω1 λ*
1 = σ1 − j ω1 (21.5)

where σ1 = damping factor
ω1 = damped natural frequency
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The roots of characteristic Eq. (21.2) can also be written as:

λ1 = −ζ1 Ω1 � j Ω1 �1 − ζ2
1� (21.6)

The damping factor is defined as the real part of a root of the characteristic equation.
The damping factor describes the exponential decay or growth of the harmonic.This
parameter has the same units as the imaginary part of the root of the characteristic
equation, typically radians per second.

Time Domain: Impulse Response Function. The impulse response function of
the single-degree-of-freedom system is defined as the time response [x(t)] of the sys-
tem, assuming that the initial conditions are zero and that the system excitation f(t)
is a unit impulse. The response of the system x(t) to such a unit impulse is known as
the IRF h(t) of the system. Therefore:

h(t) = A eλ1t + A* eλ*

1
t = eσ1t[A e(+jω1t) + A* e(−jω1t)] (21.7)

Thus, the residue A controls the amplitude of the impulse response, the real part of
the pole is the decay rate, and the imaginary part of the pole is the frequency of oscil-
lation. Figure 21.2 illustrates the IRF for an SDOF system.

Frequency Domain: Frequency Response Function. An equivalent equation
of motion for Eq. (21.1) is determined for the Fourier or frequency (ω) domain.This
representation has the advantage of converting a differential equation to an alge-
braic equation. This is accomplished by taking the Fourier transform of Eq. (21.1).
Thus, Eq. (21.1) becomes:

[−m ω2 + j c ω + k]X(ω) = F(ω) (21.8)

Restating Eq. (21.8):

X(ω) = H(ω) F(ω) (21.9)

where H(ω) =
1

��
−m ω2 + j c ω + k
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FIGURE 21.2 Single-degree-of-freedom impulse response function.



Equation (21.9) states that the system response X(ω) is directly related to the sys-
tem forcing function F(ω) through the quantity H(ω). If the system forcing function
F(ω) and its response X(ω) are known, H(ω) can be calculated. That is:

H(ω) = (21.10)

The quantity H(ω) is known as the frequency response function of the system. The
FRF relates the Fourier transform of the system input to the Fourier transform of
the system response.

The denominator of the FRF in Eq. (21.9) contains the characteristic equation of
the system and is of the same form as Eq. (21.2). Note that the characteristic values
of this complex equation are in general complex even though the equation is a func-
tion of a real-valued independent variable (ω). The characteristic values of this
equation are known as the complex roots of the characteristic equation or the com-
plex poles of the system. In terms of modal parameters, these characteristic values
are also called the modal frequencies.

The FRF H(ω) can now be rewritten as a function of the complex poles as follows:

H(ω) = (21.11)

where λ1 = complex pole
λ1 = σ + j ω1

λ*
1 = σ − j ω1

Since the FRF is a complex-valued function of a real-valued independent variable
(ω), the FRF, as shown in Fig. 21.3, is represented by a pair of curves.

Laplace Domain: Transfer Function. Just as in the previous case for the fre-
quency domain, the equivalent information can be presented in the Laplace domain
by way of the Laplace transform.The only significant difference in the development
concerns the fact that the Fourier transform is defined from negative infinity to pos-
itive infinity, while the Laplace transform is defined from zero to positive infinity
with initial conditions. The Laplace representation also has the advantage of con-
verting a differential equation to an algebraic equation.

The transfer function is defined in the same way that the frequency response
function is defined (assuming zero initial conditions).

X(s) = H(s) F(s) (21.12)

where H(s) =

The quantity H(s) is defined as the transfer function of the system.The transfer func-
tion relates the Laplace transform of the system input to the Laplace transform of
the system response. From Eq. (21.12), the transfer function is defined as:

H(s) = (21.13)

The denominator of the transfer function is once again referred to as the character-
istic equation of the system.As noted in the previous two cases, the roots of the char-
acteristic equation are given in Eq. (21.5).

X(s)
�
F(s)

1
��
m s2 + c s + k

1/m
���
(j ω − λ1)(j ω − λ*

1)

X(ω)
�
F(ω)
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The transfer function H(s) is now rewritten, just as in the FRF case, as:

H(s) = (21.14)

Since the transfer function is a complex-valued function of a complex independent
variable (s), the transfer function is represented, as shown in Fig. 21.4, as a pair of
surfaces.

The definitions of undamped natural frequency, damped natural frequency,
damping factor, percent of critical damping, and residue are all relative to the infor-
mation represented by Fig. 21.4.The projection of this information onto the plane of
zero amplitude yields the information as shown in Fig. 21.5.

The concept of residues is now defined in terms of the partial fraction expansion
of the transfer function or frequency response function equation. Equation (21.14)
is expressed in terms of partial fractions as follows:

H(s) = = + (21.15)
A*

�
(s − λ*

1)
A

�
(s − λ1)

1/m
��
(s − λ1)(s − m λ*

1)

1/m
��
(s − λ1)(s − λ*

1)
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FIGURE 21.3 Single-degree-of-freedom frequency response function (log magnitude/phase
format).



The residues of the transfer function are defined as the constants A and A*. The ter-
minology and development of residues come from the evaluation of analytic func-
tions in complex analysis. The residues of the transfer function are directly related to
the amplitude of the impulse response function. In general, the residue A is a complex
quantity. As shown for a single-degree-of-freedom system, A is purely imaginary.

From an experimental point of view, the transfer function is not estimated from
measured input/output data. Instead, the FRF is actually estimated via the discrete
Fourier transform.
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MULTIPLE-DEGREE-OF-FREEDOM SYSTEMS

Modal analysis concepts are applied when a continuous, nonhomogeneous structure
is described as a lumped-mass, multiple-degree-of-freedom system with more than a
single degree of freedom. The modal (natural) frequencies, the modal damping, the
modal vectors or relative patterns of motion, and the modal scaling can be found
from an estimate of the mass, damping, and stiffness matrices or from the measure-
ment of the associated frequency response functions. From the experimental view-
point, the relationship of modal parameters with respect to measured FRFs is most
important.

The development of the FRF solution for the MDOF case parallels the SDOF
case. This development relates the mass, damping, and stiffness matrices to a matrix
transfer function model, or matrix frequency response function model, involving
MDOF. Just as in the analytical case where the ultimate solution can be described in
terms of 1-DOF systems, the FRFs between any input and response DOF can be
represented as a linear superposition of the SDOF models derived previously.

As a result of the linear superposition concept, the equations for the impulse
response function, the frequency response function, and the transfer function for the
MDOF system are defined as follows:

Impulse response function:

hpq(t) = �
n

r = 1
Apqr eλrt + A*

pqr eλr
*t (21.16)
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FIGURE 21.5 Transfer function (Laplace domain projection).



Frequency response function:

Hpq(ω) = �
n

r = 1
+ (21.17)

Transfer function:

Hpq(s) = �
n

r = 1
+ (21.18)

where t = time variable
ω = frequency variable
s = Laplace variable
p = measured degree of freedom (response)
q = measured degree of freedom (input)
r = modal vector number

Apqr = residue
Apqr = Qrψprψqr

Qr = modal scaling factor
ψpr = modal coefficient
λr = system pole
n = number of modal frequencies

It is important to note that the residue Apqr in Eqs. (21.16) through (21.18) is the
product of the modal deformations at the input q and response p DOF and a modal
scaling factor for mode r. Therefore, the product of these three terms is unique, but
each of the three terms individually is not unique.

Damping Mechanisms. In order to evaluate multiple-degree-of-freedom systems
that are present in the real world, the effect of damping on the complex frequencies
and modal vectors must be considered. Many physical mechanisms are needed to
describe all of the possible forms of damping that may be present in a particular
structure or system. Some of the classical types are (1) structural damping, (2) viscous
damping, and (3) coulomb damping. It is generally difficult to ascertain which type of
damping is present in any particular structure. Indeed, most structures exhibit damp-
ing characteristics that result from a combination of all of these, plus others that have
not been described here. (Damping is described in detail in Chap. 36.)

Rather than consider the many different physical mechanisms, the probable loca-
tion of each mechanism, and the particular mathematical representation of the
mechanism of damping that is needed to describe the dissipative energy of the sys-
tem, a model is used that is only concerned with the resultant mathematical form.
This model represents a hypothetical form of damping, which is proportional to the
system mass or stiffness matrix. Therefore:

[C] = α[M] + β[K] (21.19)

Under this assumption, proportional damping, or what is historically referred to as
Rayleigh damping, is the case where the equivalent damping matrix is equal to a lin-
ear combination of the mass and stiffness matrices. For this mathematical form of
damping, the coordinate transformation that diagonalizes the system mass and stiff-
ness matrices also diagonalizes the system damping matrix. Nonproportional damp-
ing is the case where this linear combination does not exist.

Therefore, when a system with proportional damping exists, that system of cou-
pled equations of motion can be transformed to a system of equations that represent
an uncoupled system of single-degree-of-freedom systems that are easily solved.

A*
pqr

�
s − λr

*

Apqr
�
s − λr

A*
pqr

�
j ω − λr

*

Apqr
�
j ω − λr
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With respect to modal parameters, a system with proportional damping has real-
valued modal vectors (real or normal modes), while a system with nonproportional
damping has complex-valued modal vectors (complex modes).

Modal Scaling. Modal scaling refers to the relationship between the normalized
modal vectors and the absolute scaling of the mass matrix (analytical case) and/or
the absolute scaling of the residue information (experimental case). Modal scaling is
normally presented as modal mass or modal A. The driving point residue Aqqr is par-
ticularly important in deriving the modal scaling.

Aqqr = Qr ψqr ψqr = Qr ψ2
qr (21.20)

For undamped and proportionally damped systems, the rth modal mass of a mul-
tiple-degree-of-freedom system can be defined as:

Mr = = (21.21)

where Mr = modal mass
Qr = modal scaling constant
ωr = damped natural frequency

If the largest scaled modal coefficient is equal to unity, Eq. (21.21) computes a
quantity of modal mass that has physical significance. The physical significance is
that the quantity of modal mass computed under these conditions is between zero
and the total mass of the system. Therefore, under this scaling condition, the modal
mass can be viewed as the amount of mass that is participating in each mode of
vibration. For a translational rigid-body mode of vibration, the modal mass should
be equal to the total mass of the system. The modal mass defined in Eq. (21.21) is
developed in terms of displacement over force units. If measurements and, there-
fore, residues are developed in terms of any other units (velocity over force or accel-
eration over force), Eq. (21.21) has to be altered accordingly.

Once the modal mass is known, the modal damping (Cr) and stiffness (Kr) can be
obtained through the following single-degree-of-freedom equations:

Cr = 2 σr Mr (21.22)

Kr = (σr
2 + ωr

2) Mr = Ωr
2 Mr (21.23)

For systems with nonproportional damping, modal mass cannot be used for modal
scaling. For this case, and increasingly for undamped and proportionally damped
cases as well, the modal A scaling factor is used as the basis for the relationship
between the scaled modal vectors and the residues determined from the measured
frequency response functions. This relationship is as follows:

MAr
= = (21.24)

Note that this definition of modal A is also developed in terms of displacement over
force units. Once the modal A is known, modal B (MBr

) can be obtained through the
following SDOF equation:

MBr
= −λr MAr

(21.25)

For undamped and proportionally damped systems, the relationship between the
modal mass and the modal A scaling factors can be uniquely determined as

MAr
= �j2Mrωr (21.26)

1
�
Qr

ψprψqr
�

Apqr

ψpr ψqr
��
j 2 Apqr ωr

1
�
j 2 Qr ωr
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In general, the modal vectors are considered to be dimensionless, since they rep-
resent relative patterns of motion. Therefore, the modal mass or modal A scaling
terms carry the units of the respective measurement. For example, the development
of the frequency response is based upon displacement over force units. The residue
must have units of length over force-seconds. Since the modal A scaling coefficient
is inversely related to the residue, modal A has units of force-seconds over length.
This unit combination is the same as mass over seconds. Likewise, since modal mass
is related to modal A, for proportionally damped systems through a direct relation-
ship involving the damped natural frequency, the units on modal mass are mass units
as expected.

EXPERIMENTAL MODAL ANALYSIS METHODS

In order to understand the various experimental approaches used to determine the
modal parameters of a structure, some sort of outline of the various techniques is
helpful in categorizing the different methods that have been developed over the last
50 years. One of several overlapping approaches can be used. One approach is to
group the methods according to whether one mode or multiple modes are excited at
one time. The terminology that is used for this is:

● Phase resonance (single mode)
● Phase separation (multiple mode)

A slightly more detailed approach is to group the methods according to the type of
measured data that is acquired. When this approach is utilized, the relevant termi-
nology is:

● Sinusoidal input/output model (forced normal mode)
● Frequency response function model
● Damped complex exponential response model
● General input/output model

A very common concept in comparing and contrasting experimental modal analysis
methodologies that is often used in the literature is based upon the type of model
that is used in the modal parameter estimation stage.The relevant nomenclature for
this approach is:

● Parametric model
● Modal model
● [M], [K], [C] model

● Nonparametric model

The different experimental modal analysis approaches may be grouped according to
the domain in which the modal parameter estimation model is formulated. The rel-
evant nomenclature for this approach is:

● Time domain
● Frequency domain
● Spatial domain
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Finally, many specialized methods have been developed in order to experimentally
estimate modal parameters under difficult measurement conditions. Modal analy-
sis of rotating systems is of great interest to the rotor machinery industries, partic-
ularly when high rotation speeds are involved. In this case, the natural frequencies
are modulated by the rotational speed and are changed by speed-related stiffen-
ing effects. Modal analysis of systems under natural excitation, or what is called
response-only modal analysis, is of particular interest to the civil engineering area,
where structures like buildings, bridges, and off-shore platforms are too large to eas-
ily excite with traditional methods. However, these structures are excited by natural
excitation such as wind or waves or by operational excitations that are random, such
as traffic excitation on a bridge. Under specific assumptions concerning the nature
of these excitations, experimental modal analysis can be performed using cross-
correlation or cross-spectrum functions. These two methods have received great
attention over the past several years, and many references may be found in the pub-
lished literature on the specialized methods that have been developed for these sit-
uations. Further information about these and other specialized experimental modal
analysis methods can be found in the Proceedings of the International Modal Analy-
sis Conference (http://www.sem.org) and the Proceedings of the International Con-
ference on Noise and Vibration (http://www.isma-isaac.be/).

Regardless of the approach used to organize or classify the different approaches
to generating modal parameters from experimental data, the fundamental underly-
ing theory is always the same. The differences largely are a matter of logistics, user
experience requirements, and numerical or compute limitations rather than a fun-
damentally superior or inferior method. Most current methodology is based upon
measured frequency response or impulse response functions. Further discussion of
experimental modal analysis is limited to techniques related to the measurement
and use of these functions for determining modal parameters. The most widely uti-
lized methods are discussed in detail in a later section entitled “Modal Parameter
Estimation.”

MODAL DATA ACQUISITION

Acquisition of data that is used in the formulation of a modal model involves many
important technical concerns.The primary concern is the digital signal processing or
the converting of analog signals into a corresponding sequence of digital values that
accurately describe the time-varying characteristics of the inputs to and responses
from a system. Once the data is available in digital form, the most common approach
is to transform the data from the time domain to the frequency domain by use of a
discrete Fourier transform algorithm. Since this algorithm involves discrete data
over a limited time period, there are large potential problems with this approach
that must be well understood. Data acquisition and analysis is discussed in detail in
Chaps. 10 through 15 and Chap. 19.

MEASUREMENT FORMULATION

For current approaches to experimental modal analysis, the frequency response
function is the most important, and most common, measurement to be made. When
estimating FRFs, a measurement model is needed that allows the FRF to be esti-
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mated from measured input and output data in the presence of noise (errors).These
basic error concepts have been discussed in other chapters in great detail.

There are at least four different testing configurations that can be considered
with respect to modal parameter estimation. These different testing conditions are
largely a function of the number of acquisition channels or excitation sources that
are available to the test engineer.

● Single input/single output (SISO)
● Single input/multiple output (SIMO)
● Multiple input/single output (MISO)
● Multiple input/multiple output (MIMO)

In general, the best testing situation is the MIMO configuration, since the data is col-
lected in the shortest possible time with the fewest changes in the test conditions.

FREQUENCY RESPONSE FUNCTION ESTIMATION

The estimation of the frequency response function depends upon the transforma-
tion of data from the time to the frequency domain. The Fourier transform is used
for this computation. The computation is performed digitally using a fast Fourier
transform algorithm. The FRF(s) satisfies the following single- and multiple-input
relationships:

Single-input relationship:

Xp = Hpq Fq (21.27)

Multiple-input relationship:

� 
No × 1

=� 
No × Ni

� 
Ni × 1

(21.28)

The most reasonable, and most common, approach to the estimation of FRFs is
by use of least-squares (LS) or total-least-squares (TLS) techniques.4,8,9 This is a stan-
dard technique for estimating parameters in the presence of noise. Least-squares
methods minimize the square of the magnitude error and, thus, compute the best
estimate of the magnitude of the FRF but have little effect on the phase of the FRF.
The estimation of FRFs and the practical details concerning the use of these mea-
surements for modal parameter estimation are discussed in detail in Chaps. 13
through 15 and Chap. 19, and also in Refs. 13–18.

MODAL PARAMETER ESTIMATION

Modal parameter estimation is a special case of system identification where the a
priori model of the system is known to be in the form of modal parameters. Over the
past 20 years, a number of algorithms have been developed to estimate modal param-
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eters from measured frequency or impulse response function data. While most of
these individual algorithms, summarized in Table 21.1, are well understood, the com-
parison of one algorithm to another has become one of the thrusts of current research
in this area. Comparison of the different algorithms is possible when the algorithms
are reformulated using a common mathematical structure.

This reformulation attempts to characterize different classes of modal parameter
estimation techniques in terms of the structure of the underlying matrix polynomi-
als rather than the physically based models used historically. Since the modal param-
eter estimation process involves a greatly overdetermined problem (more data than
independent equations), this reformulation is helpful in understanding the different
numerical characteristics of each algorithm and, therefore, the slightly different esti-
mates of modal parameters that each algorithm yields. As a part of this reformula-
tion of the algorithms, the development of a conceptual understanding of modal
parameter estimation technology has emerged.This understanding involves the abil-
ity to conceptualize the measured data in terms of the concept of characteristic
space, the data domain (time, frequency, spatial), the evaluation of the order of the
problem, the condensation of the data, and a common parameter estimation theory
that can serve as the basis for developing any of the algorithms in use today.The fol-
lowing sections review these concepts as applied to the current modal parameter
estimation methodology.

DEFINITION OF MODAL PARAMETERS

Modal identification involves estimating the modal parameters of a structural sys-
tem from measured input/output data. Most current modal parameter estimation is
based upon the measured data being the frequency response function or the equiv-
alent impulse response function, typically found by inverse Fourier transforming the
FRF. Modal parameters include the complex-valued modal frequencies (λr), modal
vectors ({ψr}), and modal scaling (modal mass or modal A). Additionally, most cur-
rent algorithms estimate modal participation vectors ({Lr}) and residue vectors ({Ar})
as part of the overall process. Modal participation vectors are a result of multiple ref-
erence modal parameter estimation algorithms and relate how well each modal vec-
tor is excited from each of the reference locations included in the measured data.
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TABLE 21.1 Modal Parameter Estimation Algorithm Acronyms

Modal Parameter Estimation Algorithms

CEA Complex exponential algorithm19

LSCE Least-squares complex exponential19

PTD Polyreference time domain20,21

ITD Ibrahim time domain22,23

MRITD Multiple-reference Ibrahim time domain24

ERA Eigensystem realization algorithm25–27

PFD Polyreference frequency domain28–30

SFD Simultaneous frequency domain31

MRFD Multireference frequency domain32

RFP Rational fraction polynomial33

OP Orthogonal polynomial34–39

PLSCF Polyreference least-squares complex frequency40–42

CMIF Complex mode indication function43



The combination of the modal participation vector ({Lr}) and the modal vector
({ψr}) for a given mode yields the residue matrix ([A]r) for that mode.

In general, modal parameters are considered to be global properties of the sys-
tem. The concept of global modal parameters simply means that there is only one
answer for each modal parameter and that the modal parameter estimation solution
procedure enforces this constraint. Most of the current modal parameter estimation
algorithms estimate the modal frequencies and damping in a global sense, but very
few estimate the modal vectors in a global sense.

SIMILARITIES IN MODAL PARAMETER ESTIMATION ALGORITHMS

Modal parameter estimation algorithms are similar in more ways than they are dif-
ferent. Fundamentally, all algorithms can be developed beginning with a linear,
constant-coefficient, symmetric matrix model involving mass, damping, and stiffness.
The common goal in all algorithms, therefore, is the development of a characteristic
matrix coefficient equation that describes a linear, time-invariant, reciprocal mechan-
ical system consistent with this theoretical background. This is the rationale behind
using the unified matrix polynomial approach (UMPA) as the educational basis for
demonstrating this common kernel for all modal parameter estimation algorithms.44–46

The following sections discuss the similar concepts common to all widely used modal
parameter estimation algorithms.

Linear Superposition. The current approach in modal identification involves
using numerical techniques to separate the contributions of individual modes of vi-
bration in measurements such as frequency response functions.The concept involves
estimating the individual single-degree-of-freedom contributions to the multiple-
degree-of-freedom measurement.

[H(ωi)]No × Ni
= �

n

r = 1
+ = �

2n

r = 1
(21.29)

Equation (21.29) represents a mathematical problem that, at first observation,
is nonlinear in terms of the unknown modal parameters. Once the modal frequen-
cies (λr) are known, the mathematical problem is linear with respect to the remain-
ing unknown modal parameters ([Ar]). For this reason, the numerical solution in
many algorithms frequently involves two or more linear stages. Typically, the
modal frequencies and modal participation vectors are found in a first stage and
residues; modal vectors and modal scaling are determined in a second stage.This lin-
ear superposition concept is represented mathematically in Eq. (21.29) and graphi-
cally in Figs. 21.6 and 21.7.

While the model stated in Eq. (21.29) is fundamental to the linear superposition
of individual SDOF contributions, this model is normally limited to being used as
the basis for estimating the residues Apqr once the modal frequencies (λr) are known.

Data Domain. Modal parameters can be estimated from a variety of different
measurements that exist as discrete data in different data domains (time and/or fre-
quency). These measurements can include free decays, forced responses, frequency
response functions, or impulse response functions. These measurements can be
processed one at a time or in partial or complete sets simultaneously. The measure-
ments can be generated with no measured inputs, a single measured input, or multi-
ple measured inputs.The data can be measured individually or simultaneously.There

[Ar]No × Ni�
jωi − λr

[Ar
*]No × Ni�

jωi − λr
*

[Ar]No × Ni�
jωi − λr
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is a tremendous variation in the types of measurements and in the types of con-
straints that can be placed upon the testing procedures used to acquire this data. For
most measurement situations, FRFs are utilized in the frequency domain and IRFs
are utilized in the time domain.

In terms of sampled data, the time-domain matrix polynomial results from a set
of linear equations where each equation is formulated by choosing various distinct
initial times. (Note, however, that the sampled nature of the time data requires that
the evaluated coefficients, for each expressed linear equation, be uniformly spaced
temporally, i.e., constant Δt.) Analogously, the frequency-domain matrix polynomial
results from a set of linear equations where each equation is formulated at one of the
frequencies of the measured data. This distinction is important to note, since the
roots of the matrix characteristic equation formulated in the time domain are in a
mapped complex domain (zr), which is similar but not identical to the Z domain
familiar to control theory. These mapped complex values (zr) must be converted
back to the frequency domain (λr), while the roots of the matrix characteristic equa-
tion formulated in the frequency domain (λr) are already in the desired domain.46
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FIGURE 21.6 Modal superposition example (positive frequency poles).



Note also that the roots that are estimated in the time domain are limited to maxi-
mum values determined by the sampling theorem relationship (discrete time steps).

zr = eλrΔt λr = σr + j ωr (21.30)

σr = Re �  ωr = Im �  (21.31)

Characteristic Space. From a conceptual viewpoint, the measurement space of a
modal identification problem can be visualized as occupying a volume with the coor-
dinate axes defined in terms of the three sets of characteristics. Two axes of the con-
ceptual volume correspond to spatial information, and the third axis corresponds to
temporal information. The spatial axes are in terms of the input and output degrees
of freedom of the system. The temporal axis is either time or frequency, depending
upon the domain of the measurements. These three axes define a 3-D volume, which
is referred to as the characteristic space. This concept is represented in Fig. 21.8, where

ln zr
�

Δt
ln zr
�

Δt
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FIGURE 21.7 Modal superposition example (positive and negative frequency poles).



the shaded plane, or cut, through the 3-D
characteristic space represents the meas-
ured (temporal) data from one input
location and all output locations. Similar,
and multiple, cuts through the 3-D char-
acteristic space at right angles to the axes
represent other measurement concepts.

This space or volume represents all
possible measurement data. This con-
ceptual representation is very useful in
understanding the data subspace that
has been measured. Also, this concep-
tual representation is very useful in rec-
ognizing how the data is organized and
utilized with respect to different modal
parameter estimation algorithms (3D to
2D). Information parallel to one axis
consists of a superposition of the charac-
teristics defined by that axis. The other
two characteristics determine the scaling
of each term in the superposition.

Any structural testing procedure mea-
sures a subspace of the total possible

data available. Modal parameter estimation algorithms may then use all of this sub-
space or choose to further limit the data to a more restrictive subspace. It is theoret-
ically possible to estimate the characteristics of the total space by measuring any
subspace which samples all three characteristics. Measurement data spaces involving
many planes of measured data are the best possible modal identification situations,
since the data subspace includes contributions from temporal and spatial character-
istics. The particular subspace which is measured and the weighting of the data
within the subspace in an algorithm are the main differences between the various
modal identification procedures which have been developed.

It should be obvious that the data which defines the subspace needs to be acquired
in a consistent measurement process in order for the algorithms to estimate accurate
modal parameters. This fact has triggered the need to measure all of the data simul-
taneously and has led to recent advancements in data acquisition, digital signal pro-
cessing, and instrumentation designed to facilitate this measurement problem.

Fundamental (Historical) Measurement Models. Most current modal parame-
ter estimation algorithms utilize frequency or impulse response functions as the
data, or known information, to solve for modal parameters. The general equation
that can be used to represent the relationship between the measured FRF matrix
and the modal parameters is shown in Eq. (21.29) or, in the more common matrix
product form, in Eqs. (21.32) and (21.33).

[H(ω)]No × Ni
= [ψ]No × 2n � 

2n × 2n

[L]T
2n × Ni

(21.32)

[H(ω)]T
Ni × No

= [L]Ni × 2n � 
2n × 2n

[ψ]T
2n × No

(21.33)

IRFs are rarely directly measured but are calculated from associated FRFs via
the inverse fast Fourter transform (FFT) algorithm. The general equation that can

1
�
jω − λr

1
�
jω − λr
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DOF axis, time axis).



be used to represent the relationship between the IRF matrix and the modal param-
eters is shown in Eqs. (21.34) and (21.35).

[h(t)]No × Ni
= [ψ]No × 2n [eλrt]2n × 2n [L]T

2n × Ni
(21.34)

[h(t)]T
Ni × No

= [L]Ni × 2n [eλrt]2n × 2n [ψ]T
2n × No

(21.35)

Many modal parameter estimation algorithms have been originally formulated
from Eqs. (21.32) through (21.35). However, a more general development for all algo-
rithms is based upon relating these equations to a general matrix coefficient polyno-
mial model.

Fundamental (Current) Modal Identification Models. Rather than using a
physically based mathematical model, the common characteristics of different modal
parameter estimation algorithms can be more readily identified by using a matrix
coefficient polynomial model. One way of understanding the basis of this model can
be developed from the polynomial model used historically for the frequency re-
sponse function. Note the nomenclature in the following equations regarding mea-
sured frequency ωi and generalized frequency si. Measured input and response data
are always functions of measured frequency, but the generalized frequency variable
used in the model may be altered to improve the numerical conditioning. This will
become important in a later discussion of generalized frequency involving normal-
ized frequency, orthogonal polynomials, and complex Z mapping.

Hpq(ωi) = = (21.36)

This can be rewritten:

Hpq(ωi) = = (21.37)

Further rearranging yields the following equation that is linear in the unknown α
and β terms:

�
m

k = 0
αk (si)kXp(ωi) = �

n

k = 0
βk (si)kFq(ωi) (21.38)

This model can be generalized to represent the general multiple-input/multiple-
output case as follows:

�
m

k = 0
�[αk](si)k{X(ωi)} = �

n

k = 0
�[βk](si)k{F(ωi)} (21.39)

Note that the size of the coefficient matrices [αk] will normally be Ni × Ni or No × No,
and the size of the coefficient matrices [βk] will normally be Ni × No or No × Ni when
the equations are developed from experimental data.

Rather than developing the basic model in terms of force and response informa-
tion, the models can be stated in terms of power spectra or frequency response infor-
mation. First, postmultiply both sides of the equation by {F}H:

�
m

k = 0
�[αk](si)k {X(ωi)} {F(ωi)}H = �

n

k = 0
�[βk](si)k {F(ωi)} {F(ωi)}H (21.40)

�
n

k = 0
βk (si)k

��

�
m

k = 0
αk (si)k

Xp(ωi)
�
Fq(ωi)

βn (si)n + βn − 1 (si)n − 1 +  + β1 (si)1 + β0 (si)0

�����
αm (si)m + αm − 1 (si)m − 1 +  + α1 (si)1 + α0 (si)0

Xp(ωi)
�
Fq(ωi)
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Now recognize that the product of {X(ωi)} {F(ωi)}H is the output/input cross-spectra
matrix ([GXF(ωi)]) for one ensemble and {F(ωi)} {F(ωi)}H is the input/input cross-
spectra matrix ([GFF(ωi)]) for one ensemble. With a number of ensembles (aver-
ages), these matrices are the common matrices used to estimate the FRFs in a
MIMO case. This yields the following cross-spectra model:

�
m

k = 0
�[αk](si)k�GXF(ωi) = �

n

k = 0
�[βk](si)k�GFF(ωi) (21.41)

The previous cross-spectra model can be reformulated to utilize FRF data by post-
multiplying both sides of the equation by [GFF(ωi)]−1:

�
m

k = 0
�[αk](si)k�GXF(ωi)�GFF(ωi)

−1
= �

n

k = 0
�[βk](si)k�GFF(ωi)�GFF(ωi)

−1
(21.42)

Therefore, the MIMO FRF model is:

m\k = 0�[αk](si)k�H(ωi) = �
n

k = 0
�[βk](si)k[I] (21.43)

This model, in the frequency domain, corresponds to an autoregressive moving
average, or ARMA(m,n), model that is developed from a set of discrete time equa-
tions in the time domain. More properly, this model is known as the autoregressive
with exogenous inputs, or ARX(m,n), model. The general matrix polynomial model
concept recognizes that both the time- and the frequency-domain models generate
functionally similar matrix polynomial models. For that reason, the unified matrix
polynomial approach terminology is used to describe both domains, since the ARMA
terminology has been connected primarily with the time domain. Additional equa-
tions can be developed by repeating Eq. (21.43), Eq. (21.39), or Eq. (21.41) at many
frequencies (ωi) until all data or a sufficient overdetermination factor is achieved.
Note that both positive and negative frequencies are required in order to accurately
estimate conjugate modal frequencies. Further details concerning specific frequency-
domain algorithms can be found in later sections.

Paralleling the development of Eqs. (21.36) through (21.43), a time-domain model
representing the relationship between a single-response degree of freedom and a
single-input degree of freedom can be stated as follows:

�
m

k = 0
αk x(ti + k) = �

n

k = 0
βk f(ti + k) (21.44)

For the general MIMO case:

�
m

k = 0
[αk]{x(ti + k)} = �

n

k = 0
[βk] {f(ti + k)} (21.45)

If the discussion is limited to the use of free decay or impulse response function
data, the previous time-domain equations can be simplified by noting that the forc-
ing function can be assumed to be zero for all time greater than zero. If this is the
case, the [βk] coefficients can be eliminated from the equations.

�
m

k = 0
[αk]�h(ti + k) = 0 (21.46)

Additional equations can be developed by repeating Eq. (21.46) at different time
shifts into the data (ti) until all data or a sufficient overdetermination factor is
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achieved. Note that at least one time shift is required in order to accurately estimate
conjugate modal frequencies. Further details concerning specific time-domain algo-
rithms can be found in later sections.

In light of the preceding discussion, it is now apparent that most of the modal
parameter estimation processes available could have been developed by starting
from a general matrix polynomial formulation that is justifiable based upon the
underlying matrix differential equation. The general matrix polynomial formulation
yields essentially the same characteristic matrix polynomial equation for both time-
and frequency-domain data. For the frequency-domain data case, this yields:


[αm] sm + [αm − 1] sm − 1 + [αm − 2] sm − 2 +  + [α0]
 = 0 (21.47)

For the time-domain data case, this yields:


[αm] zm + [αm − 1] zm − 1 + [αm − 2] zm − 2 +  + [α0]
 = 0 (21.48)

Once the matrix coefficients ([α]) have been found, the modal frequencies (λr or
zr) can be found using a number of numerical techniques.While in certain numerical
situations other numerical approaches may be more robust, a companion matrix
approach yields a consistent concept for understanding the process. Therefore, the
roots of the matrix characteristic equation can be found as the eigenvalues of the
associated companion matrix. The companion matrix can be formulated in one of
several ways. The most common formulation is as follows:

[C] = �  (21.49)

Note again that the numerical characteristics of the eigenvalue solution of the com-
panion matrix will be different for low-order cases compared to high-order cases
for a given data set. The companion matrix can be used in the following eigenvalue
formulation to determine the modal frequencies for the original matrix coefficient
equation:

[C]{X} = λ[I ]{X} (21.50)

The eigenvectors that can be found from the eigenvalue-eigenvector solution utiliz-
ing the companion matrix may or may not be useful in terms of modal parameters.
The eigenvector that is found, associated with each eigenvalue, is of length model
order m times matrix coefficient size Ni or No. In fact, the unique (meaningful) por-
tion of the eigenvector is of length equal to the size of the coefficient matrices Ni or
No, and is repeated in the eigenvector m + 1 times. For each repetition, the unique
portion of the eigenvector is repeated, multiplied by a different complex scalar
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−[α]m−2

[0]
[I ]
[0]



[0]
[0]
[0]

−[α]m−1

[I ]
[0]
[0]



[0]
[0]
[0]

21.24 CHAPTER TWENTY-ONE



which is a successively larger integer power of the associated modal frequency.
Therefore, the eigenvectors of the companion matrix have the following form:

{φ}r = � �
r

(21.51)

Note that unless the size of the coefficient matrices is at least as large as the number
of measurement degrees of freedom, only a partial set of modal coefficients, the
modal participation coefficients (Lqr), will be found. For the case involving scalar
polynomial coefficients, no meaningful modal coefficients will be found.

If the size of the coefficient matrices, and therefore the modal participation vec-
tor, is less than the largest spatial dimension of the problem, then the modal vectors
are typically found in a second-stage solution process using one of Eq. (21.29) or Eq.
(21.32) through Eq. (21.35). Even if the complete modal vector ({ψ}) of the system is
found from the eigenvectors of the companion matrix approach, the modal scaling
and modal participation vectors for each modal frequency are normally found in this
second-stage formulation.

Model Order Relationships. From a theoretical consideration, the number of
characteristic values (number of modal frequencies, number of roots, number of
poles, etc.) that can be determined depends upon the size of the matrix coefficients
involved in the model and the order of the polynomial terms in the model.The char-
acteristic matrix polynomial equation, Eq. (21.47) or Eq. (21.48), has a model order
of m, and the number of modal frequencies or roots that will be found from this
characteristic matrix polynomial equation will be m times the size of the coefficient
matrices [α].

For a given algorithm, the size of the matrix coefficients is normally fixed; there-
fore, determining the model order is directly linked to estimating n, the number of
modal frequencies that are of interest in the measured data. As has always been the
case, an estimate for the minimum number of modal frequencies can be easily found
by counting the number of peaks in the frequency response function in the fre-
quency band of analysis. This is a minimum estimate of n, since the FRF measure-
ment may be at a node of one or more modes of the system, repeated roots may
exist, and/or the frequency resolution of the measurement may be too coarse to
observe modes that are closely spaced in frequency. Several measurements can be
observed and a tabulation of peaks existing in any or all measurements can be used
as a more accurate minimum estimate of n. A more automated procedure for in-
cluding the peaks that are present in several FRFs is to observe the summation of
FRF power. This function represents the autopower or automoment of the FRFs
summed over a number of response measurements and is normally formulated as
follows:

Hpower(ω) = �
No

p = 1
�
Ni

q = 1
Hpq(ω) Hpq*(ω) (21.52)

These simple techniques are extremely useful but do not provide an accurate
estimate of model order when repeated roots exist or when modes are closely
spaced in frequency. For these reasons, an appropriate estimate of the order of the

λr
m{ψ}r





λr
2{ψ}r

λr
1{ψ}r

λr
0{ψ}r
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model is of prime concern and is the single most important problem in modal
parameter estimation.

In order to determine a reasonable estimate of the model order for a set of rep-
resentative data, a number of techniques have been developed as guides or aids to
users. Much of the user interaction involved in modal parameter estimation involves
the use of these tools. Most of the techniques that have been developed allow users
to establish a maximum model order to be evaluated (in many cases, this is set by the
memory limits of the computer algorithm). Data is acquired based upon an assump-
tion that the model order is equal to this maximum. In a sequential fashion, this data
is evaluated to determine whether a model order less than the maximum will
describe the data sufficiently. This is the point that the user’s judgment and the use
of various evaluation aids become important. Some of the commonly used tech-
niques are mode indicator functions, consistency (stability) diagrams, and pole sur-
face density plots.

Mode indication functions (MIFs) are normally real-valued, frequency-domain
functions that exhibit local minima or maxima at the natural frequencies of the
modes. One MIF can be plotted for each reference available in the measured data.
The primary MIF will exhibit a local minimum or maximum at each of the natural
frequencies of the system under test. The secondary MIF will exhibit a local mini-
mum or maximum at repeated or pseudo-repeated roots of order two or more. Fur-
ther MIFs yield local minima or maxima for successively higher orders of repeated
or pseudo-repeated roots of the system under test.

The multivariate mode indication function (MvMIF) is based upon finding a force
vector {F} that will excite a normal mode at each frequency in the frequency range
of interest.47 If a normal mode can be excited at a particular frequency, the response
to such a force vector will exhibit the 90° phase-lag characteristic.Therefore, the real
part of the response will be as small as possible, particularly when compared to the
imaginary part or the total response. In order to evaluate this possibility, a mini-
mization problem can be formulated as follows:

min
�F� = 1 = ε (21.53)

This minimization problem is similar to a Rayleigh quotient, and it can be shown
that the solution to the problem is executed by finding the smallest eigenvalue εmin

and the corresponding eigenvector {F}min of the following problem:

[Hreal]T [Hreal] {F} = λ�[Hreal]T [Hreal] + [Himag]T [Himag]	 {F} (21.54)

This eigenvalue problem is formulated at each frequency in the frequency range of
interest. Note that the result of the matrix product [Hreal]T [Hreal] and [Himag]T [Himag] in
each case is a square, real-valued matrix of size equal to the number of references in
the measured data Ni × Ni. The resulting plot of the MvMIF for a seven-reference
case can be seen in Fig. 21.9.

An algorithm based on singular value decomposition (SVD) methods applied to
multiple reference FRF measurements, identified as the complex mode indication
function (CMIF), was first developed for traditional FRF data in order to identify
the proper number of modal frequencies, particularly when there are closely spaced
or repeated modal frequencies.43 Unlike the MvMIF, which indicates the existence
of real normal modes, the CMIF indicates the existence of real normal or complex
modes and the relative magnitude of each mode. Furthermore, MvMIF yields a set

{F}T [Hreal]T [Hreal] {F}
�����
{F}T�[Hreal]T [Hreal] + [Himag]T [Himag]	 {F}
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of force patterns that can best excite the real normal mode, while CMIF yields the
corresponding mode shape and modal participation vector.

The CMIF is defined as the economical singular values, computed from the FRF
matrix at each spectral line. The CMIF is the plot of these singular values on a log
magnitude scale as a function of frequency. The peaks detected in the CMIF plot
indicate the existence of modes, and the corresponding frequencies of these peaks
give the damped natural frequencies for each mode. In the application of CMIF to
traditional modal parameter estimation algorithms, the number of modes detected
in CMIF determines the minimum number of degrees of freedom of the system
equation for the algorithm. A number of additional DOF may be needed to take
care of residual effects and noise contamination.

[H(ω)] = [U(ω)] [Σ(ω)] [V(ω)]H (21.55)

Most often, the number of input points (reference points) Ni is less than the num-
ber of response points No. In Eq. (21.55), if the number of effective modes is less
than or equal to the smaller dimension of the FRF matrix (i.e., Ne ≤ Ni), the SVD leads
to approximate mode shapes (left singular vectors) and approximate modal partici-
pation factors (right singular vectors). The singular value is then equivalent to the
scaling factor Qr divided by the difference between the discrete frequency and the
modal frequency (jω − λr). For a given mode, since the scaling factor is a constant,
the closer the modal frequency is to the discrete frequency, the larger the singular
value will be.Therefore, the damped natural frequency is the frequency at which the
maximum magnitude of the singular value occurs. If different modes are compared,
the stronger the modal contribution (larger residue value), the larger the singular
value will be.The peak in the CMIF indicates the location on the frequency axis that
is nearest to the pole. The frequency is the estimated damped natural frequency, to
within the accuracy of the frequency resolution.
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Since the mode shapes that contribute to each peak do not change much around
each peak, several adjacent spectral lines from the FRF matrix can be used simulta-
neously for a better estimation of mode shapes. By including several spectral lines of
data in the SVD calculation, the effect of the leakage error can be minimized. If only
the quadrature (imaginary) part of the FRF matrix is used in the CMIF, the singular
values will be much more distinct. The resulting plot of the CMIF for a seven-
reference case can be seen in Fig. 21.10.

Consistency Diagrams. One of the most common methods for determining the
number of modes present in the measurement data is the use of consistency, for-
merly referred to as stability, diagrams.The consistency diagram is developed by suc-
cessively computing different model solutions (utilizing different model order for
the characteristic polynomial, different normalization methods for the characteristic
matrix coefficient polynomial, different equation condensation methods, and/or dif-
ferent algorithms) and involves tracking the estimates of frequency, damping, and,
possibly, modal participation factors as a function of model solution iteration. If only
model order is evaluated, recent research41,42 has shown that the correct choice of nor-
malization of the characteristic matrix coefficient polynomial has a distinct effect on
producing clear consistency diagrams.As the number of model solutions is increased,
more and more modal frequencies are estimated, but, hopefully, the estimates of the
physical modal parameters will be consistently determined as the correct model
parameters are found. Nevertheless, the nonphysical (computational) modes will not
be estimated in a consistent way during this process and can be sorted out of the
modal parameter data set more easily. Note that inconsistencies (frequency shifts,
leakage errors, etc.) in the measured data set will obscure this consistency and render
the diagram difficult to use. Normally, a tolerance, expressed as a percentage, is given
for the consistency of each of the modal parameters that are being evaluated.

Figures 21.11 and 21.12 demonstrate consistency diagrams based upon different
normalizations of the characteristic matrix coefficient polynomial. Figure 21.12 shows
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an expanded view of the consistency diagram of Fig. 21.11 in the region of 350 Hz.
Note that the multiple symbols indicate nearly repeated natural frequencies with dis-
tinctly different mode vectors at the peak in the data, not a single natural frequency
that might be thought present from Fig. 21.11. In this consistency diagram, low- and
high-order coefficient normalization is alternated at each prospective model order.
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The plot in the background is used for visual reference. In this case, the plot is an
automoment of the FRFs, but a set of complex mode indicator functions or multi-
variate mode indicator functions is also frequently used. The consistency diagram
also is normally plotted utilizing color for better visual discrimination.

Pole Surface Density Plots. One of the disadvantages of the consistency dia-
gram occurs when different model solution iterations are combined into one consis-
tency diagram. In this case, since different model characteristics are being evaluated
at the same time, the order in which the model solution iterations are presented
may affect the presentation of consistency (or stability). In general, a clearer esti-
mate of the modal frequencies will be determined by plotting the density of poles
found from all model solution iterations in the second quadrant of the complex
plane.48 Figure 21.13 represents the pole surface density plot for the previous con-
sistency diagrams in Fig. 21.11. In this case, the dark areas indicate where a large
number of solutions for the natural frequency occur in the consistency diagram.
Note that there are two dark areas at many of the peaks in the automoment plot,
indicating that there are two natural frequencies at the peaks (350 Hz and 750 Hz,
for example) where the frequency is nearly the same but the damping value is
quite different. The centroid of the cluster gives a good representation of the nat-
ural frequency and damping for each mode, while the size of the cluster indicates
the variance in the frequency and damping estimates. Note again that the pole sur-
face density plots are normally in color rather than grayscale, and the ability to
move into (expand) and out of (contract) the plot makes the use of these plots very
powerful.

Residuals. Continuous systems have an infinite number of degrees of freedom
but, in general, only a finite number of modes can be used to describe the dynamic
behavior of a system. The theoretical number of DOF can be reduced by using a
finite frequency range. Therefore, for example, the frequency response can be bro-
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ken up into three partial sums, each covering the modal contribution corresponding
to modes located in the frequency ranges.

In the frequency range of interest, the modal parameters can be estimated to be
consistent with Eq. (21.29). In the lower- and higher-frequency ranges, residual
terms can be included to account for modes in these ranges. In this case, Eq. (21.29)
can be rewritten for a single frequency response function as:

Hpq(ω) = RFpq
+ �

n

r = 1
+ + RIpq

(ω) (21.56)

where RFpq
= residual flexibility

RIpq
(ω) = residual inertia

The residual term that compensates for modes below the minimum frequency of
interest is called the inertia restraint or residual inertia. The residual term that com-
pensates for modes above the maximum frequency of interest is called the residual
flexibility. These residuals are a function of each FRF measurement and are not
global properties of the FRF matrix. Therefore, residuals cannot be estimated unless
the FRF is measured. In this common formulation of residuals, both terms are real-
valued quantities. In general, this is a simplification: the residual effects of modes
below and/or above the frequency range of interest cannot be completely repre-
sented by such simple mathematical relationships. As the system poles below and
above the range of interest are located in the proximity of the boundaries, these
effects are not the real-valued quantities noted in Eq. (21.56). In these cases, residual
modes may be included in the model to partially account for these effects. When this
is done, the modal parameters that are associated with these residual poles have no
physical significance but may be required in order to compensate for strong dynamic
influences from outside the frequency range of interest. Using the same argument,
the lower and upper residuals can take on any mathematical form that is convenient
as long as the lack of physical significance is understood. Mathematically, power func-
tions of frequency (zero, first order, and second order) are commonly used within
such a limitation. In general, the use of residuals is confined to FRF models. This is
due primarily to the difficulty of formulating a reasonable mathematical model and
solution procedure in the time domain for the general case that includes residuals.

Generalized Frequency. The fundamental problem with using a high-order fre-
quency-domain (rational fraction polynomial) method can be highlighted by look-
ing at the characteristics of the data matrix involved in estimating the matrix
coefficients.These matrices involve power polynomials that are functions of increas-
ing powers of the frequency, typically si = jωi. These matrices are of the Van der
Monde form and are known to be ill conditioned for cases involving wide frequency
ranges and high-ordered models.

Van der Monde matrix form:

�  (21.57)

The ill-conditioning problem can be best understood by evaluating the condition
number of the Van der Monde matrix.The condition number measures the sensitivity
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of the solution of linear equations to errors, or small amounts of noise, in the data.The
condition number gives an indication of the accuracy of the results from matrix inver-
sion and/or linear equation solution. The condition number for a matrix is computed
by taking the ratio of the largest singular value to the smallest singular value.A good
condition number is a small number close to unity; a bad condition number is a large
number. For the theoretical case of a singular matrix, the condition number is infinite.

The ill-conditioned characteristic of matrices that are of the Van der Monde form
can be reduced, but not eliminated, by the following:

● Minimizing the frequency range of the data
● Minimizing the order of the model
● Normalizing the frequency range of the data (−1,1) or (−2,2)
● Using orthogonal polynomials
● Using complex Z mapping

The last three methods involve the concept of generalized frequency, whereby the
actual frequency response function complex data is not altered in any way but is
remapped to a new generalized or virtual frequency, which eliminates or reduces the
ill conditioning caused by the weighting of the FRF data by the physical frequency
(si = jωi) in the linear equations. These concepts are briefly explained in the follow-
ing sections.

Normalized Frequency. The simplest method of using the generalized frequency
concept is to normalize the power polynomials by utilizing the following equation:

si = j*(ωi/ωmax) (21.58)

This gives a generalized frequency variable that is bounded by (−1,1) with much bet-
ter numerical conditioning than utilizing the raw frequency range (−ωmax,ωmax).
When the modal frequencies are estimated, the corrected modal frequencies must
be determined by multiplying by the normalizing frequency (ωmax). All frequency-
domain algorithms, at a minimum, will use some form of this frequency normaliza-
tion.The graphical plot of this Van der Monde matrix for orders 0 through 8 is shown
in Fig. 21.14.

Orthogonal Polynomials. In the past, the only way to avoid the numerical prob-
lems inherent in the frequency-domain methods (Van der Monde matrix), even when
normalized frequencies are implemented, is to use a transformation from power
polynomials to orthogonal polynomials.33–39 Any power polynomial series can be rep-
resented by an equivalent number of terms in an orthogonal polynomial series. Sev-
eral orthogonal polynomials have been applied to the ill-conditioning problem, such
as Forsythe polynomials36 and Chebyshev polynomials.37,38 The orthogonal polyno-
mial concept is represented by the following relationship:

�
m

k = 0
(si)kαk = �

m

k = 0
Pk(si)γk (21.59)

The orthogonal polynomial series can be formed by the following relationships:

P0(si) = 1.0 (21.60)

Pj(si
*) = Pj

*(si) (21.61)

Pn + 1(si) = ansiPn(si) − �
n

k = 0
bn,k Pk(si) (21.62)
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This orthogonal polynomial series can be formulated in matrix form by utilizing two
weighting matrices involving the coefficients an and bn,k as follows:

[Wa] = �  [Wb] = �  (21.63)

Different orthogonal polynomials are generated using different weighting coeffi-
cients and are orthogonal over different ranges. For example, Forsythe orthogonal
polynomials are orthogonal over the (−2,2) range, while Chebyshev orthogonal
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polynomials are orthogonal over the (−1,1) range. In the orthogonal polynomial
approach, the original complex-valued FRF data is used together with the orthogo-
nal polynomial coefficients Pk(si) in place of the generalized frequency (si)k, where si

is the properly normalized generalized frequency—Eq. (21.58), for example. The
unknown matrix coefficients of the matrix orthogonal polynomial (γk) are estimated
in place of the original matrix coefficients (αk).These matrix orthogonal polynomial
coefficients are then loaded into the companion matrix [C] as before.

When this orthogonal polynomial transformation is used to generate a new gen-
eralized frequency, the corrected modal frequencies are determined from a general-
ized form of the companion matrix solution.The companion matrix [C] is determined
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in the same way as always, but the solution for the modal frequencies is found from
the following equation:

�[C] + [Wb]{X} = λ�Wa {X} (21.64)

The graphical plot of the Van der Monde matrix for orders 0 through 8 for a set
of Chebyshev orthogonal polynomials is shown in Fig. 21.15. Note that the use of
orthogonal polynomials is the basis for the recently developed Alias Free Polyno-
mial (AF-Poly®) method of modal parameter estimation.39

Complex Z Mapping. The important contribution behind the development of
the Polyreference Least Squares Complex Frequency (PLSCF)40–42 method is the
recognition of a new method of frequency mapping. The generalized frequency in
this approach is a trigonometric mapping function (complex Z) that has numerical
conditioning superior to orthogonal polynomials without the added complication of
solving a generalized companion matrix eigenvalue problem. This approach can be
applied to any frequency-domain method—low-order frequency-domain methods
as well as high-order frequency-domain methods—although the numerical advan-
tage is not as profound for the low-order methods.

The basic complex Z mapping function, in the nomenclature of this presentation,
is as follows:

si = zi = ej*π*(ωi /ωmax) = ej*ω*Δt (21.65)

si
m = zi

m = ej*π*m*(ωi /ωmax) (21.66)
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This mapping function maps the positive frequency range to the positive unit circle
in the complex plane and the negative frequency range to the negative unit circle in
the complex plane. This is graphically represented in Fig. 21.16. Note that the use of
complex Z mapping is the basis for the recently developed PLSCF, or, commercially,
PolyMAX®, method of modal parameter estimation.40–42

This effectively yields a real part of the mapping functions, which is cosine
terms, and an imaginary part, which is sine functions. Since sine and cosine func-
tions at different frequencies are mathematically orthogonal, the numerical condi-
tioning of this mapping function is quite good. Since these functions are also the
basis of the Fourier transform, this method is essentially a rational fraction polyno-
mial (RFP) method with an embedded inverse Fourier transform, yielding a method
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that is very similar to the polyreference time-domain (PTD) method of modal
parameter estimation.

The graphical plot of this Van der Monde matrix for orders 0 through 8 is shown
in Fig. 21.17. The condition number for this example matrix is 1.01 (Fig. 21.17) com-
pared to a condition number of 548 for the normalized frequency example (Fig.
21.14).

General (Two-Stage) Solution Procedure. Based upon Eq. (21.43) or (21.46),
most modern modal identification algorithms are very similar, and all can be out-
lined as follows:

1. Load measured data into linear equation form.
a. Frequency domain—utilize generalized frequency concept.

2. Find scalar or matrix coefficients ([αk]).
3. Solve matrix coefficient polynomial for modal frequencies.

a. Formulate companion matrix.
b. Obtain eigenvalues of companion matrix (λr or zr).

(1) Time domain—convert eigenvalues from zr to λr.

(2) Frequency domain—compensate for generalized frequency.
c. Obtain modal participation vectors {L}r or modal vectors {ψ}r from eigenvec-

tors of the companion matrix.
4. Find modal vectors and modal scaling from one of Eqs. (21.32) through (21.66).

DIFFERENCES IN MODAL PARAMETER ESTIMATION ALGORITHMS

Modal parameter estimation algorithms typically give slightly different estimates of
modal parameters due to the way the frequency response function data is weighted
and processed in the computation of the matrix coefficients. Some of the most com-
mon variations are discussed in the following sections.

Data Sieving/Filtering/Decimation. For almost all cases of modal identification, a
large amount of redundancy or overdetermination exists.This means that the number
of equations available compared to the number required to form an exactly deter-
mined solution, defined as the overdetermination factor, will be quite large. Beyond
some value of overdetermination factor, the additional equations contribute little to
the result but may add significantly to the noise and, thus, to the solution time. For
this reason, the data space is often filtered (limited within minimum and maximum
temporal axis values), sieved (limited to prescribed input degrees of freedom and/or
output DOFs), and/or decimated (limited number of equations from the allowable
temporal data) in order to obtain a reasonable result in the minimum time.

Coefficient Condensation (Virtual DOFs). For the low-order modal identifica-
tion algorithms, the number of physical coordinates (typically No), which dictates the
size of the coefficient matrices ([αk]), is often much larger than the number of
desired modal frequencies (N). For this situation, the numerical solution procedure
is constrained to solve for No or 2No modal frequencies. This can be very time con-
suming and is unnecessary. One simple approach to reducing the size of the coeffi-
cient matrices is to sieve the physical degrees of freedom to temporarily reduce the
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dimension of No. Beyond excluding all physical DOFs in a direction, this is difficult
to do in an effective manner that will retain the correct information from the fre-
quency response function data matrix.

The number of physical coordinates (No) can be reduced to a more reasonable
size (Ne ≈ N or Ne ≈ 2N) by using a decomposition transformation from physical
coordinates (No) to the approximate number of effective modal frequencies (Ne).
These resulting Ne transformed coordinates are sometimes referred to as virtual
DOFs. Currently, singular value decompositions (SVDs) or eigenvalue decomposi-
tions (EDs) are used to condense the spatial information while preserving the prin-
cipal modal information prior to formulating the linear equation solution for
unknown matrix coefficients.8–11,49,50

It is important to understand that the ED and SVD transformations yield a math-
ematical transformation that, in general, contains complex-valued vectors as part of
the transformation matrix [T]. Conceptually, the transformation will work well when
these vectors are estimates of the modal vectors of the system—normally, a situation
where the vectors can be scaled to real-valued vectors. Essentially, this means that
the target goal of the transformation is a transformation from physical space to
modal space. As the modal density increases and/or as the level of damping
increases, the ED and SVD methods give erroneous results, if the complete [H ]
matrix is used. Generally, superior results will be obtained when the imaginary part
of the [H ] matrix is used in the ED or SVD transformation, thus forcing a real-
valued transformation matrix [T]. Another option is to load both the real and the
imaginary portions of the complex data into a real matrix, which will also force a
real-valued transformation matrix.49,50

In most cases, even when the spatial information must be condensed, it is neces-
sary to use a model order greater than two to compensate for distortion errors or
noise in the data and to compensate for the case where the location of the transduc-
ers is not sufficient to totally define the structure.

[H′] = [T ][H] (21.67)

where [H′] = the transformed (condensed) FRF matrix
[T ] = the transformation matrix
[H] = the original FRF matrix

The difference between the two techniques lies in the method of finding the
transformation matrix [T]. Once [H] has been condensed, however, the parameter
estimation procedure is the same as for the full data set. Because the data eliminated
from the parameter estimation process ideally corresponds to the noise in the data,
the poles of the condensed data are the same as the poles of the full data set. How-
ever, the participation factors calculated from the condensed data may need to be
expanded back into the full space.

[Ψ] = [T ]T[Ψ′] (21.68)

where [Ψ] = the full-space participation matrix
[Ψ′] = the condensed-space participation matrix

This technique may also be adapted for condensing the input space, as long as the
FRF matrix [H] is reshaped (transposed) to an Ni × No matrix at each spectral line.

Equation Condensation. Equation condensation methods are used to reduce the
number of equations generated from measured data to more closely match the num-
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ber of unknowns in the modal parameter estimation algorithms. A large number of
condensation algorithms are available. Based upon the modal parameter estimation
algorithms in use today, the three types of algorithms most often used are:

● Least squares: Least squares (LS), weighted least squares (WLS), total least
squares (TLS), or double least squares (DLS) are used to minimize the squared
error between the measured data and the estimation model.

● Transformations: The measured data is reduced by approximating the data by
the superposition of a limited (reduced) set of independent vectors. The number
of significant, independent vectors is chosen equal to the maximum number of
modes that are expected in the measured data. This set of vectors is used to
approximate the measured data and is used as input to the parameter estimation
procedures. Singular value decomposition is an example of one of the more pop-
ular transformation methods.

● Coherent averaging: Coherent averaging is another popular method for reduc-
ing the data. In the coherent averaging method, the data is weighted by per-
forming a dot product between the data and a weighting vector (spatial filter).
Information in the data which is not coherent with the weighting vectors is aver-
aged out of the data. The most common coherent averaging method utilizes an
estimate of one of the modal vectors as the weighting vector to generate data
that has one mode dominant.

The LS and the transformation procedures tend to weight those modes of vibra-
tion which are well excited. This can be a problem when trying to extract modes
which are not well excited. The solution is to use a weighting function for condensa-
tion which tends to enhance the mode of interest. This can be accomplished in a
number of ways:

● In the time domain, a spatial filter or a coherent averaging process can be used to
filter the response to enhance a particular mode or set of modes.

● In the frequency domain, the data can be enhanced in the same manner as in the
time domain, plus the data can be additionally enhanced by weighting it in a fre-
quency band near the natural frequency of the mode of interest.

Obviously, the type of equation condensation method that is utilized in a modal
identification algorithm has a significant influence on the results.

CURRENT MODAL IDENTIFICATION METHODS

Using the concepts developed in the previous section, the most commonly used
modal identification methods can be summarized as shown in Table 21.2. The high-
order model is typically used for those cases where the system is undersampled in
the spatial domain. For example, the limiting case is when only one measurement is
made on the structure. For this case, the left-hand side of the general linear equation
corresponds to a scalar polynomial equation with the order equal to or greater than
the number of desired modal frequencies.

The low-order model is used for those cases where the spatial information is com-
plete. In other words, the number of physical coordinates is greater than the number
of desired modal frequencies. For this case, the order of the left-hand side of the gen-
eral linear equation, Eq. (21.43) or Eq. (21.46), is equal to 2 and the matrix dimension
of the [α] coefficients is much greater than n × n.
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The zero-order model corresponds to cases where the temporal information is
neglected and only the spatial information is used. These methods directly estimate
the eigenvectors as a first step. In general, these methods are programmed to process
data at a single temporal condition or variable. In this case, the method is essentially
equivalent to the single-degree-of-freedom methods which have been used with fre-
quency response functions. In other words, the zero-th-order matrix polynomial
model compared to the higher-order matrix polynomial models is similar to the
comparison between the SDOF and MDOF methods used historically in modal
parameter estimation.

Table 21.3 groups the different methods according to common use characteris-
tics. The methods in each quadrant of this table are used for similar data situations.
In general, low-order methods require a large number of measurement locations
(input DOFs and/or output DOFs). Time-domain methods work well for low to
moderate damping. Conversely, if only a few measurement locations are available,
high-order methods will be required. Likewise if the damping is moderate to heavy,
frequency-domain methods will be required. When the measured data originates
from a system that has light to moderate damping and a large number of input
DOFS and/or output DOFs are available, all of the methods should give satisfactory
and similar results.
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TABLE 21.3 Common Characteristics of Modal Parameter
Estimation Algorithms

Time domain Frequency domain

Low-order models ITD PFD-1 SFD
MRITD PFD-2 MRFD
ERA PFD-Z

High-order models CEA RFP RFP-Z
LSCE OP PolyMAX
PTD PLSCF AF-Poly

TABLE 21.2 Characteristics of Modal Parameter Estimation Algorithms

Domain Matrix polynomial order Coefficients

Algorithm Time Frequency Zero Low High Scalar Matrix

CEA • • •
LSCE • • •
PTD • • Ni × Ni

ITD • • No × No

MRITD • • No × No

ERA • • No × No

PFD • • No × No

SFD • • No × No

MRFD • • No × No

RFP • • • Ni × Ni

OP • • • Ni × Ni

PLSCF • • • Ni × Ni

CMIF • • No × Ni



MODAL IDENTIFICATION ALGORITHMS (SDOF)

For any real system, the use of single-degree-of-freedom algorithms to estimate
modal parameters is always an approximation, since any realistic structural system
has many degrees of freedom. Nevertheless, in cases where the modes are not close
in frequency and do not affect one another significantly, SDOF algorithms are very
effective. Specifically, SDOF algorithms are quick, rarely involving much mathemat-
ical manipulation of the data, and give sufficiently accurate results for most modal
parameter requirements. Naturally, most multiple-degree-of-freedom algorithms can
be constrained to estimate only a single degree of freedom at a time if further math-
ematical accuracy is desired. The most commonly used SDOF algorithms involve
using the information at a single frequency as an estimate of the modal vector.

Operating Vector Estimation. Technically, when many single-degree-of-freedom
approaches are used to estimate modal parameters, sufficient simplifying assump-
tions are made such that the results are not actually modal parameters. In these
cases, the results are often referred to as operating vectors rather than modal vectors.
This term refers to the fact that if the structural system is excited at this frequency,
the resulting motion is a linear combination of the modal vectors rather than a sin-
gle modal vector. If one mode is dominant, then the operating vector is approxi-
mately equal to the mode vector.

The approximate relationships that are used in these cases are represented in the
following two equations.

Hpq(ωr) ≈ + (21.69)

Hpq(ωr) ≈ (21.70)

For these less complicated methods, the damped natural frequencies (ωr) are esti-
mated by observing the maxima in the frequency response functions. The damping
factors (σr) are estimated using half-power methods.1 The residues (Apqr) are then
estimated from Eq. (21.69) or Eq. (21.70) using the FRF data at the damped natural
frequency.

Least-Squares SDOF Methods. The least-squares, local single-degree-of-freedom
formulations are simple methods that are based upon using an SDOF model in the
vicinity of a resonance frequency. A reasonable estimation of the modal frequency
and residue for each mode can be determined under the assumption that modes are
not too close together. This method can give erroneous answers when the modal
coefficient is near zero. This problem can be detected by comparing the predicted
modal frequency to the frequency range of the data used in the algorithm.As long as
the predicted modal frequency lies within the frequency band, the estimate of the
residue (modal coefficient) should be valid.

The approximate relationship that is used in this case is represented in the follow-
ing equation. The frequency ω1 is a frequency near the damped natural frequency ωr.

Hpq(ω1) ≈ (21.71)

Hpq(ω1)(jω1 − λr) = Apqr (21.72)

Hpq(ω1) λr + Apqr = (jω1)Hpq(ω1) (21.73)

Apqr
�
jω1 − λr

Apqr
�
−σr

A*
pqr

�
jωr − λr

*

Apqr
�
jωr − λr
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Repeating the preceding equation for several frequencies in the vicinity of the peak
frequency:

� 
Ns × 2

� �
2 × 1

= � �
Ns × 1

(21.74)

The preceding equation again represents an overdetermined set of linear equations
that can be solved using any pseudo-inverse or normal equations approach.

Two-Point Finite Difference Formulation. The difference method formulations
are methods that are based upon comparing adjacent frequency information in the
vicinity of a resonance frequency. When a ratio of this information, together with
information from the derivative of the frequency response function at the same fre-
quencies, is formed, a reasonable estimation of the modal frequency and residue for
each mode can be determined under the assumption that modes are not too close
together. This method can give erroneous answers when the modal coefficient is
near zero. This problem can be detected by comparing the predicted modal fre-
quency to the frequency range of the data used in the finite difference algorithm.As
long as the predicted modal frequency lies within the frequency band, the estimate
of the residue (modal coefficient) should be valid.

The approximate relationships that are used in this case are represented in the
following equations.The frequencies noted in these relationships are as follows: ω1 is
a frequency near the damped natural frequency ωr, and ωp is the peak frequency
close to the damped natural frequency ωr.

Modal frequency (λr):

λr ≈ (21.75)

Residue (Apqr):

Apqr ≈ (21.76)

Since both of the equations that are used to estimate modal frequency λr and residue
Apqr are linear equations, a least-squares solution can be formed by using other FRF
data in the vicinity of the resonance. For this case, additional equations can be devel-
oped using Hpq(ω2) or Hpq(ω3) in the preceding equations instead of Hpq(ω1).

MODAL IDENTIFICATION ALGORITHMS (MDOF)

All multiple-degree-of-freedom equations can be represented in a unified matrix
polynomial approach. The methods that are summarized in the following sections
are listed in Tables 21.1 and 21.2.

High-Order Time-Domain Algorithms. The algorithms that fall into the cate-
gory of high-order time-domain algorithms include the most commonly used algo-
rithms for determining modal parameters. The least-squares complex exponential

j(ω1 − ωp)Hpq(ω1)Hpq(ωp)
���

Hpq(ωp) − Hpq(ω1)

jωpHpq(ωp) − jω1Hpq(ω1)
���

Hpq(ωp) − Hpq(ω1)

( jω1) Hpq(ω1)
( jω2) Hpq(ω2)
( jω3) Hpq(ω3)
( jωp) Hpq(ωp)


( jωs) Hpq(ωs)

λr

Apqr

1
1
1
1

1

Hpq(ω1)
Hpq(ω2)
Hpq(ω3)
Hpq(ωp)


Hpq(ωs)
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(LSCE) algorithm is the first algorithm to utilize more than one frequency response
function, in the form of impulse response functions, in the solution for a global esti-
mate of the modal frequency.The polyreference time-domain (PTD) algorithm is an
extension to the LSCE algorithm that allows multiple references to be included in a
meaningful way so that the ability to resolve close modal frequencies is enhanced.
Since both the LSCE and the PTD algorithms have good numerical characteristics,
these algorithms are still the most commonly used algorithms today. The only limi-
tations of these algorithms are the cases involving high damping. As a high-order
algorithm, more time-domain information is required compared to the low-order
algorithms.

Basic equation—high-order coefficient normalization:

�[α0][α1]  [αm − 1]
Ni × mNi� 

mNi × No

= −[h(ti + m)]Ni × No
(21.77)

Basic equation—zero-order coefficient normalization:

�[α1][α2]  [αm]
Ni × mNi� 

mNi × No

= −[h(ti + 0)]Ni × No
(21.78)

First-Order Time-Domain Algorithms. The first-order time-domain algorithms
include several well-known algorithms such as the Ibrahim time-domain (ITD) algo-
rithm and the eigensystem realization algorithm (ERA).These algorithms are essen-
tially a state-space formulation with respect to the second-order time-domain
algorithms. The original development of these algorithms was quite different than
that presented here, but the resulting solution of linear equations is the same regard-
less of development. There is a great body of published work on both the ITD and
the ERA algorithms, much of which discusses the various approaches for condens-
ing the overdetermined set of equations that results from the data (least squares,
double least squares, singular value decomposition). The low-order time-domain
algorithms require very few time points in order to generate a solution, due to the
increased use of spatial information.

Basic equation—high-order coefficient normalization:

�[α0]
2No × 2No

� 
2No × Ni

= −� 
2No × Ni

(21.79)

Basic equation—zero-order coefficient normalization:

�[α1]
2No × 2No

� 
2No × Ni

= −� 
2No × Ni

(21.80)

Second-Order Time-Domain Algorithms. The second-order time-domain algo-
rithm has not been reported in the literature previously but is simply modeled after
the second-order matrix differential equation with matrix dimension No. Since an
impulse response function can be thought to be a linear summation of a number of
complementary solutions to such a matrix differential equation, the general second-
order matrix form is a natural model that can be used to determine the modal

[h(ti + 0)]
[h(ti + 1)]

[h(ti + 1)]
[h(ti + 2)]

[h(ti + 1)]
[h(ti + 2)]

[h(ti + 0)]
[h(ti + 1)]

[h(ti + 1)]
[h(ti + 2)]


[h(ti + m)]

[h(ti + 0)]
[h(ti + 1)]


[h(ti + m − 1)]

EXPERIMENTAL MODAL ANALYSIS 21.43



parameters. It is interesting that this method is developed by noting that it is the
time-domain equivalent to a frequency-domain algorithm known as the polyrefer-
ence frequency-domain (PFD) algorithm. Note that the low-order time-domain
algorithms require very few time points in order to generate a solution, due to the
increased use of spatial information.

Basic equation—high-order coefficient normalization:

�[α0][α1]
No × 2No

� 
2No × Ni

= −�[h(ti + i)]
No × Ni

(21.81)

Basic equation—zero-order coefficient normalization:

�[α1][α2]
No × 2No

� 
2No × Ni

= −�[h(ti + i)]
No × Ni

(21.82)

High-Order Frequency-Domain Algorithms. The high-order frequency-domain
algorithms, in the form of scalar coefficients, are the oldest multiple-degree-of-
freedom algorithms utilized to estimate modal parameters from discrete data.These
are algorithms like the rational fraction polynomial (RFP), the power polynomial
(PP), and the orthogonal polynomial (OP) algorithms. These algorithms work well
for narrow-frequency bands and limited numbers of modes but have poor numerical
characteristics otherwise. While the use of multiple references reduces the numeri-
cal conditioning problem, the problem is still significant and not easily handled. In
order to circumvent the poor numerical characteristics, many approaches have been
used (frequency normalization, orthogonal polynomials), but the use of low-order
frequency-domain models has proven more effective.

Basic equation—high-order coefficient normalization:

�[α0][α1]  [αm − 1][β0][β1]  [βn]
Ni × mNi + (n + 1)No� 

mNi + (n + 1)No × No

= −(si)m[H(ωi)]Ni × No
(21.83)

Basic equation—zero-order coefficient normalization:

�[α1][α2]  [αm][β0][β1]  [βn]
Ni × mNi + (n + 1)No� 

mNi + (n + 1)No × No

= −(si)0[H(ωi)]Ni × No
(21.84)

(si)1[H(ωi)]
(si)2[H(ωi)]


(si)m[H(ωi)]

−(si)0[I]
−(si)1[I]


−(si)n[I]

(si)0[H(ωi)]
(si)1[H(ωi)]


(si)m − 1[H(ωi)]

−(si)0[I]
−(si)1[I]


−(si)n[I]

[h(ti + i)]
[h(ti + i)]

[h(ti + i)]
[h(ti + i)]
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First-Order Frequency-Domain Algorithms. Several algorithms have been
developed that fall into the category of first-order frequency-domain algorithms,
including the simultaneous frequency-domain (SFD) algorithm and the multiple-
reference simultaneous frequency-domain algorithm. These algorithms are essen-
tially frequency-domain equivalents to the Ibrahim time-domain and eigensystem
realization algorithms and effectively involve a state-space formulation when com-
pared to the second-order frequency-domain algorithms. The state-space formula-
tion utilizes the derivatives of the frequency response functions as well as the FRF
in the solution. These algorithms have superior numerical characteristics compared
to the high-order frequency-domain algorithms. Unlike the low-order time-domain
algorithms, though, sufficient data from across the complete frequency range of
interest must be included in order to obtain a satisfactory solution.

Basic equation—high-order coefficient normalization:

�[α0][β0]
2No × 4No� 

4No × Ni

= −� 
2No × Ni

(21.85)

Basic equation—zero-order coefficient normalization:

�[α1][β0]
2No × 4No� 

4No × Ni

= −� 
2No × Ni

(21.86)

Second-Order Frequency-Domain Algorithms. The second-order frequency-
domain algorithms include the polyreference frequency-domain (PFD) algorithms.
These algorithms have superior numerical characteristics compared to the high-
order frequency-domain algorithms. Unlike the low-order time-domain algorithms,
though, sufficient data from across the complete frequency range of interest must be
included in order to obtain a satisfactory solution.

Basic equation—high-order coefficient normalization:

�[α0][α1][β0][β1]
No × 4No� 

4No × Ni

= −(si)2[H(ωi)]No × Ni
(21.87)

Basic equation—zero-order coefficient normalization:

�[α1][α2][β0][β1]
No × 4No� 

4No × Ni

= −(si)0[H(ωi)]No × Ni
(21.88)

Residue Estimation. Once the modal frequencies and modal participation vec-
tors have been estimated, the associated modal vectors and modal scaling (residues)

(si)1[H(ωi)]
(si)2[H(ωi)]

−(si)0[I]
−(si)1[I]

(si)0[H(ωi)]
(si)1[H(ωi)]

−(si)0[I ]
−(si)1[I ]

(si)0[H(ωi)]
(si)1[H(ωi)]

(si)1[H(ωi)]
(si)2[H(ωi)]

−(si)0[I ]
−(si)1[I ]

(si)1[H(ωi)]
(si)2[H(ωi)]

(si)0[H(ωi)]
(si)1[H(ωi)]

−(si)0[I ]
−(si)1[I ]

EXPERIMENTAL MODAL ANALYSIS 21.45



can be found with standard least-squares methods in either the time or the fre-
quency domain.The most common approach is to estimate residues in the frequency
domain utilizing residuals, if appropriate.

{Hpq(ω)}Ns × 1 = � Ns × (2n + 2) {Apqr}(2n + 2) × 1 (21.89)

where Ns = number of spectral lines
Ns ≥ 2n + 2

�  =� 
{Apqr} = � � {Hpq(ω)} = � �

The preceding equation is a linear equation, in terms of the unknown residues, once
the modal frequencies are known. Since more frequency information Ns is available
from the measured frequency response function than the number of unknowns 2n + 2,
this system of equations is normally solved using the same least-squares methods
discussed previously. If multiple-input frequency response function data is available,
the preceding equation is modified to find a single set of 2n residues representing all
of the FRFs for the multiple inputs and a single output.

MODAL DATA PRESENTATION/VALIDATION

Once the modal parameters are determined, several procedures exist that allow for
the modal model to be validated. Some of the procedures that are used are:

● Measurement synthesis
● Visual verification (animation)
● Finite element analysis
● Modal vector orthogonality
● Modal vector consistency (modal assurance criterion)
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● Modal modification prediction
● Modal complexity
● Modal phase colinearity and mean phase deviation

All of these methods depend upon the evaluation of an assumption concerning the
modal model. Unfortunately, the success of the validation method only defines the
validity of the assumption; the failure of the modal validation does not generally
define what the cause of the problem is.

MEASUREMENT SYNTHESIS

The most common validation procedure is to compare the data synthesized from the
modal model with the measured data. This is particularly effective if the measured
data is not part of the data used to estimate the modal parameters. This serves as an
independent check of the modal parameter estimation process.

The visual match can be given a numerical value if a correlation coefficient, sim-
ilar to coherence, is estimated. The basic assumption is that the measured frequency
response function and the synthesized FRF should be linearly related (unity) at all
frequencies.

Synthesis correlation coefficient (SCC):

SCCpq = Γ2
pq = (21.90)

where Hpq(ω) = measured FRF
Ĥpq(ω) = synthesized FRF

VISUAL VERIFICATION

Another common method of modal model validation is to evaluate the modal vectors
visually. While this can be accomplished from plotted modal vectors superimposed
upon the undeformed geometry, the modal vectors are normally animated (superim-
posed upon the undeformed geometry) in order to quickly assess the modal vector.
Particularly, modal vectors are evaluated for physically realizable characteristics such
as discontinuous motion or out-of-phase problems. Often, rigid-body modes of vibra-
tion are evaluated to determine scaling (calibration) errors or invalid measurement
degree-of-freedom assignment or orientation. Naturally, if the system under test is
believed to be proportionally damped, the modal vectors should be normal modes,
and this characteristic can be quickly observed by viewing an animation of the modal
vector.

FINITE ELEMENT ANALYSIS

The results of a finite element analysis of the system under test can provide another
method of validating the modal model. While the problem of matching the number
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of analytical degrees of freedom Na to the number of experimental DOF Ne causes
some difficulty, the modal frequencies and modal vectors can be compared visually or
through orthogonality or consistency checks. Unfortunately, when the comparison is
not sufficiently acceptable, the question of error in the experimental model versus
error in the analytical model cannot be easily resolved. Generally, assuming minimal
errors and sufficient analysis and test experience, reasonable agreement can be found
in the first 10 deformable modal vectors, but agreement for higher modal vectors is
more difficult. Finite element analysis is discussed in detail in Chap. 28.

MODAL VECTOR ORTHOGONALITY

Another method that is used to validate an experimental modal model is the
weighted orthogonality check. In this case, the experimental modal vectors are used
together with a mass matrix normally derived from a finite element model to evalu-
ate orthogonality. The experimental modal vectors are scaled so that the diagonal
terms of the modal mass matrix are unity. With this form of scaling, the off-diagonal
values in the modal mass matrix are expected to be less than 0.1 (10 percent of the
diagonal terms).

Theoretically, for the case of proportional damping, each modal vector of a sys-
tem is orthogonal to all other modal vectors of that system when weighted by the
mass, stiffness, or damping matrix. In practice, these matrices are made available by
way of a finite element analysis, and normally the mass matrix is considered to be the
most accurate. For this reason, any further discussion of orthogonality is made with
respect to mass matrix weighting. As a result, the orthogonality relations can be
stated as follows:

Orthogonality of modal vectors:

{ψr}[M]{ψs} = 0 r ≠ s (21.91)

{ψr}[M]{ψs} = Mr r = s (21.92)

Experimentally, the result of zero for the cross orthogonality [Eq. (21.91)] can
rarely be achieved, but values up to one-tenth of the magnitude of the generalized
mass of each mode are considered to be acceptable. It is a common procedure to form
the modal vectors into a normalized set of mode shape vectors with respect to the
mass matrix weighting. The accepted criterion in the aerospace industry, where this
confidence check is made most often, is for all of the generalized mass terms to be
unity and all cross-orthogonality terms to be less than 0.1. Often, even under this cri-
terion, an attempt is made to adjust the modal vectors so that the cross-orthogonality
conditions are satisfied.51–55

In Eqs. (21.91) and (21.92) the mass matrix must be an No × No matrix correspon-
ding to the measurement locations on the structure. This means that the finite ele-
ment mass matrix must be modified from whatever size and distribution of grid
locations are required in the finite element analysis to the No × No square matrix cor-
responding to the measurement locations. This normally involves some sort of
reduction algorithm as well as interpolation of grid locations to match the measure-
ment situation.54,55

When Eq. (21.91) is not sufficiently satisfied, one (or more) of three situations
may exist. First, the modal vectors can be invalid. This can be due to measurement
error or problems with the modal parameter estimation algorithms. This is a very
common assumption and many times contributes to the problem. Second, the mass
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matrix can be invalid. Since the mass matrix is not easily related to the physical prop-
erties of the system, this probably contributes significantly to the problem.Third, the
reduction of the mass matrix can be invalid.This can certainly be a realistic problem
and can cause severe errors. One example of this situation occurs when a relatively
large amount of mass is reduced to a measurement location that is highly flexible,
such as the center of an unsupported panel. In such a situation, the measurement
location is weighted very heavily in the orthogonality calculation of Eq. (21.91) but
may represent only incidental motion of the overall modal vector.

In all probability, all three situations contribute to the failure of cross-
orthogonality criteria on occasion. When the orthogonality conditions are not satis-
fied, this result does not indicate where the problem originates. From an
experimental point of view, it is important to try to develop methods that indicate
confidence that the modal vector is or is not part of the problem.

MODAL VECTOR CONSISTENCY

Since the residue matrix contains redundant information with respect to a modal
vector, the consistency of the estimate of the modal vector under varying conditions
such as excitation location or modal parameter estimation algorithms can be a valu-
able confidence factor to be utilized in the process of evaluation of the experimen-
tal modal vectors.

The common approach to estimation of modal vectors from the frequency re-
sponse function method is to measure a complete row or column of the FRF matrix.
This gives reasonable definition to those modal vectors that have a nonzero modal
coefficient at the excitation location and can be completely uncoupled with the
forced normal mode excitation method. When the modal coefficient at the excita-
tion location of a modal vector is zero (very small with respect to the dynamic range
of the modal vector) or when the modal vectors cannot be uncoupled, the estimation
of the modal vector contains potential bias and variance errors. In such cases, addi-
tional rows and/or columns of the FRF matrix are measured to detect such potential
problems.

In these cases, information in the residue matrix corresponding to each pole of
the system is evaluated to determine separate estimates of the same modal vector.
This evaluation consists of the calculation of a complex modal scale factor (relating
two modal vectors) and a scalar modal assurance criterion (measuring the consis-
tency between two modal vectors). The function of the modal scale factor (MSF) is
to provide a means of normalizing all estimates of the same modal vector.When two
modal vectors are scaled similarly, elements of each vector can be averaged (with or
without weighting), differenced, or sorted to provide a best estimate of the modal
vector or to provide an indication of the type of error vector superimposed on the
modal vector. In terms of multiple-reference modal parameter estimation algo-
rithms, the MSF is a normalized estimate of the modal participation factor between
two references for a specific mode of vibration.The function of the modal assurance
criterion (MAC) is to provide a measure of consistency between estimates of a
modal vector. This provides an additional confidence factor in the evaluation of a
modal vector from different excitation locations. The MAC also provides a method
of determining the degree of causality between estimates of different modal vectors
from the same system.56,57

The modal scale factor is defined, according to this approach, as follows:

MSFcdr = (21.93)
{ψcr}H {ψdr}
��
{ψdr}H {ψdr}
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Equation (21.93) implies that the modal vector d is the reference to which the modal
vector c is compared. In the general case, modal vector c can be considered to be
made of two parts. The first part is the part correlated with modal vector d. The sec-
ond part is the part that is not correlated with modal vector d and is made up of con-
tamination from other modal vectors and of any random contribution. This error
vector is considered to be noise. The modal assurance criterion is defined as a scalar
constant relating the portion of the automoment of the modal vector that is linearly
related to the reference modal vector as follows:

MACcdr = = (21.94)

The MAC is a scalar constant relating the causal relationship between two modal
vectors. The constant takes on values from 0, representing no consistent correspon-
dence, to 1, representing a consistent correspondence. In this manner, if the modal
vectors under consideration truly exhibit a consistent relationship, the MAC should
approach unity and the value of the MSF can be considered to be reasonable.

The MAC can indicate only consistency, not validity. If the same errors, random
or bias, exist in all modal vector estimates, this is not delineated by the MAC. Invalid
assumptions are normally the cause of this sort of potential error. Even though the
MAC is unity, the assumptions involving the system or the modal parameter estima-
tion techniques are not necessarily correct. The assumptions may cause consistent
errors in all modal vectors under all test conditions verified by the MAC.

A number of other evaluation criteria have been developed based upon the same
concept as the MAC.57–58 The linear regression concept involved in the MAC is very
useful whenever a linear relationship between two structural or measurement con-
cepts is anticipated. Another similar concept, the coordinate modal assurance crite-
rion (COMAC) is presented in the next section.

Coordinate Modal Assurance Criterion (COMAC). An extension of the modal
assurance criterion is the coordinate modal assurance criterion (COMAC).58 The
COMAC attempts to identify which measurement degrees of freedom contribute
negatively to a low value of the MAC.The COMAC is calculated over a set of mode
pairs, analytical versus analytical, experimental versus experimental, or experimen-
tal versus analytical. The two modal vectors in each mode pair represent the same
modal vector, but the set of mode pairs represents all modes of interest in a given
frequency range. For two sets of modes that are to be compared, there is a value of
the COMAC computed for each (measurement) DOF.

The coordinate modal assurance criterion is defined as follows:

COMACp = (21.95)

where ψpr = modal coefficient from (measured) DOF p and modal vector r from
one set of modal vectors

φpr = modal coefficient from (measured) DOF p and modal vector r from
a second set of modal vectors

Note that the preceding formulation assumes that there is a match for every mode in
the two sets. Only those modes that match between the two sets are included in the
computation.


�
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MODAL MODIFICATION PREDICTION

The use of a modal model to predict changes in modal parameters caused by a per-
turbation (modification) of the system is becoming more of a reality as more mea-
sured data is acquired simultaneously. In this validation procedure, a modal model is
estimated based upon a complete modal test.This modal model is used as the basis to
predict a perturbation to the system that is tested, such as the addition of a mass at a
particular point on the structure.Then the mass is added to the structure and the per-
turbed system is retested. The predicted and measured data or modal model can be
compared and contrasted as a measure of the validity of the underlying modal model.

MODAL COMPLEXITY

Modal complexity is a variation of the use of sensitivity analysis in the validation of
a modal model. When a mass is added to a structure, the modal frequencies should
either be unaffected or should shift to a slightly lower frequency. Modal overcom-
plexity is a summation of this effect over all measured degrees of freedom for each
mode. Modal complexity is particularly useful for the case of complex modes in an
attempt to quantify whether the mode is genuinely a complex mode, a linear combi-
nation of several modes, or a computational artifact. The mode complexity is nor-
mally indicated by the mode overcomplexity value (MOV), which is the percentage
of response points that actually causes the damped natural frequency to decrease
when a mass is added compared to the total number of response points. A separate
MOV is estimated for each mode of vibration, and the ideal result should be 1.0 (100
percent) for each mode.

MODAL PHASE COLINEARITY AND MEAN PHASE DEVIATION

For proportionally damped systems, each modal coefficient for a specific mode of
vibration should differ by 0° or 180°.The modal phase colinearity (MPC) is an index
expressing the consistency of the linear relationship between the real and imagi-
nary parts of each modal coefficient. This concept is essentially the same as the
ordinary coherence function with respect to the linear relationship of the frequency
response function for different averages or the modal assurance criterion (MAC)
with respect to the modal scale factor between modal vectors. The MPC should be
1.0 (100 percent) for a mode that is essentially a normal mode. A low value of MPC
indicates a mode that is complex (after normalization) and is an indication of a non-
proportionally damped system or errors in the measured data and/or modal param-
eter estimation.

Another indicator that defines whether a modal vector is essentially a normal
mode is the mean phase deviation (MPD).This index is the statistical variance of the
phase angles for each mode shape coefficient for a specific modal vector from the
mean value of the phase angle. The MPD is an indication of the phase scatter of a
modal vector and should be near 0° for a real, normal mode.
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CHAPTER 22
MATRIX METHODS 

OF ANALYSIS

Stephen H. Crandall

Robert B. McCalley, Jr.

INTRODUCTION

The mathematical language which is most convenient for analyzing multiple-degree-
of-freedom vibratory systems is that of matrices. Matrix notation simplifies the pre-
liminary analytical study, and in situations where particular numerical answers are
required, matrices provide a standardized format for organizing the data and the
computations. Computations with matrices can be carried out by hand or by digital
computers. The availability of programs such as MATLAB makes the solution of
many complex problems in vibration analysis a matter of routine.

This chapter describes how matrices are used in vibration analysis. It begins with
definitions and rules for operating with matrices.The formulation of vibration prob-
lems in matrix notation then is treated. This is followed by general matrix solutions
of several important types of vibration problems, including free and forced vibra-
tions of both undamped and damped linear multiple-degree-of-freedom (MDOF)
systems.

MATRICES

Matrices are mathematical entities which facilitate the handling of simultaneous equa-
tions.They are applied to the differential equations of a vibratory system as follows:

A single-degree-of-freedom (SDOF) system of the type in Fig. 22.1 has the dif-
ferential equation

mẍ + cẋ + kx = F

where m is the mass, c is the damping coefficient, k is the stiffness, F is the applied
force, x is the displacement coordinate, and dots denote time derivatives. In Fig. 22.2
a similar three degree-of-freedom system is shown.The equations of motion may be
obtained by applying Newton’s second law to each mass in turn:

mẍ1 + cẋ1 + 5kx1 − 2kx2 = F1

2mẍ2 + 2cẋ2 − 2cẋ3 − 2kx1 + 3kx2 − kx3 = F2 (22.1)

3mẍ3 − 2cẋ2 + 2cẋ3 − kx2 + kx3 = F3

22.1



The accelerations, velocities, displacements, and forces may be organized into
columns, denoted by single boldface symbols:

ẍ1 ẋ1 x1 F1

ẍ = �ẍ2 ẋ = �ẋ2 x = �x2 f = �F2 (22.2)

ẍ3 ẋ3 x3 F3

The inertia, damping, and stiffness coefficients may be organized into square
arrays:

m 0 0 c 0 0 5k −2k 0

M = �0 2m 0  C = �0 2c −2c K = �−2k 3k −k (22.3)

0 0 3m 0 −2c 2c 0 −k k

By using these symbols, it is shown below that it is possible to represent the three
equations of Eq. (22.1) by the following single equation:

Mẍ + Cẋ + Kx = f (22.4)

Note that this has the same form as the differential equation for the  SDOF system of
Fig. 22.1. The notation of Eq. (22.4) has the advantage that in systems of many
degrees of freedom (DOF) it clearly states the physical principle that at every coor-
dinate the external force is the sum of the inertia, damping, and stiffness forces. Equa-
tion (22.4) is an abbreviation for Eq. (22.1). It is necessary to develop the rules of
operation with symbols such as those in Eqs. (22.2) and (22.3) to ensure that no ambi-
guity is involved. The algebra of matrices is devised to facilitate manipulations of
simultaneous equations such as Eq. (22.1). Matrix algebra does not in any way sim-
plify individual operations such as multiplication or addition of numbers, but it is an
organizational tool which permits one to keep track of a complicated sequence of
operations in an optimum manner. Matrices are essential elements of linear algebra,1

and are widely employed in structural analysis2 and vibration analysis.3

DEFINITIONS

A matrix is an array of elements arranged systematically in rows and columns. For
example, a rectangular matrix A, of elements ajk, which has m rows and n columns is

a11 a12 . . . a1n

A = [ajk] = �a21 a22 . . . a2n. . . . . . . . . . . .

am1 am2 . . . amn
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FIGURE 22.1 Single-degree-of-freedom sys-
tem.

FIGURE 22.2 Three-degree-of-freedom sys-
tem.



The elements ajk are usually numbers or functions, but, in principle, they may be any
well-defined quantities.The first subscript j on the element refers to the row number,
while the second subscript k refers to the column number. The array is denoted by
the single symbol A, which can be used as such during operational manipulations in
which it is not necessary to specify continually all the elements ajk. When a numeri-
cal calculation is finally required, it is necessary to refer back to the explicit specifi-
cations of the elements ajk.

A rectangular matrix with m rows and n columns is said to be of order (m,n). A
matrix of order (n,n) is a square matrix and is said to be simply a square matrix of
order n. A matrix of order (n,1) is a column matrix and is said to be simply a column
matrix of order n. A column matrix is sometimes referred to as a column vector. Simi-
larly, a matrix of order (1,n) is a row matrix or a row vector. Boldface capital letters are
used here to represent square matrices and lowercase boldface letters to represent col-
umn matrices or vectors. For example, the matrices in Eq. (22.2) are column matrices
of order three and the matrices in Eq. (22.3) are square matrices of order three.

Some special types of matrices are:

1. A diagonal matrix is a square matrix A whose elements ajk are zero when j ≠ k.
The only nonzero elements are those on the main diagonal, where j = k. In order to
emphasize that a matrix is diagonal, it is often written with small ticks in the direc-
tion of the main diagonal:

A = ajj

2. A unit matrix or identity matrix is a diagonal matrix whose main diagonal elements
are each equal to unity.The symbol I is used to denote a unit matrix. Examples are

1 0 0

�1 0 �0 1 00 1
0 0 1

3. A null matrix or zero matrix has all its elements equal to zero and is simply
written as zero.

4. The transpose AT of a matrix A is a matrix having the same elements but with
rows and columns interchanged. Thus, if the original matrix is

A = [ajk]

the transpose matrix is

AT = [ajk]T = [akj]

For example:

3 2 3 −1
A = �−1 4 AT = �2 4

The transpose of a square matrix may be visualized as the matrix obtained by rotat-
ing the given matrix about its main diagonal as an axis.

The transpose of a column matrix is a row matrix. For example,

3
x = �−4 xT = [3 4 −2]

−2
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Throughout this chapter a row matrix is referred to as the transpose of the corre-
sponding column matrix.

5. A symmetric matrix is a square matrix whose off-diagonal elements are sym-
metric with respect to the main diagonal. A square matrix A is symmetric if, for all j
and k,

ajk = akj

A symmetric matrix is equal to its transpose. For example, all three of the matrices
in Eq. (22.3) are symmetric. In addition, the matrix M is a diagonal matrix.

MATRIX OPERATIONS

Equality of Matrices. Two matrices of the same order are equal if their corre-
sponding elements are equal. Thus, two matrices A and B are equal if, for every j
and k,

ajk = bjk

Matrix Addition and Subtraction. Addition or subtraction of matrices of the
same order is performed by adding or subtracting corresponding elements. Thus,
A + B = C if for every j and k,

ajk + bjk = cjk

For example, if

3 2 −1 2
A = �−1 4 B = � 5 6

then

2 4 4 0
A + B = �4 10 A − B = �−6 −2

Multiplication of a Matrix by a Scalar. Multiplication of a matrix by a scalar c
multiplies each element of the matrix by c. Thus,

cA = c[ajk] = [cajk]

In particular, the negative of a matrix has the sign of every element changed.

Matrix Multiplication. If A is a matrix of order (m,n) and B is a matrix of order
(n,p), then their matrix product AB = C is defined to be a matrix C of order (m,p)
where, for every j and k,

cjk = �
n

r = 1
ajrbrk (22.5)

The product of two matrices can be obtained only if they are conformable, i.e., if the
number of columns in A is equal to the number of rows in B.The symbolic equation

(m,n) × (n,p) = (m,p)
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indicates the orders of the matrices involved in a matrix product. Matrix products
are not commutative, i.e., in general,

AB ≠ BA

The matrix products which appear in this chapter are of the following types:

Square matrix × square matrix = square matrix
Square matrix × column vector = column vector
Row vector × square matrix = row vector
Row vector × column vector = scalar
Column vector × row vector = square matrix

In all cases, the matrices must be conformable. Numerical examples are given below.

AB = �  �  = �−(3 × 1) + (2 × 5) (3 × 2) + (2 × 6) = � (1 × 1) + (4 × 5) −(1 × 2) + (4 × 6)

(3 × 5) + (2 × 3)
Ax = �  �  = �−(1 × 5) + (4 × 3) = � 

3 2yTA = [−2 1] �−1 4 = [−(2 × 3) − (1 × 1) − (2 × 2) + (1 × 4)] = [−7 0]

yTx = [−2 1] �  = (−10 + 3) = −7

−(5 × 2) (5 × 1)
xyT = �  [−2 1] = �−(3 × 2) (3 × 1) = � 

The last product always results in a matrix with proportional rows and columns.
The operation of matrix multiplication is particularly suited for representing sys-

tems of simultaneous linear equations in a compact form in which the coefficients
are gathered into square matrices and the unknowns are placed in column matrices.
For example, it is the operation of matrix multiplication which gives unambiguous
meaning to the matrix abbreviation in Eq. (22.4) for the three simultaneous differ-
ential equations of Eq. (22.1). The two sides of Eq. (22.4) are column matrices of
order three whose corresponding elements must be equal. On the right, these ele-
ments are simply the external forces at the three masses. On the left, Eq. (22.4) states
that the resulting column is the sum of three column matrices, each of which results
from the matrix multiplication of a square matrix of coefficients defined in Eq.
(22.3) into a column matrix defined in Eq. (22.2). The rules of matrix operation just
given ensure that Eq. (22.4) is exactly equivalent to Eq. (22.1).

Premultiplication or postmultiplication of a square matrix by the identity matrix
leaves the original matrix unchanged; i.e.,

IA = AI = A

Two symmetrical matrices multiplied together are generally not symmetric. The
product of a matrix and its transpose is symmetric.

5
3

−10
−6

5
3

5
3

21
7

5
3

2
4

3
−1

18
22

7
21

2
6

−1
5

2
4

3
−1
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Continued matrix products such as ABC are defined, provided the number of
columns in each matrix is the same as the number of rows in the matrix immediately
following it. From the definition of matrix products, it follows that the associative law
holds for continued products:

(AB)C = A(BC)

A square matrix A multiplied by itself yields a square matrix which is called the
square of the matrix A and is denoted by A2. If A2 is in turn multiplied by A, the
resulting matrix is A3 = A(A2) = A2(A). Extension of this process gives meaning to
Am for any positive integer power m. Powers of symmetric matrices are themselves
symmetric.

The rule for transposition of matrix products is

(AB)T = BTAT

Inverse or Reciprocal Matrix. If, for a given square matrix A, a square matrix 
A−1 can be found such that

A−1A = AA−1 = I (22.6)

then A−1 is called the inverse or reciprocal of A. Not every square matrix A possesses
an inverse. If the determinant constructed from the elements of a square matrix is
zero, the matrix is said to be singular and there is no inverse. Every nonsingular
matrix possesses a unique inverse. The inverse of a symmetric matrix is symmetric.
The rule for the inverse of a matrix product is

(AB)−1 = (B−1)(A−1)

The solution to the set of simultaneous equations

Ax = c

where x is the unknown vector and c is a known input vector can be indicated with
the aid of the inverse of A. The formal solution for x proceeds as follows:

A−1Ax = A−1c

Ix = x = A−1c

When the inverse A−1 is known, the solution vector x is obtained by a simple matrix
multiplication of A−1 into the input vector c.

Calculation of inverses and the solutions of simultaneous linear equations are
readily performed for surprisingly large values of n by programs such as MATLAB.
When n = 2 and

A = �  x = �  c = � 
hand-computation is possible using the following formulas:

A−1 = �  x1 = x2 =
Δ2�Δ

Δ1�Δ
−a12

a11

a22

−a21

1
�Δ

c1

c2

x1

x2

a12

a22

a11

a21
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where the determinants have the values

Δ = a11a22 − a12a21 Δ1 = c1a22 − c2a12 Δ2 = c2a11 − c1a21

QUADRATIC FORMS

A general quadratic form Q of order n may be written as

Q = �
n

j = 1
�

n

k = 1
ajkxjxk

where the ajk are constants and the xj are the n variables. The form is quadratic since
it is of the second degree in the variables.The laws of matrix multiplication permit Q
to be written as

a11 a12 . . . a1n x1

Q = [x1x2 . . . xn] �a21 a22 . . . a2n �x2. . . . . . . . . . . . . . .
an1 an2 . . . ann xn

which is

Q = xTAx

Any quadratic form can be expressed in terms of a symmetric matrix. If the given
matrix A is not symmetric, it can be replaced by the symmetric matrix

B = 1⁄2(A + AT )

without changing the value of the form.
As an example of a quadratic form, the potential energy V for the system of Fig.

22.2 is given by

2V = 3kx1
2 + 2k(x2 − x1)2 + k(x3 − x2)2

= 5kx1x1 − 2kx1x2

− 2kx2x1 + 3kx2 x2 − kx2x3

− kx3 x2 + kx3x3

Using the displacement vector x defined in Eq. (22.2) and the stiffness matrix K in
Eq. (22.3), the potential energy may be written as

V = 1⁄2xTKx

Similarly, the kinetic energy T is given by

2T = mẋ1
2 + 2mẋ2

2 + 3mẋ3
2

In terms of the inertia matrix M and the velocity vector ẋ defined in Eqs. (22.3) and
(22.2), the kinetic energy may be written as

T = 1⁄2ẋTMẋ

The dissipation function D for the system is given by
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2D = cẋ1
2 + 2c(ẋ3 − ẋ2)2

= cẋ1ẋ1

+ 2cẋ2ẋ2 − 2cẋ2ẋ3

− 2cẋ3 ẋ2 + 2cẋ3 ẋ3

In terms of the velocity vector ̇x and the damping matrix C defined in Eqs. (22.2) and
(22.3), the dissipation function may be written as

D = 1⁄2ẋTCẋ

The dissipation function gives half the rate at which energy is being dissipated in the
system.

While quadratic forms assume positive and negative values in general, the three
physical forms just defined are intrinsically positive for a vibrating system with lin-
ear springs, constant masses, and viscous damping; i.e., they can never be negative
for a real motion of the system. Kinetic energy is zero only when the system is at
rest. The same thing is not necessarily true for potential energy or the dissipation
function.

Depending upon the arrangement of springs and dashpots in the system, there
may exist motions which do not involve any potential energy or dissipation. For
example, in vibratory systems where rigid-body motions are possible (crankshaft tor-
sional systems, free-free beams, etc.), no elastic energy is involved in the rigid-body
motions. Also, in Fig. 22.2, if x1 is zero while x2 and x3 have the same motion, there is
no energy dissipated and the dissipation function is zero. To distinguish between
these two possibilities, a quadratic form is called positive definite if it is never nega-
tive and if the only time it vanishes is when all the variables are zero. Kinetic energy
is always positive definite, while potential energy and the dissipation function are
positive but not necessarily positive definite. It depends upon the particular config-
uration of a given system whether the potential energy and the dissipation function
are positive definite or only positive. The terms positive and positive definite are
applied also to the matrices from which the quadratic forms are derived. For exam-
ple, of the three matrices defined in Eq. (22.3), the matrices M and K are positive
definite, but C is only positive. It can be shown that a matrix which is positive but not
positive definite is singular.

Differentiation of Quadratic Forms. In forming Lagrange’s equations of motion
for a vibrating system,* it is necessary to take derivatives of the potential energy V,
the kinetic energy T, and the dissipation function D. When these quadratic forms are
represented in matrix notation, it is convenient to have matrix formulas for differ-
entiation. In this paragraph rules are given for differentiating the slightly more gen-
eral bilinear form

F = xTAy = yTAx

where xT is a row vector of n variables xj, A is a square matrix of constant coeffi-
cients, and y is a column matrix of n variables yj. In a quadratic form the xj are iden-
tical with the yj.

For generality it is assumed that the xj and the yj are functions of n other variables uj.
In the formulas below, the notation Xu is used to represent the following square matrix:
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. . .

Xu = . . .

. . . . . . . . . . . .

. . .

Now letting ∂/∂u stand for the column vector whose elements are the partial differ-
ential operators with respect to the uj, the general differentiation formula is

= = XuAy + YuATx
⋅⋅⋅

For a quadratic form Q = xTAx the above formula reduces to

= Xu(A + AT )x

Thus, whether A is symmetric or not, this kind of differentiation produces a symmetri-
cal matrix of coefficients (A + AT ). It is this fact which ensures that vibration equations
in the form obtained from Lagrange’s equations always have symmetrical matrices of
coefficients. If A is symmetrical to begin with, the previous formula becomes

= 2XuAx

Finally, in the important special case where the xj are identical with the uj, the matrix
Xx reduces to the identity matrix, yielding

= 2Ax (22.7)

which is employed in the following section in developing Lagrange’s equations.

FORMULATION OF VIBRATION PROBLEMS IN MATRIX FORM

Consider a holonomic linear mechanical system with n degrees of freedom which
vibrates about a stable equilibrium configuration. Let the motion of the system be
described by n generalized displacements xj(t) which vanish in the equilibrium posi-
tion. The potential energy V can then be expressed in terms of these displacements
as a quadratic form. The kinetic energy T and the dissipation function D can be
expressed as quadratic forms in the generalized velocities ẋj(t).

∂Q
�
∂x

∂Q
�
∂u

∂Q
�
∂u

∂F
�
∂un

∂F
�
∂u2

∂F
�
∂u

∂F
�
∂u1

∂xn�
∂un

∂x2�
∂un

∂x1�
∂un

∂xn�
∂u2

∂x2�
∂u2

∂x1�
∂u2

∂xn�
∂u1

∂x2�
∂u1

∂x1�
∂u1
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The equations of motion are obtained by applying Lagrange’s equations

� 	 + + = fj(t) [ j = 1, 2, . . . , n]

The generalized external force fj(t) for each coordinate may be an active force in the
usual sense or a force generated by prescribed motion of the coordinates.

If each term in the foregoing equation is taken as the jth element of a column
matrix, all n equations can be considered simultaneously and written in matrix form
as follows:

� 	 + + = f

The quadratic forms can be expressed in matrix notation as

T = 1⁄2(ẋT Mẋ)

D = 1⁄2(ẋTCẋ)

V = 1⁄2(xTKx)

where the inertia matrix M, the damping matrix C, and the stiffness matrix K may be
taken as symmetric square matrices of order n. Then the differentiation rule (22.7)
yields

(Mẋ) + Cẋ + Kx = f

or simply

Mẍ + Cẋ + Kx = f (22.8)

as the equations of motion in matrix form for a general linear vibratory system
with n degrees of freedom. This is a generalization of Eq. (22.4) for the three-DOF
system of Fig. 22.2. Equation (22.8) applies to all linear constant-parameter vibra-
tory systems. The specifications of any particular system are contained in the coef-
ficient matrices M, C, and K. The type of excitation is described by the column
matrix f. The individual terms in the coefficient matrices have the following signif-
icance:

mjk is the momentum component at j due to a unit velocity at k.

cjk is the damping force at j due to a unit velocity at k.

kjk is the elastic force at j due to a unit displacement at k.

The general solution to Eq. (22.8) contains 2n constants of integration which
are usually fixed by the n displacements xj(t0) and the n velocities ẋj(t0) at some
initial time t0. When the excitation matrix f is zero, Eq. (22.8) is said to describe
the free vibration of the system. When f is nonzero, Eq. (22.8) describes a forced
vibration. When the time behavior of f is periodic and steady, it is sometimes con-
venient to divide the solution into a steady-state response plus a transient response
which decays with time. The steady-state response is independent of the initial
conditions.

d
�
dt

∂V
�
∂x

∂D
�
∂ẋ

∂T
�
∂ẋ

d
�
dt

∂V
�
∂xj

∂D
�
∂ẋj

∂T
�
∂ẋj

d
�
dt
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COUPLING OF THE EQUATIONS

The off-diagonal terms in the coefficient matrices are known as coupling terms. In
general, the equations have inertia, damping, and stiffness coupling; however, it is
often possible to obtain equations that have no coupling terms in one or more of the
three matrices. If the coupling terms vanish in all three matrices (i.e., if all three
square matrices are diagonal matrices), the system of Eq. (22.8) becomes a set of
independent uncoupled differential equations for the n generalized displacements
xj(t). Each displacement motion is a single-degree-of-freedom vibration indepen-
dent of the motion of the other displacements.

The coupling in a system depends on the choice of coordinates used to describe
the motion. For example, Figs. 22.3 and 22.4 show the same physical system with two
different choices for the displacement coordinates.

The coefficient matrices corresponding to the coordinates shown in Fig. 22.3 are

m1 0 k1 + k2 −k2
M = �0 m2

 K = � −k2 k2


Here the inertia matrix is uncoupled because the coordinates chosen are the
absolute displacements of the masses. The elastic force in the spring k2 is generated
by the relative displacement of the two coordinates, which accounts for the coupling
terms in the stiffness matrix.

The coefficient matrices corresponding to the alternative coordinates shown in
Fig. 22.4 are

m1 + m2 m2 k1 0
M = � m2 m2

 K = �0 k2


Here the coordinates chosen relate directly to the extensions of the springs so that
the stiffness matrix is uncoupled. The absolute displacement of m2 is, however, the
sum of the coordinates, which accounts for the coupling terms in the inertia matrix.

A fundamental procedure for solving vibration problems in undamped systems
may be viewed as the search for a set of coordinates which simultaneously uncouples
both the stiffness and inertia matrices.This is always possible. In systems with damp-
ing (i.e., with all three coefficient matrices) there exist coordinates which uncouple
two of these, but it is not possible to uncouple all three matrices simultaneously,
except in the special case, called proportional damping, where C is a linear combi-
nation of K and M.

The system of Fig. 22.2 provides an example of a three-DOF system with damping.
The coefficient matrices are given in Eq. (22.3). The inertia matrix is uncoupled, but
the damping and stiffness matrices are coupled.
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pled inertia matrix.

FIGURE 22.4 Coordinates (x1,x2) with uncou-
pled stiffness matrix. The equilibrium length of
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Another example of a system with
damping is furnished by the two-DOF
system shown in Fig. 22.5. The excita-
tion here is furnished by acceleration
ẍ0(t) of the base. This system is used as
the basis for the numerical example at
the end of the chapter. With the coordi-
nates chosen as indicated in the figure,
all three coefficient matrices have cou-
pling terms. The equations of motion
can be placed in the standard form of
Eq. (22.8), where the coefficient matri-
ces and the excitation column are as
follows:

m1 + m2 m2 c1 + c3 c3
M = � m2 m2

 C = � c3 c2 + c3


k1 + k3 k3 m1 + m2
K = � k3 k2 + k3

 f = −ẍ0 � m2


(22.9)

THE MATRIX EIGENVALUE PROBLEM

In the following sections the solutions to both free and forced vibration problems
are given in terms of solutions to a specialized algebraic problem known as the
matrix eigenvalue problem. In the present section a general theoretical discussion of
the matrix eigenvalue problem is given.

The free vibration equation for an undamped system,

Mẍ + Kx = 0 (22.10)

follows from Eq. (22.8) when the excitation f and the damping C vanish. If a solution
for x is assumed in the form

x = R {vejωt}

where v is a column vector of unknown amplitudes, ω is an unknown frequency, j is the
square root of −1, and R { } signifies “the real part of,” it is found on substituting in
Eq. (22.10) that it is necessary for v and ω to satisfy the following algebraic equation:

Kv = ω2Mv (22.11)

This algebraic problem is called the matrix eigenvalue problem. Where necessary it
is called the real eigenvalue problem to distinguish it from the complex eigenvalue
problem described in the section “Vibration of Systems with Damping.”

To indicate the formal solution to Eq. (22.11), it is rewritten as

(K − ω2M)v = 0 (22.12)

which can be interpreted as a set of n homogeneous algebraic equations for the n
elements vj. This set always has the trivial solution
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v = 0

It also has nontrivial solutions if the determinant of the matrix multiplying the vec-
tor v is zero, i.e., if

det (K − ω2M) = 0 (22.13)

When the determinant is expanded, a polynomial of order n in ω2 is obtained. Equa-
tion (22.13) is known as the characteristic equation or frequency equation. The
restrictions that M and K be symmetric and that M be positive definite are sufficient
to ensure that there are n real roots for ω2. If K is singular, at least one root is zero.
If K is positive definite, all roots are positive.The n roots determine the n natural fre-
quencies ωr (r = 1, . . . , n) of free vibration.These roots of the characteristic equation
are also known as normal values, characteristic values, proper values, latent roots, or
eigenvalues. When a natural frequency ωr is known, it is possible to return to Eq.
(22.12) and solve for the corresponding vector vr to within a multiplicative constant.
The eigenvalue problem does not fix the absolute amplitude of the vectors v, only
the relative amplitudes of the n coordinates.There are n independent vectors vr cor-
responding to the n natural frequencies which are known as natural modes. These
vectors are also known as normal modes, characteristic vectors, proper vectors, latent
vectors, or eigenvectors.

MODAL AND SPECTRAL MATRICES

The complete solution to the eigenvalue problem of Eq. (22.11) consists of n eigen-
values and n corresponding eigenvectors. These can be assembled compactly into
matrices. Let the eigenvector vr corresponding to the eigenvalue ωr

2 have elements
vjr (the first subscript indicates which row, the second subscript indicates which
eigenvector). The n eigenvectors then can be displayed in a single square matrix V,
each column of which is an eigenvector:

V = [vjk] = � 
The matrix V is called the modal matrix for the eigenvalue problem, Eq. (22.11).

The n eigenvalues ωr
2 can be assembled into a diagonal matrix Ω2 which is known

as the spectral matrix of the eigenvalue problem, Eq. (22.11)

ω1
2 0 . . . 0

W2 = ωr
2 = �0 ω2

2 . . . 0
. . . . . . . . . . . .
0 0 . . . ωn

2

Each eigenvector and corresponding eigenvalue satisfy a relation of the following
form:

Kvr = Mvrωr
2

By using the modal and spectral matrices it is possible to assemble all of these rela-
tions into a single matrix equation

v1n

v2n

. . .
vnn

. . .

. . .

. . .

. . .

v12

v22

. . .
vn2

v11

v21

. .
vn1
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KV = MVW2 (22.14)

Equation (22.14) provides a compact display of the complete solution to the eigen-
value problem Eq. (22.11).

PROPERTIES OF THE SOLUTION

The eigenvectors corresponding to different eigenvalues can be shown to satisfy the
following orthogonality relations. When ωr

2 ≠ ωs
2,

vr
TKvs = 0 vr

TMvs = 0 (22.15)

In case the characteristic equation has a p-fold multiple root for ω2, then there is a 
p-fold infinity of corresponding eigenvectors. In this case, however, it is always pos-
sible to choose p of these vectors which mutually satisfy Eq. (22.15) and to express
any other eigenvector corresponding to the multiple root as a linear combination of
the p vectors selected. If these p vectors are included with the eigenvectors corre-
sponding to the other eigenvalues, a set of n vectors is obtained which satisfies the
orthogonality relations of Eq. (22.15) for any r ≠ s.

The orthogonality of the eigenvectors with respect to K and M implies that the
following square matrices are diagonal.

VT KV = vr
TKvr

VT MV = vr
TMvr

(22.16)

The elements vr
TKvr along the main diagonal of VT KV are called the modal stiff-

nesses kr, and the elements vr
TMvr along the main diagonal of VT MV are called the

modal masses mr. Since M is positive definite, all modal masses are guaranteed to be
positive. When K is singular, at least one of the modal stiffnesses will be zero. Each
eigenvalue ωr

2 is the quotient of the corresponding modal stiffness divided by the
corresponding modal mass; i.e.,

ωr
2 =

In numerical work it is sometimes convenient to normalize each eigenvector so
that its largest element is unity. In other applications it is common to normalize the
eigenvectors so that the modal masses mr all have the same value m, where m is
some convenient value such as the total mass of the system. In this case,

VTMV = mI (22.17)

and it is possible to express the inverse of the modal matrix V simply as

V−1 = VT M

An interpretation of the modal matrix V can be given by showing that it defines
a set of generalized coordinates for which both the inertia and stiffness matrices are
uncoupled. Let y(t) be a column of displacements related to the original displace-
ments x(t) by the following simultaneous equations:

y = V−1x or x = Vy

1
�
m

kr�
mr
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The potential and kinetic energies then take the forms

V = 1⁄2xT Kx = 1⁄2yT(VT KV)y

T = 1⁄2 ẋT Mẋ = 1⁄2 ẏT(VT MV)ẏ

where, according to Eq. (22.16), the square matrices in parentheses on the right
are diagonal; i.e., in the yj coordinate system there is neither stiffness nor inertia
coupling.

An alternative method for obtaining the same interpretation is to start from the
eigenvalue problem of Eq. (22.11). Consider the structure of the related eigenvalue
problem for w where again w is obtained from v by the transformation involving the
modal matrix V.

w = V−1v or v = Vw

Substituting in Eq. (22.11), premultiplying by VT, and using Eq. (22.14),

Kv = ω2Mv

KVw = ω2MVw

VT KVw = ω2VT MVw

(VT MV)W2w = ω2(VT MV)w

Now, since VTMV is a diagonal matrix of positive elements, it is permissible to can-
cel it from both sides, which leaves a simple diagonalized eigenvalue problem for w:

W2w = ω2w

A modal matrix for w is the identity matrix I, and the eigenvalues for w are the same
as those for v.

EIGENVECTOR EXPANSIONS

Any set of n independent vectors can be used as a basis for representing any other
vector of order n. In the following sections, the eigenvectors of the eigenvalue prob-
lem of Eq. (22.11) are used as such a basis.An eigenvector expansion of an arbitrary
vector y has the form

y = �
n

r = 1
vrar (22.18)

where the ar are scalar mode multipliers. When y and the vr are known, it is possible
to evaluate the ar by premultiplying both sides by vs

TM. Because of the orthogonal-
ity relations of Eq. (22.15), all the terms on the right vanish except the one for which
r = s. Inserting the value of the mode multiplier so obtained, the expansion can be
rewritten as

y = �
n

r = 1
vr (22.19)

or alternatively as

vr
TMy

�
vr

TMvr
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y = �
n

r = 1
y (22.20)

The form of Eq. (22.19) emphasizes the decomposition into eigenvectors since the
fraction on the right is just a scalar. The form of Eq. (22.20) is convenient when a
large number of vectors y are to be decomposed, since the fractions on the right,
which are now square matrices, must be computed only once. The form of Eq.
(22.20) becomes more economical of computation time when more than n vectors y
have to be expanded. A useful check on the calculation of the matrices on the right
of Eq. (22.20) is provided by the identity

�
n

r = 1
= I (22.21)

which follows from Eq. (22.20) because y is completely arbitrary.
An alternative expansion which is useful for expanding the excitation vector f is

f = �
n

r = 1
ωr

2Mvrar = �
n

r = 1
Mvr (22.22)

This may be viewed as an expansion of the excitation in terms of the inertia force
amplitudes of the natural modes. The mode multiplier ar has been evaluated by pre-
multiplying by vr

T.A form analogous to Eq. (22.20) and an identity corresponding to
Eq. (22.21) can easily be written.

RAYLEIGH’S QUOTIENT

If Eq. (22.11) is premultiplied by vT, the following scalar equation is obtained:

vT Kv = ω2vTMv

The positive definiteness of M guarantees that vT Mv is nonzero, so that it is per-
missible to solve for ω2.

ω2 = (22.23)

This quotient is called “Rayleigh’s quotient.” It also may be derived by equating
time averages of potential and kinetic energy under the assumption that the vibra-
tory system is executing simple harmonic motion at frequency ω with amplitude
ratios given by v or by equating the maximum value of kinetic energy to the maxi-
mum value of potential energy under the same assumption. Rayleigh’s quotient has
the following interesting properties.

1. When v is an eigenvector vr of Eq. (22.11), then Rayleigh’s quotient is equal to
the corresponding eigenvalue ωr

2.
2. If v is an approximation to vr with an error which is a first-order infinitesimal, then

Rayleigh’s quotient is an approximation to ωr
2 with an error which is a second-

order infinitesimal; i.e., Rayleigh’s quotient is stationary in the neighborhoods of
the true eigenvectors.

3. As v varies through all of n-dimensional vector space, Rayleigh’s quotient re-
mains bounded between the smallest and largest eigenvalues.

vTKv
�
vTMv

vr
Tf

�
vr

TMvr

vrvr
TM

�
vr

TMvr

vrvr
TM

�
vr

TMvr
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A common engineering application of Rayleigh’s quotient involves simply eval-
uating Eq. (22.23) for a trial vector v which is selected on the basis of physical
insight. When eigenvectors are obtained by approximate methods, Rayleigh’s quo-
tient provides a means of improving the accuracy in the corresponding eigenvalue. If
the elements of an approximate eigenvector whose largest element is unity are cor-
rect to k decimal places, then Rayleigh’s quotient can be expected to be correct to
about 2k significant decimal places.

Perturbation Formulas. The perturbation formulas which follow provide the
basis for estimating the changes in the eigenvalues and the eigenvectors which result
from small changes in the stiffness and inertia parameters of a system. The formulas
are strictly accurate only for infinitesimal changes but are useful approximations for
small changes. They may be used by the designer to estimate the effects of a pro-
posed change in a vibratory system and may also be used to analyze the effects of
minor errors in the measurement of the system properties. Iterative procedures for
the solution of eigenvalue problems can be based on these formulas. They are
employed here to obtain approximations to the complex eigenvalues and eigenvec-
tors of a lightly damped vibratory system in terms of the corresponding solutions for
the same system without damping.

Suppose that the modal matrix V and the spectral matrix W2 for the eigenvalue
problem

KV = MVW2 (22.14)

are known. Consider the perturbed eigenvalue problem

K*V* = M*V*W*
2

where

K* = K + dK M* = M + dM

V* = V + dV W*
2 = W2 + dW2

The perturbation formula for the elements dωr
2 of the diagonal matrix dΩ2 is

dωr
2 = (22.24)

Thus, in order to determine the change in a single eigenvalue due to changes in M
and K, it is necessary to know only the corresponding unperturbed eigenvalue and
eigenvector.To determine the change in a single eigenvector, however, it is necessary
to know all the unperturbed eigenvalues and eigenvectors. The following algorithm
may be used to evaluate the perturbations of both the modal matrix and the spectral
matrix. Calculate

F = VT dK V − VT dM VW2

and

L = VT MV

The matrix L is a diagonal matrix of positive elements and hence is easily inverted.
Continue calculating

G = L−1F = [gjk] and H = [hjk]

vr
T dK vr − ωr

2vr
T dM vr���

vr
TMvr
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where

0 if ωj
2 = ωk

2

hjk = � if ωj
2 ≠ ωk

2

Then, finally, the perturbations of the modal matrix and the spectral matrix are given
by

dV = VH dW2 = gjj (22.25)

These formulas are derived by taking the total differential of Eq. (22.14), premulti-
plying each term by VT, and using a relation derived by taking the transpose of Eq.
(22.14). An interesting property of the perturbation approximation is that the
change in each eigenvector is orthogonal with respect to M to the corresponding
unperturbed eigenvector; i.e.,

vj
TM dvj = 0

VIBRATIONS OF SYSTEMS WITHOUT DAMPING

In this section the damping matrix C is neglected in Eq. (22.8), leaving the general
formulation in the form

Mẍ + Kx = f (22.26)

Solutions are outlined for the following three cases: free vibration (f = 0), steady-
state forced sinusoidal vibration (f = R {dejωt}, where d is a column vector of driving-
force amplitudes), and the response to general excitation (f an arbitrary function of
time). The first two cases are contained in the third, but for the sake of clarity each
is described separately.

FREE VIBRATION WITH SPECIFIED INITIAL CONDITIONS

It is desired to find the solution x(t) of Eq. (22.26) when f = 0 which satisfies the ini-
tial conditions

x = x(0) ẋ = ẋ(0) (22.27)

at t = 0 where x(0) and ẋ(0) are columns of prescribed initial displacements and
velocities. The differential equation to be solved is identical with Eq. (22.10), which
led to the matrix eigenvalue problem in the preceding section. Assuming that the
solution of the eigenvalue problem is available, the general solution of the differen-
tial equation is given by an arbitrary superposition of the natural modes

x = �
n

r = 1
vr(ar cos ωrt + br sin ωrt)

where the vr are the eigenvectors or natural modes, the ωr are the natural frequen-
cies, and the ar and br are 2n constants of integration. The corresponding velocity is

gjk
�ωk

2 − ωj
2
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ẋ = �
n

r = 1
vrωr(−ar sin ωrt + br cos ωrt)

Setting t = 0 in these expressions and substituting in the initial conditions of Eq.
(22.27) provides 2n simultaneous equations for determination of the constants of
integration.

�
n

r = 1
vrar = x(0) �

n

r = 1
vrωrbr = ẋ(0)

These equations may be interpreted as eigenvector expansions of the initial dis-
placement and velocity. The constants of integration can be evaluated by the same
technique used to obtain the mode multipliers in Eq. (22.19). Using the form of Eq.
(22.20), the solution of the free vibration problem then becomes

x(t) = �
n

r = 1
�x(0) cos ωr t + ẋ(0) sin ωr t� (22.28)

STEADY-STATE FORCED SINUSOIDAL VIBRATION

It is desired to find the steady-state solution to Eq. (22.26) for single-frequency sinu-
soidal excitation f of the form

f = R {dejωt}

where d is a column vector of driving force amplitudes (these may be complex to
permit differences in phase for the various components). The solution obtained is a
useful approximation for lightly damped systems provided that the forcing fre-
quency ω is not too close to a natural frequency ωr. For resonance and near-
resonance conditions it is necessary to include the damping as indicated in the
section which follows the present discussion.

The steady-state solution desired is assumed to have the form

x = R {aejωt}

where a is an unknown column vector of response amplitudes. When f and x are
inserted in Eq. (22.26), the following set of simultaneous equations for the elements
of a is obtained:

(K − ω2M)a = d (22.29)

If ω is not a natural frequency, the square matrix K − ω2M is nonsingular and may be
inverted to yield

a = (K − ω2M)−1d

as a complete solution for the response amplitudes in terms of the driving force
amplitudes. This solution is useful if several force amplitude distributions are to be
studied while the excitation frequency ω is held constant. The process requires
repeated inversions if a range of frequencies is to be studied.

An alternative procedure which permits a more thorough study of the effect of
frequency variation is available if the natural modes and frequencies are known.The
driving force vector d is represented by the eigenvector expansion of Eq. (22.22), and
the response vector a is represented by the eigenvector expansion of Eq. (22.18):

1
�
ωr

vrvr
TM

�
vr

TMvr
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d = �
n

r = 1
d a = �

n

r = 1
vrcr

where the cr are unknown coefficients. Substituting these into Eq. (22.29), and mak-
ing use of the fundamental eigenvalue relation of Eq. (22.11), leads to

�
n

r = 1
(ωr

2 − ω2)Mvrcr = �
n

r = 1
d

This equation can be uncoupled by premultiplying both sides by vr
T and using the

orthogonality condition of Eq. (22.15) to obtain

(ωr
2 − ω2)vr

TMvrcr = vr
Td

cr =

The final solution is then assembled by inserting the cr back into a and a back into x.

x = R � �
n

r = 1
d� (22.30)

This form clearly indicates the effect of frequency on the response.

RESPONSE TO GENERAL EXCITATION

It is now desired to obtain the solution to Eq. (22.26) for the general case in which
the excitation f(t) is an arbitrary vector function of time and for which initial dis-
placements x(0) and velocities ẋ(0) are prescribed. If the natural modes and fre-
quencies of the system are available, it is again possible to split the problem up into
n single-degree-of-freedom response problems and to indicate a formal solution.

Following a procedure similar to that just used for steady-state forced sinusoidal
vibrations, an eigenvector expansion of the solution is assumed:

x(t) = �
n

r = 1
vrcr(t)

where the cr are unknown functions of time and the known excitation f(t) is
expanded according to Eq. (22.22). Inserting these into Eq. (22.26) yields

�
n

r = 1
(Mvr c̈r + Kvrcr) = �

n

r = 1
f(t)

Using Eq. (22.11) to eliminate K and premultiplying by vr
T to uncouple the equation,

c̈r + ωr
2cr

2 = (22.31)

is obtained as a single second-order differential equation for the time behavior of the
rth mode multiplier. The initial conditions for cr can be obtained by making eigen-
vector expansions of x(0) and ẋ(0) as was done previously for the free vibration case.
Formal solutions to Eq. (22.29) can be obtained by a number of methods, including
Laplace transforms and variation of parameters. When these mode multipliers are
substituted back to obtain x, the general solution has the following appearance:

vr
Tf(t)

�
vr

T Mvr

Mvrvr
T

�
vr

TMvr

vrvr
T

�
vr

TMvr

ejωt

�
ωr

2 − ω2

vr
Td

�
vr

TMvr

1
�
ωr

2 − ω2

Mvrvr
T

�
vr

TMvr

Mvrvr
T

�
vr

TMvr
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x(t) = �
n

r = 1
�x(0) cos ωrt + ẋ(0) sin ωrt�

+ �
n

r = 1
�t

0
f(t′) sin {ωr(t − t′)} dt′ (22.32)

The integrals involving the excitation can be evaluated in closed form if the ele-
ments fj(t) of f(t) are simple (e.g., step functions, ramps, single sine pulses, etc.).When
the fj(t) are more complicated, numerical results can be obtained by using integra-
tion software.

VIBRATION OF SYSTEMS WITH DAMPING

In this section solutions to the complete governing equation, Eq. (22.8), are dis-
cussed. The results of the preceding section for systems without damping are 
adequate for many purposes. There are, however, important problems in which it is
necessary to include the effect of damping, e.g., problems concerned with resonance,
random vibration, etc.

COMPLEX EIGENVALUE PROBLEM

When there is no excitation, Eq. (22.8) becomes

Mẍ + Cẋ + Kx = 0

which describes the free vibration of the system. As in the undamped case, there are
2n independent solutions which can be superposed to meet 2n initial conditions.
Assuming a solution in the form

x = uept

leads to the following algebraic problem:

(p2M + pC + K)u = 0 (22.33)

for the determination of the vector u and the scalar p. This is a complex eigenvalue
problem because the eigenvalue p and the elements of the eigenvector u are, in gen-
eral, complex numbers.The most common technique for solving the nth-order eigen-
value problem, Eq. (22.33), is to transform it to a 2nth-order problem having the
same form as Eq. (22.11). This may be done by introducing the column vector ṽ of
order 2n given by

ṽ = {u pu}T

and the two square matrices of order 2n given by

K̃ = �  M̃ = � 
In terms of these, an eigenvalue problem equivalent to Eq. (22.33) is

M
0

C
M

0
M

−K
0

vrvr
T

�
ωrvr

TMvr

1
�
ωr

vrvr
TM

�
vr
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K̃ṽ = pM̃ṽ (22.34)

which is similar to Eq. (22.11) except that M̃ does not have the positive definite
property that M has. As a result, the eigenvalue p and the eigenvector v are gener-
ally complex. Since the computational time for most eigenvalue problems is propor-
tional to n3, the computational time for the 2nth-order system of Eq. (22.34) will be
about eight times that for the nth-order system of Eq. (22.11).

If the complex eigenvalue p = −α + jβ together with the complex eigenvector u =
v + jw satisfy the eigenvalue problem of Eq. (22.33), then so also does the complex
conjugate eigenvalue pC = −α − jβ together with the complex conjugate eigenvector
uC = v − jw. There are 2n eigenvalues which occur in pairs of complex conjugates or
as real negative numbers. When the damping is absent all roots lie on the imaginary
axis of the complex p-plane; for small damping the roots lie near the imaginary axis.
The corresponding 2n eigenvectors ur satisfy the following orthogonality relations:

(pr + ps)ur
TMus + ur

TCus = 0

ur
TKus − prpsur

TMus = 0

whenever pr ≠ ps; they can be made to hold for repeated roots by suitable choice of
the eigenvectors associated with a multiple root. When ps is put equal to pr

C, the
orthogonality relations provide convenient formulas for the real and imaginary
parts of the eigenvalues in terms of the eigenvectors

2αr = =

αr
2 + βr

2 = =

The complex eigenvalue is often represented in the form

pr = ωr(−ζr + j�1 − ζr
2�) (22.35)

where ωr = �αr
2 + β�r

2� is called the undamped natural frequency of the rth mode, and
ζr = αr/ωr is called the critical damping ratio of the rth mode.

PERTURBATION APPROXIMATION TO COMPLEX 

EIGENVALUE PROBLEM

The complex eigenvalue problem of Eq. (22.33) can be solved approximately, when
the damping is light, by using the perturbation equations of Eqs. (22.24) and (22.25).
When C = 0 in Eq. (22.33) the complex eigenvalue problem reduces to the real
eigenvalue problem of Eq. (22.11) with p2 = −ω2. Suppose that the real eigenvalue ωr

2

and the real eigenvector vr are known. The perturbation of the rth mode due to the
addition of small damping C can be estimated by considering the damping to be a
perturbation of the stiffness matrix of the form

dK = jωrC

vr
TKvr+ wr

TKwr��
vr

TMvr+ wr
TMwr

ur
TKur

C

�
ur

TMur
C

vr
TCvr+ wr

TCwr��
vr

TMvr+ wr
TMwr

ur
TCur

C

�
ur

TMur
C
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In this way it is found that the perturbed solution corresponding to the rth mode
consists of a pair of complex conjugate eigenvalues

pr = −αr + jωr pr
C = −αr − jωr

and a pair of complex conjugate eigenvectors

ur = vr + jwr ur
C = vr − jwr

where ωr and vr are taken directly from the undamped system, and αr and wr are
small perturbations which are given below. The superscript C is used to denote the
complex conjugate.The real part of the eigenvalue, which describes the rate of decay
of the corresponding free motion, is given by the following quotient:

2αr = 2ζrωr = (22.36)

The decay rate αr for a particular r depends only on the rth mode undamped solu-
tion. The imaginary part of the eigenvector jwr, which describes the perturbations in
phase, is more difficult to obtain. All the undamped eigenvalues and eigenvectors
must be known. Let W be a square matrix whose columns are the wr. The following
algorithm may be used to evaluate W when the undamped modal matrix V is known.
Calculate

F = VTCV

and

L = VT MV

The matrix L is a diagonal matrix of positive elements and hence is easily inverted.
Continue calculating

G = L−1F = [gjk] and H = [hjk]

where

0 if ωj
2 = ωk

2

hjk = � if ωj
2 ≠ ωk

2

Then, finally, the eigenvector perturbations are given by

W = VH (22.37)

The individual eigenvector perturbations wr obtained in this manner are orthogonal
with respect to M to their corresponding unperturbed eigenvectors vr; i.e., wr

TMvr = 0.

FORMAL SOLUTIONS

If the solution to the eigenvalue problem of Eq. (22.33) is available, it is possible to
exhibit a general solution to the governing equation

Mx + Cẋ + Kx = f (22.8)

gjkωk
�ωk

2 − ωj
2

vr
TCvr�

vr
TMvr
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for arbitrary excitation f(t) which meets prescribed initial conditions for x(0) and ẋ(0)
at t = 0. The solutions given below apply to the case where the 2n eigenvalues occur
as n pairs of complex conjugates (which is usually the case when the damping is light).
This does, however, restrict the treatment to systems with nonsingular stiffness matri-
ces K because if ωr

2 = 0 is an undamped eigenvalue, the corresponding eigenvalues in
the presence of damping are real.All quantities in the solutions below are real. These
forms have been obtained by breaking down complex solutions into real and imagi-
nary parts and recombining. With the notation

pr = −αr + jβr ur = vr + jwr

for the real and imaginary parts of eigenvalues and eigenvectors, it follows from Eq.
(22.35) that

αr = ζrωr βr = ωr �1� −� ζ�r
2�

The general solution to Eq. (22.8) is then

x(t) = �
n

r = 1
{GrMẋ(0) + (−αrGrM + βrHrM + GrC)x(0)}e−αr t cos βrt

+ �
n

r = 1
{HrMẋ(0) + (−βrGrM − αrHrM + HrC)x(0)}e−αr t sin βrt

+ �
n

r = 1
Gr �t

0
f(t′)e−αr (t − t′) cos βr(t − t′) dt′

+ �
n

r = 1
Hr �t

0
f(t′)e−αr (t − t′) sin βr(t − t′) dt′ (22.38)

where

ar = −2αr(vr
TMvr − wr

TMwr) − 4βrvr
TMwr + vr

TCvr − wr
TCwr

br = 2βr(vr
TMvr − wr

TMwr) − 4αrvr
TMwr + 2vr

TCwr

Ar = vrvr
T − wrwr

T Br = vrwr
T + wrvr

T

Gr = arAr + brBr Hr = brAr − arBr

The solution of Eq. (22.38) should be compared with the corresponding solution of
Eq. (22.32) for systems without damping. When the damping matrix C = 0, Eq.
(22.38) reduces to Eq. (22.32).

For the important special case of steady-state forced sinusoidal excitation of
the form

f = R {dejωt}

where d is a column of driving force amplitudes, the steady-state portion of the
response can be written as follows, using the above notation:

x(t) = R � �
n

r = 1
d� (22.39)

This result reduces to Eq. (22.30) when the damping matrix C is set equal to zero.

αrGr + βrHr + jωGr���
ωr

2 − ω2 + j2ζrωrω
2ejωt

�
ar

2 + br
2

2
�
ar

2 + br
2

2
�
ar

2 + br
2

2
�
ar

2 + br
2

2
�
ar

2 + br
2
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APPROXIMATE SOLUTIONS

For a lightly damped system the exact solutions of Eq. (22.38) and Eq. (22.39) can be
abbreviated considerably by making approximations based on the smallness of the
damping.A systematic method of doing this is to consider the system without damp-
ing as a base upon which an infinitesimal amount of damping is superposed as a per-
turbation. An approximate solution to the complex eigenvalue problem by this
method is provided by Eqs. (22.36) and (22.37). This perturbation approximation
can be continued into Eqs. (22.38) and (22.39) by simply neglecting all squares and
products of the small quantities αr, ζr, wr, and C.When this is done it is found that the
formulas of Eqs. (22.38) and (22.39) may still be used if the parameters therein are
obtained from the simplified expressions below.

αr = ζrωr βr = ωr

ar = −4ωrvr
TMwr br = 2ωrvr

TMvr

ar
2 + br

2 = 4ωr
2(vr

TMvr)2

(22.40)
Ar = vrvr

T Br = vrwr
T + wrvr

T

Gr = 2ωr(vr
TMvr)(vrwr

T + wrvr
T )

Hr = 2ωr(vr
TMvr)vrvr

T

For example, the steady-state forced sinusoidal solution of Eq. (22.39) takes the fol-
lowing explicit form in the perturbation approximation:

x(t) = R � �
n

r = 1

vrvr
T + �vrwr

T + wrvr
T

d� (22.41)ωr
2 − ω2 + j2ζrωrω

A cruder approximation, which is often used, is based on accepting the complex
eigenvalue pr = −αr + jωr but completely neglecting the imaginary part jwr of the
eigenvector ur = vr + jwr. It is thus assumed that the undamped mode vr still applies
for the system with damping. The approximate parameter values of Eq. (22.40) are
further simplified by this assumption; e.g., ar = 0, Br = Gr = 0. The steady forced sinu-
soidal response of Eq. (22.41) reduces to

x(t) = R � �
n

r = 1
d� (22.42)

This approximation should be compared with the undamped solution of Eq. (22.30),
as well as with the exact solution of Eq. (22.39) and the perturbation approximation
of Eq. (22.41).

In the special case of proportional damping, the exact eigenvectors are real and
Eq. (22.36) produces the exact decay rate αr = ζrωr, so that the response of Eq.
(22.42) is an exact result.

Example 22.1. Consider the system of Fig. 22.5 with the following mass, damping,
and stiffness coefficients:

m1 = 1 lb-sec2/in. m2 = 2 lb-sec2/in.

c1 = 0.10 lb-sec/in. c2 = 0.02 lb-sec/in. c3 = 0.04 lb-sec/in.

k1 = 3 lb/in. k2 = 0.5 lb/in. k3 = 1 lb/in.

vrvr
T

�
vr

TMvr

e jωt

��
ωr

2 − ω2 + j2ζrωrω

jω
�ωrejωt

�
vr
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The coefficient matrices of Eq. (22.9) then have the following numerical values:

3 2 0.14 0.04 4 1
M = �  C = �  K = � 

2 2 0.04 0.06 1 1.5

Assuming that the numerical values above are exact, the exact solutions to the com-
plex eigenvalue problem of Eq. (22.33) for these values of M, C, and K are, correct
to four decimal places,

pr = −αr + jβr ur = vr + jwr

2α1 = 0.0279 α1 = ζ1ω1 = 0.0139 ζ1 = 0.0166

β1 = 0.8397 ω1 = 0.8398 ω1
2 = 0.7053

2α2 = 0.1221 α2 = ζ2ω2 = 0.0611 ζ2 = 0.0324 (22.43)

β2 = 1.8818 ω2 = 1.8828 ω2
2 = 3.5449

V = �  W = �0.0016 0.00100 0

Note that this is a lightly damped system. The damping ratios in the two modes are
1.66 percent and 3.24 percent, respectively.

For comparison, the solution of the real eigenvalue problem Eq. (22.12) for the
corresponding undamped system (i.e., M and K as above, but C = 0) is, correct to four
decimal places,

V = � 
Note that, to this accuracy, there is no discrepancy in the real parts of the eigenvec-
tors. There are, however, small discrepancies in the imaginary parts of the eigenval-
ues. The difference between β1 for the damped system and ω1 for the undamped
system is 0.0001, and the corresponding difference between β2 and ω2 is 0.0009. The
imaginary parts of the eigenvectors and the real parts of the eigenvalues for the
damped system are completely absent in the undamped system. They may be
approximated by applying the perturbation equations of Eqs. (22.36) and (22.37) to
the solution of the eigenvalue problem for the undamped system.

The real parts αr of the eigenvalues obtained from Eq. (22.36) agree, to four dec-
imal places, with the exact values in Eq. (22.43).The imaginary parts wr of the eigen-
vectors obtained from Eq. (22.37) are

w1 = � � w2 = � �
These vectors satisfy the orthogonality conditions vr

TMwr = 0.
In order to compare these values with Eq. (22.43), it is first necessary to normal-

ize the complete eigenvector vr + jwr, so that its second element is unity. For exam-
ple, this is done in the case of r = 1 by dividing both v1 and w1 by 1.0000 − j0.0014.
When this is done, it is found that the perturbation approximation to the eigenvec-
tors agrees, to four decimal places, with the exact solution of Eq. (22.43).

To illustrate the application of the formal solutions given above, consider the
steady-state forced oscillation of the system shown in Fig. 22.5 at a frequency ω due
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to driving force amplitudes d1 and d2. Using the exact solution values of Eq. (22.43),
the expressions ar, br, Ar, Br, Gr, and Hr following Eq. (22.38) are evaluated for r = 1
and r = 2. With these values, the steady-state response, Eq. (22.39), becomes

�  = R �ejωt ��  + jω � � � 0.7053 − ω2 + 0.0279jω

+
ejωt��  + jω � �

� �3.5449 − ω2 + 0.1221jω

When the approximation in Eq. (22.41) based on the perturbation solution is evalu-
ated, the result is almost identical to this. A few entries differ by one or two units in
the fourth decimal place. The crude approximation, Eq. (22.42), is the same as the
perturbation approximation except that the terms in the numerators which are mul-
tiplied by jω are absent. This means that the relative error between the crude
approximation and the exact solution can be large at high frequencies. At low fre-
quencies, however, even the crude approximation provides useful results for lightly
damped systems. In the present case, the discrepancy between the crude approxima-
tion and the exact solution remains under 1 percent as long as ω is less than ω2 (the
highest natural frequency). At higher frequencies the absolute response level
decreases steadily, which tends to undercut the significance of the increasing relative
discrepancy between approximations.
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CHAPTER 23
FINITE ELEMENT METHODS

OF ANALYSIS

Robert N. Coppolino

INTRODUCTION

The finite element method (FEM), formally introduced by Clough1 in 1960, has become
a mature engineering discipline during the past fifty years. In actual practice, finite
element analysis is a systematic applied science, which incorporates (1) the definition
of a physical model of a complex system as a collection of building blocks (finite ele-
ments), (2) the solution of matrix equations describing the physical model, and (3) the
analysis and interpretation of numerical results. The foundations of finite element
analysis are (a) the design of consistent, robust finite elements2; and (b) matrix meth-
ods of numerical analysis3–5 (see Chap. 22). Originally developed to address modeling
and analysis of complex structures, the finite element approach is now applied to a
wide variety of engineering applications including heat transfer, fluid dynamics, and
electromagnetics, as well as multiphysics (coupled interaction) applications.

Modern finite element programs include powerful graphical user interface
(GUI) driven preprocessors and postprocessors, which automate routine operations
required for the definition of models and the interpretation of numerical results,
respectively. Moreover, finite element analysis, computer-assisted design and opti-
mization, and laboratory/field testing are viewed as an integrated “concurrent engi-
neering” process. Commercially available products, widely used in industry, include
MSC/NASTRAN (a product of MSC.Software), NX/NASTRAN (a product of
Siemens), ANSYS (a product family of ANSYS Incorporated), and ABAQUS (a
product of Simulia), just to mention a few.

This chapter describes finite element modeling and analysis with an emphasis on
its application to the shock and vibration of structures and structures interacting
with fluid media. Included are discussions on the theoretical foundations of finite
element models, effective modeling guidelines, dynamic system models and analysis
strategies, and common industry practice.

THEORETICAL FOUNDATIONS OF FINITE

ELEMENT MODELS

APPLICATION OF MINIMAL PRINCIPLES

The matrix equations describing both individual finite elements and complete finite
element system models are defined on the basis of minimal principles. In particular,
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for structural dynamic systems, Hamilton’s principle or Lagrange’s equations6 con-
stitute the underlying physical principle. The fundamental statement of Hamilton’s
principle is

δ �t1

t0

(T + W)dt = 0 (23.1)

where T is the system kinetic energy, W is the work performed by internal and
external forces, t represents time, and δ is the variational operator. In the case of
statics, Hamilton’s principle reduces to the principle of virtual work, stated mathe-
matically as

δW = 0 (if T = 0) (23.2)

For most mechanical systems of interest, W may be expressed in terms of a conser-
vative interior elastic potential energy (U), dissipative interior work (WD), and the
work associated with externally applied forces (WE). Thus, Hamilton’s principle is
stated as

�t1

t0

(δT − δU + δWD + δWE)dt = 0 (23.3)

The kinematics of a mechanical system of volume V are described in terms of the
displacement field

{u} = [Nu Nq]� � (23.4)

where {u} is the displacement array at any point in V, {ui} is an array of discrete dis-
placements (typically) on the element surface, and {q} is an array of generalized dis-
placement coefficients. The transformation matrix partitions Nu and Nq describe
assumed shape functions for the particular finite element. The most commonly used
elements, namely H-type elements, do not include generalized displacement coeffi-
cients, {q}. The more general case element is called a P-type element. For simplicity,
the subsequent discussion will be limited to H-type elements.

In matrix notation (see Chap. 22), the strain field within the element volume is
related to the assumed displacements by the differential operator matrix [Nεu] as

{ε(x,y,z,t)} = {ε} = [Nεu]{u} (23.5)

The stress field within the element volume is expressed as

{σ(x,y,z,t)} = {σ} = [D]{ε} = [D][Nεu]{u} (23.6)

In the case of hybrid finite element formulations, for which there is an assumed ele-
ment stress field other than simply [D][Nεu], the situation is more involved.

Using the above general expressions, the kinetic and strain energies associated
with a finite element are

ui

q
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2T = �
v

{ u}T[Nu]T[ρ][Nu]{ u}dV = { u}T[Me]{ u} (23.7)

2U = �
v

{u}T[Nεu]T[D][Nεu]{u}dV = {u}T[Ke]{u} (23.8)

where [ρ] is the material density matrix, [D] is the material elastic matrix, and [Me]
and [Ke] are the individual element mass and stiffness matrices, respectively. The
superscript shown as { }T and [ ]T denotes the transpose of an array and matrix,
respectively. In the case of viscous damping (which is a common yet not necessarily
realistic assumption), the element virtual dissipative work is

δWD = {δu}T[Be]{ u} (23.9)

where [Be] is the symmetric element damping matrix.
In order to assemble the mass, stiffness, and damping matrices associated with a

complete finite element system model, the displacement array for the entire system,
{ug}, must first be defined. The individual element contributions to the system are
then allocated (and accumulated) to the appropriate rows and columns of the sys-
tem matrices. This results in the formation of generally sparse, symmetric matrices.
The complete system kinetic and strain energies are, respectively,

2Tg = { ug}T[Mgg]{ ug} (23.10)

2Ug = {ug}T[Kgg]{ug} (23.11)

where [Mgg] and [Kgg] are the system mass and stiffness matrices.
For the case of viscous damping, the complete system virtual dissipative work is

δWDg = {δug}T[Bgg]{ ug} (23.12)

Finally, the virtual work associated with externally applied forces on the complete
system is defined as

δWEg = {δug}T[Γge]{Fe} (23.13)

where [Γge] represents the allocation matrix for externally applied forces {Fe},
including moments, stresses, and pressures if applicable. Substitution of the above
expressions for the complete system energies and virtual work into Hamilton’s
principle, followed by key manipulations, results in the finite element system dif-
ferential equations

[Mgg]{üg} + [Bgg]{ ug} + [Kgg]{ug} = [Γge]{Fe} (23.14)

The task of defining a finite element model is not yet complete at this point. Con-
straints and boundary conditions, as required, must now be imposed. The logical
sequence of imposed constraint types is (1) multipoint constraints (e.g., geometric
constraints expressed as algebraic relationships) and (2) single-point constraints
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(e.g., fixed supports). These constraints are described, in summary, by the linear
transformation

{ug} = [Ggf]{uf} (23.15)

where {uf} is the array of “free” displacements. By imposing the constraint transfor-
mation, [Ggf], in a symmetric manner to the system equations [see Eq. (23.14)], the
following constrained system equations are formed:

[Mff]{üf} + [Bff]{ uf} + [Kff]{uf} = [Γfe]{Fe} (23.16)

where

[Mff] = [Ggf]T[Mgg][Ggf], [Bff] = [Ggf]T[Bgg][Ggf]

(23.17)
[Kff] = [Ggf]T[Kgg][Ggf], [Γfe] = [Ggf]T[Γge]

TYPICAL FINITE ELEMENTS

Commonly used finite elements in commercial codes may be divided into two pri-
mary classes, namely, (1) elements based on technical theories, and (2) elements
based on three-dimensional continuum theory. The first class of elements includes
one-dimensional beam elements.Truss and bar elements are special cases of the gen-
eral beam element. A modern beam element permits modeling of the shear defor-
mation and warping associated with general cross-section geometry. Beam elements,
which may describe a straight or curved segment, are typically described in terms of
nodal displacements (three linear and three angular displacements) at the two
extremities, as illustrated in Fig. 23.1.

Also within the family of elements based on technical theories are shell elements.
Membrane and flat plate elements are special cases of the general shell element.
Shell elements are typically of triangular or quadrilateral form with straight or
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curved edges, as illustrated in Fig. 23.2. Common H-type shell elements are defined
by nodal displacements (three linear and three angular displacements) at the ele-
ment corners. Shell elements may also be defined in terms of midside nodal dis-
placements. Modern shell elements may include such features as shear deformation,
anisotropic elastic materials, and composite layering.

The family of three-dimensional elastic elements includes tetrahedral, pentahe-
dral, wedge, and hexahedral configurations with straight or curved edges, as illus-
trated in Fig. 23.3. H-type continuum elements are defined by nodal displacements
(three linear) at the element corners. Three-dimensional H-type elements may also
be defined in terms of midside nodal displacements.As in the case of shell elements,
anisotropic elastic materials may be employed in element formulations.

Effect of Static Loading—Differential Stiffness. The effective stiffness of struc-
tures subjected to static loads may be increased or decreased. For example, the lat-
eral stiffness of a column subjected to axial compression decreases, becoming
singular if the fundamental buckling load is imposed. In the case of an inflated bal-
loon, the shell-bending stiffness is almost entirely due to significant membrane ten-
sion. In each of these situations, the static load–associated differential stiffness
derives from a finite geometric change. Modern commercial finite element codes
contain the option to include differential stiffness effects in the model definition.

Fluid-Structure Interaction. Linear dynamic models of oscillating (but otherwise
assumed stationary) fluids interacting with elastic structures are employed in vibro-
acoustics, liquid-filled tank vibratory dynamics, and other applications. One popular
approach used to describe the fluid medium employs pressure degrees of freedom
(DOF). On the basis of complementary energy principles,7 three-dimensional fluid ele-
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ments (with the geometric configurations illustrated in Fig. 23.3) are defined. The
matrix equations describing dynamics of such a fluid interacting with an elastic struc-
ture are of the form

� � � + � � � = � � � (23.18)

where [C] is the fluid compliance matrix, [S] is the fluid susceptance matrix (analo-
gous to the inverse of a mass matrix), and [A] is the fluid-structure interface area
matrix. The matrix partitions [ΓQ] and [ΓF] are the fluid volumetric source flow {Q̈e}
and the structural applied load {Fe} allocation matrices, respectively. The system of
equations is unsymmetric due to the fact that it is based on a blend of standard struc-
tural displacement and complementary fluid pressure variational principles.

A variety of algebraic manipulations are used to cast the hydroelastic equations
in a conventional symmetric form. In many applications involving approximately
incompressible (liquid) fluids, the fluid compliance is ignored. The incompressible
hydroelastic equations (without source flow excitation) may then be cast in the
symmetric form7

[M + Mf]{ü} + [K]{u} = [ΓF]{Fe} (23.19)

where the (generally full) fluid mass matrix is

[Mf] = [A][S]−1[A]T (23.20)

Specialized constraints are often required to permit the decomposition of the generally
singular fluid susceptance matrix.7 Moreover, specialized eigenvalue analysis proce-
dures are recommended to efficiently deal with the full fluid mass matrix.

Q̈e

Fe

0
ΓF

ΓQ

0
P
u

0
K

S
−A

P̈
ü

AT

M
C
0

23.6 CHAPTER TWENTY-THREE

FIGURE 23.3 Typical three-dimensional solid elements.



For the most general case of a compressible fluid, introduction of the fluid volu-
metric strain variable

{v} = [C]{P} (23.21)

results in the symmetric equation set

� � � + � � � = �  � � (23.22)

As for the incompressible, symmetric formulation, a specialized efficient eigenvalue
analysis procedure (based on the subspace iteration algorithm8) is recommended to
efficiently deal with the full hydroelastic mass matrix.

In situations for which the fluid is a lightweight acoustic gas, a decoupling approx-
imation may provide reasonable, approximate dynamic solutions.The approximation
assumes that the acoustic medium is driven by a much heavier structure, which is
unaffected by fluid interaction. The decoupled approximate dynamic equations are

[M]{ü} + [K]{u} = [ΓF]{Fe} (23.23)

[C]{P̈} + [S]{P} = −[AT]{ü} + [ΓQ]{Q̈e} (23.24)

Uncoupled modal analyses of the structural and acoustic media are used in the com-
putation of the system dynamic response for this approximate formulation.

General Linear System Dynamic Interaction Considerations. In the previous
discussion on fluid-structure interaction, a variety of algebraic manipulations, which
transform coupled unsymmetric dynamic equations to a conventional symmetric lin-
ear formulation, were described.Transformations resulting in symmetric matrix equa-
tions, however, are not possible in more general situations involving dynamic
interaction.

Linear systems which include complicating effects due to the interaction with
general linear subsystems (e.g., control systems, propulsion systems, and perturbed
steady fluid flow) are generally appended with nonsymmetric matrix dynamic rela-
tionships.The nonconventional linear dynamic formulation incorporates state equa-
tions for the interacting subsystem

[Ai]{qi} − { qi} = [Bi]{ u} + [Ki]{u} (23.25)

and the forces of interaction with the structural dynamic system

[Γi]{Fi} = [Γi][Ci]{qi} (23.26)

where {qi} are subsystem state variables, [Ai] is the subsystem plant matrix, and [Bi],
[Ki], and [Ci] are coupling matrices. The complete dynamic system is described by
the state equations

� � � − � � = � {Fe} (23.27)
−M−1Γe

0
0

ü
u
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u
u
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The above state equations are of the class

[Asys]{qsysi} − { qsys} = [Γsysi]{Fsys} (23.28)

Nonlinear Dynamic Systems. The most general type of dynamic system includes
nonlinear effects, which may be due to large geometric deformations, nonlinear
material behavior, stick-slip friction, gapping, and other complicating effects (see
Chap. 4). Fortunately, many dynamic systems are approximately linear. A thorough
discussion of nonlinear finite element modeling and analysis techniques is beyond
the scope of the present discussion. However, two particularly useful classes of mod-
els are pointed out herein, namely, (1) linear systems with physically localized non-
linear features, and (2) general nonlinear systems.

A structural dynamic system with physically localized nonlinear features is
described by slightly modified linear matrix equations as

[M]{ü} + [B]{ u} + [K]{u} = [ΓN]{FN(uN, uN)} + [ΓF]{Fe} (23.29)

where [ΓN] is the allocation matrix for nonlinear features and {FN} are the nonlinear
forces related to local displacements and velocities. The local displacements and
velocities are related to global displacements and velocities as

{uN} = [ΓN]T{u}, { uN} = [ΓN]T{ u} (23.30)

This type of nonlinear dynamic formulation is useful in that the linear portion of the
system may be efficiently treated with modal analysis procedures, to be discussed
later.

General situations involving extensively distributed nonlinear behavior are
described by equations of the type

{ü} = [M]−1{F(u, u,t)} (23.31)

or

� � = � � � (23.32)

Advanced numerical integration procedures are employed to treat general nonlin-
ear dynamic systems. The procedures fall into two distinct classes, namely, (a)
implicit methods,9 and (b) explicit methods.4

EFFECTIVE MODELING GUIDELINES

CUTOFF FREQUENCY AND GRID SPACING

In order to develop a relevant dynamic model, general requirements should be
addressed based on

F(u, u,t)
u

0
I

M−1

0
ü
u
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1. Frequency bandwidth 0 < f < f *, and intensity (F*) of anticipated dynamic envi-
ronments.

2. General characteristics of structural or mechanical components.

Typical dynamic environments are summarized in Table 23.1. Dynamic environ-
ments are generally (a) harmonic, (b) transient, (c) impulsive, or (d) random. For all
categories, the cutoff frequency (f*) is reliably determined by shock response spec-
trum analysis (see Chap. 20).The overall intensity level of a dynamic environment is
described by a peak amplitude for harmonic, transient, and impulsive events, or by a
statistical amplitude (e.g., mean plus a multiple of the standard deviation) for a long-
duration random environment (see Chaps. 19 and 24).With the cutoff frequency (f*)
established, the shortest relevant wavelength of a forced vibration for components
in a structural assembly may be calculated. For finite element modeling, the quarter
wavelength (L/4) is of particular interest, since it defines the grid spacing require-
ment needed to accurately model the dynamics (note that the quarter wavelength
rule is a general guideline, which may be modified based on the performance of spe-
cific finite elements). The guidelines for typical structural components are summa-
rized in Table 23.2.

In addition to the above grid spacing guidelines, the engineer must also consider
the limitations associated with beam and plate theories. In particular, if the wave-
length-to-thickness ratio (L/h) is less than about 10, a higher-order theory or 3D
elasticity modeling should be considered. Moreover, modeling requirements for the
capture of stress concentration details may call for a finer grid meshing than sug-
gested by the cutoff frequency. Finally, if the dynamic environment is sufficiently
high in amplitude, nonlinear modeling may be required, e.g., if plate deflections are
greater than the thickness h.

MODAL DENSITY AND EFFECTIVENESS 

OF FINITE ELEMENT MODELS

Finite element modeling is an effective approach for the study of structural and
mechanical system dynamics as long as individual vibration modes have sufficient fre-
quency spacing or low modal density. Modal density is typically described as the num-
ber of modes within a 1⁄3 octave frequency band (f0 < f < 1.26 f0).When the modal density
of a structural component or structural assembly is greater than 10 modes per 1⁄3 octave
band, details of individual vibration modes are not of significance and statistical vibra-
tion response characteristics are of primary importance. In such a situation, the statis-
tical energy analysis (SEA) method10 applies (see Chap. 24). Formulas for modal
density10 as a mathematical derivative, dn/dω (n = number of modes, ω = frequency in
radians/sec), for typical structural components are summarized in Table 23.3.
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TABLE 23.1 Summary of Typical Dynamic Environments

Environment Chapter or reference

Seismic excitation Chap. 29
Fluid flow Chap. 30
Wind loads Chap. 31
Sound Chap. 32
Transportation and handling impact MIL-STD-810G
Transportation and handling vibration MIL-STD-810G
Shipboard vibration MIL-STD-167-1



DYNAMIC SYSTEM MODELS 

AND ANALYSIS STRATEGIES

FUNDAMENTAL DYNAMIC FORMULATIONS

Finite element dynamic models fall into a variety of classes, which are expressed by
the following general equation sets:

1. Linear structural dynamic systems [see Eq. (23.16)]
2. Linear structural dynamic systems interacting with other media [see Eq. (23.27)]
3. Dynamic systems with localized nonlinear features [see Eqs. (23.29) and (23.30)]
4. Dynamic systems with distributed nonlinear features [see Eqs. (23.31) and

(23.32)]
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TABLE 23.3 Modal Density for Typical Structural Components

Component Motion Modal density, dn/dω Additional data

String Lateral L/(π�/T/ρA�) T = tension, A = area,
ρ = mass density,
L = length

Rod Axial L/(π�E/ρ�) E = elastic modulus

Rod Torsion L/(π�G/ρ�) G = shear modulus

Beam Bending L/(2π)(ω�EI/ρA�)−1/2 EI = flexural stiffness

Membrane Lateral Asω/(2π)(N/ρh) N = stress resultant,
As = surface area

Plate Bending As/(4π)�D/ρh� D = plate flexural stiffness,
h = plate thickness

Acoustic Dilatational V0ω2/(2π2)(�B/ρ�)3 B = bulk modulus,
V0 = enclosed volume

TABLE 23.2 Guidelines for Dynamic Finite Element Model Meshing

Component Mode type L/4 Additional data

String Lateral (�T/ρA�)/4f* T = tension, A = area,
ρ = mass density

Rod Axial (�E/ρ�)/4f* E = elastic modulus

Rod Torsion (�G/ρ�)/4f* G = shear modulus

Beam Bending (π/2)(EI/ρA)1/4/�2πf*� EI = flexural stiffness

Membrane Lateral (�N/ρh�)/4f* N = stress resultant

Plate Bending (π/2)(D/ρh)1/4/�2πf*� D = plate flexural stiffness,
h = plate thickness

3D elastic Dilatational (�E/ρ�)/4f*

3D elastic Shear (�G/ρ�)/4f*

Acoustic Dilatational (�B/ρ�)/4f* B = bulk modulus



The first category represents the type of systems most often dealt with in structural
dynamics and mechanical vibration. In the majority of engineering analyses, damp-
ing is assumed to be well-distributed in a manner justifying the use of normal mode
analysis techniques (see Chaps. 21 and 22). Systems in the first and second categories
having more general damping features may be treated by complex modal analysis
procedures (see Chap. 22). When localized nonlinear features are present, normal 
or complex mode analysis procedures may also be applied. The final class, namely
dynamic systems with distributed nonlinear features, must be treated using numeri-
cal integration procedures.When a nonlinear system is subjected to a slowly applied
or moderately low frequency environment, implicit numerical integration is often
the preferred numerical integration strategy. Alternatively, when the dynamic envi-
ronment is suddenly applied, high-frequency and/or short-lived explicit numerical
integration is often advantageous.

APPLICATION OF NORMAL MODES IN TRANSIENT 

DYNAMIC ANALYSIS

The homogeneous form for the conventional linear structural dynamic formulation
[see Eq. (23.16)], with damping ignored, defines the real eigenvalue problem, that is,

[K]{Φn} − [M]{Φn}ωn
2 = {0} (23.33)

where

{u} = {Φn} sin (ωnt) (23.34)

There are as many distinct eigenvectors or modes {Φn} as set degrees of freedom for
a well-defined undamped dynamic system. The eigenvalues ω2

n (ωn = natural fre-
quency of mode n), however, are not necessarily all distinct. Individual modes or
mode shapes represent displacement patterns of arbitrary amplitude. It is conven-
ient to normalize the mode shapes (to unit modal mass) as follows:

{Φn}T[M]{Φn} = 1 (23.35)

The assembly of all or a truncated set of normalized modes into a modal matrix [Φ]
defines the (orthonormal) modal transformation

{U} = [Φ]{q} (23.36)

where

[Φ]T[M][Φ] = [OR] = [I] = diagonal identity matrix
(23.37)

[Φ]T[K][Φ] = [Λ] = [ω2
n] = diagonal eigenvalue matrix

The modal transformation produces the mathematically diagonal matrix

[Φ]T[B][Φ] = [2ζnωn] = diagonal modal damping matrix (23.38)

FINITE ELEMENT METHODS OF ANALYSIS 23.11



only for special forms of the damping matrix. One such form, known as proportional
damping, is

[B] = α[M] + β[K] (23.39)

In reality, proportional damping is a mathematical construction that bears little
resemblance to physical reality. It is experimentally observed in many situations,
however, that the diagonal modal damping matrix is a valid approximation.

Application of the modal transformation to the dynamic equations [see Eq.
(23.16)] results in the uncoupled single-DOF dynamic equations

q̈n + 2�nωn
qn + ωn

2qn = [Φn
TΓ]{F(t)} = [Γqn]{F(t)} = Qn(t) (23.40)

The symbol ζn is the critical damping ratio and [Γqn] = [Φn
TΓ] is the modal excitation

gain array.
The character and content of an individual normal mode [Φn] is described funda-

mentally by the geometric distribution of the displacement DOF. Utilizing the mass
matrix [M], the modal momentum distribution is

{Pn} = [M]{Φn} (23.41)

and the modal kinetic energy distribution is

{En} = {Pn} � {Φn} = ([M]{Φn}) � {Φn} (23.42)

where � denotes term-by-term multiplication. The sum of the terms in the modal
kinetic energy vector {En} is 1.0 when the mode is normalized to unit modal mass.

Internal structural loads and stresses, relative displacements, strains, and other
user-defined terms are calculated as recovery variables. In many cases the recovery
variables {S} are related to the physical displacements {u} through a load transfor-
mation matrix [KS], specifically,

{S} = [KS]{u} (23.43)

A modal (displacement-based) load transformation matrix, defined by substitution
of the modal transformation, is

{S} = [ΦKS]{q} (23.44)

where

[ΦKS] = [KS][Φ] (23.45)

The dynamic response of a structural dynamic system, described in terms of normal
modes, is computed as follows:

Step 1. Calculate the modal responses numerically with, for example, the Du-
hamel integral (see Chap. 8) given by
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qn(t) = �t

0
hn (t − τ)Qn(τ)dτ (23.46)

where

hn(t − τ) = e−ζnωn(t − τ) sin ((ωn �1 − ζn�2)(t − τ)) (23.47)

Similar relationships exist for modal velocity and acceleration.

Step 2. Calculate the physical displacement, velocity, and acceleration responses
by modal superposition using Eq. (23.36) and calculate loads using Eq. (23.44).

It should be noted that the calculation of modal responses to harmonic and random
excitation environments follows strategies paralleling steps 1 and 2. These matters
will be discussed at the end of this chapter.

MODAL TRUNCATION

A common practice in structural dynamics analysis is to describe a system response
in terms of a truncated set of lowest-frequency modes. The selection of an appropri-
ate truncated mode set is accomplished by a normalized displacement, shock
response spectrum analysis (see Chap. 20) of each force component in the excitation
environment {F(t)} and establishment of the cutoff frequency ω*. All modal
responses for systems with a natural frequency ωn > ω* will respond quasi-statically.
Therefore, the dynamic response will be governed by the truncated set of modes
[ΦL] with natural frequencies below ω*. The remaining set of high-frequency modes
is denoted as [ΦH]. Therefore, the partitioned modal relationships are

{u} = [ΦL]{qL} + [ΦH]{qH}

{q̈L} + [2�LωL]{ qL} + [ω2
L]{qL} = [ΦT

LΓ]{F(t)} (23.48)

[ω2
H]{qH} ≈ [ΦT

HΓ]{F(t)}

Since the high-frequency modal equations are algebraic, the modal transformation
becomes

{u} = [ΦL]{qL} + [Ψρ]{F(t)} (23.49)

where [Ψρ] is the residual flexibility matrix defined as

[Ψρ] = [ΦH][ω2
H]−1[ΦH]T[Γ] (23.50)

The computation of structural dynamic response employing a truncated set of

ωn�
�1 − ζn�2
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modes often is inaccurate if the quasi-static response associated with the high-
frequency modes is not accounted for. This being the case, it appears that all modes
must be computed as indicated in Eq. (23.50). Such a requirement results in an
excessive computational burden for large-order finite element models.

Residual Mode Vectors and Mode Acceleration. The significance of residual
flexibility (quasi-static response of high-frequency modes) is well established,11 as
are methods for the efficient definition of residual vectors.12 The basic definition for
residual flexibility, using all of the high-frequency modal vectors, is computationally
inefficient for large-order models. Therefore, procedures that do not explicitly
require knowledge of the high-frequency modes have been developed.

The most fundamental procedure for deriving residual vectors forms residual
shape vectors as the difference between a complete static solution and a static solu-
tion based on the low-frequency mode subset. The complete static solution for unit-
applied loads, using a shifted stiffness (allowing treatment of an unconstrained
structure), is

[ΨS] = [K + λSM]−1[Γ] (23.51)

where λS is a small “shift” used for singular stiffness matrices. For nonsingular stiff-
ness, the shift is not required. The corresponding truncated, low-frequency mode
static solution is

[ΨL] = [ΦL][ω2
L + λS]−1[ΦL]T[Γ] (23.52)

Therefore, the residual vectors are

[Ψρ] = [ΨS] − [ΨL] = [K + λSM]−1[Γ] − [ΦL][ω2
L + λS]−1[ΦL]T[Γ] (23.53)

Note that the high-frequency modes are not explicitly required in this formulation.
Therefore, the excessive computational burden for large-order finite element mod-
els is mitigated.

An alternative strategy, which automatically compensates for modal truncation,
is the mode acceleration method.13 The basis for this strategy is the substitution of
truncated expressions for acceleration and velocity in the system dynamic equations,
which results in

[K]{u} = [Γ]{F} − [M][ΦL]{q̈L} − [B][ΦL]{ qL} (23.54)

In most applications, the term with modal velocity is ignored. The static solution of
the above equation, at each time point, produces physical displacements, which
include the quasi-static effects of all high-frequency modes.

Load Transformation Matrices. Recovery of structural loads is often organized
by a definition of the load transformation matrices (LTMs).14 When residual mode
vectors are employed, Eqs. (23.49) and (23.43) are combined to define the displace-
ment LTM relationship

{S} = [LTMq]{q} + [LTMF]{F} (23.55)
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where

[LTMq] = [KS][ΦL], [LTMF] = [KS][Ψρ] (23.56)

When the mode acceleration method is employed, Eqs. (23.54) and (23.43) are com-
bined to define the mode acceleration LTM relationship

{S} = [LTMA]{q̈} + [LTMV]{ q} + [LTMAF]{F} (23.57)

where

[LTMA] = −[KS][K−1MΦL]

[LTMV] = −[KS][K−1BΦL] (23.58)

[LTMF] = [KS][K−1Γ]

In practice, [LTMV] is generally ignored. Mode acceleration LTMs are used exten-
sively in the aeronautical and space vehicle industries, while their mode displace-
ment (and residual vector)–based counterpart is rarely applied.

APPLIED LOADS AND ENFORCED MOTIONS

Dynamic excitation environments sometimes are described in terms of specified
foundation or boundary motions, for example, in the study of structural dynamic
response to seismic excitations (see Chap. 29). In such situations, the physical dis-
placement array is partitioned into two subsets as follows:

{u} = � � = � � (23.59)

The conventional linear structural dynamic formulation is expressed in partitioned
form as

� � � + � � � + � � � = � � (23.60)

Using the partitioned stiffness matrix, the transformation from absolute to relative
response displacements is

� � = � � � = � � � (23.61)

Moreover, this transformation may be expressed in modal form by substituting the
lowest-frequency modes associated with the interior eigenvalue problem, which fol-
lows the relationships already discussed in Eqs. (23.33) through (23.38), that is,

[Kii]{Φin} = [Mii]{Φin}ωin
2 , {ui} = [Φi]{qi} (23.62)
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By combining Eqs. (23.61) and (23.62), the modal reduction transformation is

� � = � � � (23.63)

Substitution of this transformation into the partitioned dynamic equation set, Eq.
(23.60), results in

� � � + � � � + � � � = � � (23.64)

The terms in the above equation set have the following significance:

1. [Pib] is the modal participation factor matrix. Its terms express the degree of exci-
tation delivered by individual foundation accelerations. Moreover, its transpose
describes the degree of foundation reaction loads associated with individual
modal accelerations. The term-by-term product [Pib] � [Pib], called the modal
effective mass matrix, is often used to evaluate the completeness of a truncated
set of modes.

2. [M′bb] is the boundary mass matrix. When the boundary motions are sufficient to
impose all six rigid-body motions (in a statically determinate or redundant man-
ner), this matrix expresses the complete rigid-body mass properties of the mod-
eled system.

3. [K′bb] is the boundary stiffness matrix. When the boundary motions are sufficient
to impose all six rigid-body motions in a statically determinate manner, this
matrix is null. If the boundary is statically indeterminate, the boundary stiffness
matrix will have six singularities associated with the six rigid-body motions. In
rare situations, additional singularities will (correctly) be present if the structural
system includes mechanisms.

4. Critical evaluation of the properties of [M′bb] and [K′bb] is an effective means for
model verification.

5. In most situations, damping is not explicitly modeled. Therefore the boundary
damping matrix [B′bb] will not be computed.

When the dynamic excitation environment consists entirely of prescribed boundary
motions ({Fi} = {0}), Eq. (23.64) may be expressed in the following convenient form:

{q̈i} + [2ζiωi]{ qi} + [ωi
2]{qi} = −[Pib]{üb} (modal response)

(23.65)
{Fb} = [M′bb]{üb} + [K′bb]{ub} + [Pbi]{q̈i} (boundary reactions)

The accurate recovery of structural loads is preferably accomplished with the mode
acceleration method. The load transformation matrix relationship for this situation
takes the following form (ignoring damping):

{S} = [LTM q̈]{q̈} + [LTMüb
]{üb} + [LTMub

]{ub} + [LTMFi
]{Fi} (23.66)

The above relationships are commonly used in seismic structural analysis and equip-
ment shock response analysis.
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STRATEGIES FOR DEALING WITH LARGE-ORDER MODELS

The capabilities of computer resources and commercial finite element software have
continually increased, making very large-order (∼106 degrees of freedom or more)
finite element models a practical reality. A variety of numerical analysis strategies
have been introduced to efficiently deal with these large-order models.

In 1965, what is popularly known as the Guyan reduction method15 was intro-
duced. This method employs a static reduction transformation based on the model
stiffness matrix to consistently reduce the mass matrix. By subdividing the model
displacements into analysis (a) and omitted (o) subsets, the static reduction trans-
formation is

� � = � {ua} (23.67)

By applying this transformation to the dynamic system, an approximate reduced
dynamic system for modal analysis is defined as

[Maa]{üa} + [Kaa]{ua} = {0} (23.68)

where

[Maa] = � 
T

� � 
[Kaa] = � 

T

� � 
(23.69)

The reduced approximate mass and stiffness matrices are generally fully populated,
in spite of the fact that the original system matrices are typically quite sparse. The
effective selection of an appropriate analysis set {ua} is a process requiring good
physical intuition. A recently introduced two-step procedure16 automatically iden-
tifies an appropriate analysis set. The Guyan reduction method is no longer a
favored strategy for dealing with large-order dynamic systems due to the develop-
ment of powerful numerical procedures for very large-order sparse dynamic sys-
tems. It continues to be employed, however, for the definition of test-analysis
models (TAMs) which are used for modal test planning and test-analysis correla-
tion analyses (see Chap. 40). Numerical procedures, which are currently favored for
dealing with modern large-order dynamic system modal (eigenvalue) analyses, are
(1) the Lanczos method17 (refined and implemented by many other developers)
and (2) subspace iteration.8

Segmentation of Large-Order Dynamic Systems. Many dynamic systems,
such as aircraft, launch vehicle–payload assemblies, spacecraft, and automobiles,
naturally lend themselves to substructure segmentation (see Fig. 23.4). Numerical
analysis strategies, which exploit substructure segmentation, were originally intro-
duced to improve the computational efficiency of large-order dynamic system analy-
sis. However, advances in numerical analysis of very large order dynamic systems
have reduced the need for substructure segmentation. The enduring utilization of
substructure segmentation, especially in the aerospace industry, is a result of the fact
that substructure models provide cooperating organizations with a standard means
for sharing and integrating subsystem data. It should also be noted that some
research efforts in the area of parallel processing are utilizing mature substructure
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FIGURE 23.4 International space station substructure segmentation.
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analysis concepts. Each designated substructure (which also may be termed a super-
element) is defined in terms of interior {ui} and boundary {ub} displacement subsets.
Specific types of modal analysis strategies are employed to reduce or condense the
individual substructures to produce modal components.

The Craig-Bampton Modal Component. The most popularly employed modal
component type, the Craig-Bampton18 (or Hurty19) component, is defined by Eqs.
(23.59) through (23.64) and (23.66). The undamped key dynamic equations describ-
ing this component are as follows:

1. The Craig-Bampton reduction transformation (boundary-fixed interior modes
and boundary deflection shapes) is identical to Eq. (23.63), that is,

� � = � � � (23.70)

2. The Craig-Bampton mass and stiffness matrices, from Eq. (23.64), are

� � � + � � � = � � (23.71)

The MacNeal-Rubin Modal Component. The MacNeal-Rubin12,20 component
reduction transformation consists of a truncated set of free boundary modes and
quasi-static residual vectors associated with unit loads applied at the boundary
degrees of freedom. The key dynamic equations describing this component are as
follows:

1. The MacNeal-Rubin reduction transformation (boundary-free component
modes and residual vectors) is

� � = � � � (23.72)

Noting that there are as many residual vectors as boundary degrees of freedom,
the above transformation may be expressed in terms of the modal and boundary
DOF, that is,

� � = � � � (23.73)

2. The MacNeal-Rubin mass and stiffness matrices: Using the first reduction
transformation form [see Eq. (23.72)], the undamped component mode equations
are of the form

� � � + � � � = � � (23.74)

When the second reduction transformation form [see Eq. (23.73)] is employed,
the component mode equations are of the fully coupled form

� � � + � � � = � � (23.75)0
0
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The second form of the MacNeal-Rubin mass and stiffness matrices is preferred
for automated assembly of modal components.

The Mixed Boundary Modal Component. A more general type of modal com-
ponent may be defined employing fixed- and free-boundary degree-of-freedom sub-
sets.21 The reduced component mass and stiffness matrices associated with this
component are fully coupled, having a form similar to Eq. (23.75).

Each of the above three modal component types employs a truncated set of sub-
system modes. The frequency band, which determines an adequate set of subsystem
modes, is related to the base frequency band of the expected dynamic environment.
In particular, a generally accepted standard for the modal frequency band defines
the cutoff frequency as 1.4f* (see the section titled “Cutoff Frequency and Grid
Spacing ”).

COMPONENT MODE SYNTHESIS STRATEGIES

Two alternative strategies for component mode synthesis are generally accepted in
industry. The first strategy views all substructures as appendages. The second alter-
native views substructures as appendages, which attach to a common main body.

General Method 1: Assembly of Appendage Substructures. The boundary
degrees of freedom for each component of a complete structural assembly map onto
an assembled structure boundary (collector, c) array, that is,

{ub} = [Tbc]{uc} (23.76)

Therefore, each component’s reduction transformation is expressed in the assem-
bled (collector) DOF as

� � = � � � (23.77)

where Ψii represents the upper left modal transformation partition for the particular
modal component type. Application of this transformation to Eq. (23.71) or (23.75)
results in

� � � + � � � = � � (23.78)

The format of the assembled system dynamic equations, shown here for an assembly
of three components denoted as 1, 2, and 3, is

� � � + � � � = � � (23.79)

The system normal modes are calculated from the above equation where the final
system mode transformation (which decouples the system mass and stiffness matri-
ces) is
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� � = [Φsys]{qsys} (23.80)

General Method 2: Attachment of “Appendage” Substructures to a Main
Body. This method of component mode synthesis differs from General Method 1
in that all components are not considered appendages. A simple way to view this
approach is to first follow General Method 1 for all appendage substructures up to
Eq. (23.79). The boundary collector degrees of freedom, in this case, correspond to
those associated with a main body, which is described in terms of main body mass
and stiffness matrices [Mm] and [Km], respectively. The assembled system of
appendages and main body are described as

� � � + � � � = � � (23.81)

where the boundary-loaded main body mass and stiffness matrices are

[M′m] = [M′cc] + [Mm], [K′m] = [K′cc] + [Km] (23.82)

The truncated set of modes associated with the boundary-loaded main body define
the intermediate transformation

� � = � � � (23.83)

Application of the above transformation to Eq. (23.82) results in the following
modal equations for the system

� � � + � � � = � � (23.84)

If the appendages are all of the Craig-Bampton type, the above equation set reduces
to the following Benfield-Hruda22 form

� � � + � � � = � � (23.85)

The mass coupling terms (P1C, etc.) are modal participation factor matrices, which
indicate the relative level of excitation delivered to the appendages by main body
modal accelerations. This feature of the Benfield-Hruda form is the primary reason
for the enduring popularity of the method. Uncoupled system modes are finally com-
puted from the eigenvalue solution of Eq. (23.85). Component mode synthesis pro-
cedures are also applied in multilevel cascades when such a strategy is warranted.
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DYNAMIC RESPONSE RESULTING FROM 

VARIOUS ENVIRONMENTS

The response of linear structural dynamic systems to dynamic environments may be
computed by either modal or direct methods. Modal methods tend to be computa-
tionally efficient when the required number of system modes addressing the
dynamic environment frequency band are significantly smaller than the order of the
system finite element model. When this is not the case, direct methods may be more
efficient. In addition, when transient environments are brief or impulsive, direct
integration may be more efficient than modal strategies. The following discussion
provides an overview of strategies for the computation of dynamic response to var-
ious environments.

Transient Environments. General relationships detailing the modal method of
transient dynamic analysis are presented in the section entitled “Application of Nor-
mal Modes in Transient Dynamic Analysis.” Enhancement of the modal solution
accuracy with residual vectors and the mode acceleration method was discussed in
the sections entitled “Residual Mode Vectors and Mode Acceleration” and “Load
Transformation Matrices,” respectively. Direct integration methods employing
implicit9 or explicit4 numerical strategies may be advantageous when environments
are of wide bandwidth and short-lived.

Brief or Impulsive Environments. Brief or impulsive dynamic environments are
often described in terms of shock response spectra (see Chap. 20). Peak dynamic
responses and structural loads are estimated by employing approximate modal
superposition methods utilizing shock response spectra as modal weighting func-
tions.23 A systematic approach to this process, which incorporates positive and nega-
tive spectra and quasi-static residual vectors, is presented in Ref. 11. Approximate
shock response spectra–based modal superposition methods are employed in earth-
quake engineering, equipment (e.g., naval shipboard subsystems) shock survivability
prediction, and related applications. This approach is especially appropriate when
standard dynamic environments are specified as shock response spectra.

Simple Harmonic Excitation. Computation of the structural dynamic response
due to simple harmonic excitation is either an end in itself or a key intermediate step
in the computation of the response to random or transient environments. In the case
of transient environments, the time-history response may be calculated through
application of Fourier transform techniques (see Chap. 20). The applied force and
displacement response, respectively, are conveniently expressed in terms of complex
exponential functions by

{F} = Fo(ω)eiωt, {u} = {U(ω)}eiωt, { u} = iω{U(ω)}eiωt, {ü} = −ω2{U(ω)}eiωt (23.86)

where ω is the forcing frequency in radians per second. Upon substitution of the
above relationships into the linear structural dynamic equations [see Eq. (23.16)],
the following algebraic matrix equation is defined.

[K + iωB − ω2M]{U(ω)} = {ΓF}Fo(ω) (23.87)

When Fo(ω) = 1, the response quantities are called frequency response functions
(see Chap. 21). If the normal mode substitution is employed, the above equation set
is diagonalized (assuming modal viscous damping) as follows:
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{U(ω)} = [Φ]{q(ω)} { U(ω)} = iω[Φ]{q(ω)} {Ü(ω)} = −ω2[Φ]{q(ω)}
(23.88)

(ω2
n + 2iζnωnω − ω2)qn(ω) = {Φn}T[ΓF]{F(ω)} 1 ≤ n ≤ nmax

When the modal method is used, it is recommended that a quasi-static residual vec-
tor be employed to mitigate modal truncation errors.This is not required if the direct
method, namely, the solution of Eq. (23.87), is employed.

The modal approach to simple harmonic or frequency response analysis is com-
putationally more efficient than the direct method if the number of modes required
in a frequency band of interest (0 ≤ ω ≤ ωmax) is much less than the number of finite
element model degrees of freedom. When this is not the case, the direct method
becomes more efficient since the direct solution for {U(ω)} involves decomposition
of a sparse coefficient matrix at each forcing frequency.

When the direct solution procedure is employed, it is most convenient to describe
modal damping as complex structural damping (see Chap. 2). In this situation the
linear, frequency domain, structural dynamic equations are

[(1 + iη)K + iωBL − ω2M]{U(ω)} = {ΓF}Fo(ω) (23.89)

where the well-known approximate equivalence of structural damping loss factor η
and (viscous) modal damping ratio ζ is η ≈ 2ζ. The advantage associated with struc-
tural damping is that the modes need not be explicitly determined in order to
account for modal damping effects. The matrix [BL] is included in the above equa-
tion to account for any known discrete viscous damping features.

An important aspect of effective frequency response analysis, regardless of
whether the modal or direct method is used, is the selection of a frequency grid for
the clear definition of harmonic response peaks. It is generally recommended that
solutions be calculated at frequency points capturing at least four points within a
modal half-power bandwidth, that is,

Δω = �nωn/2 = ηωn/4 (23.90)

This guideline suggests a logarithmic frequency grid (Δω increases with increasing
frequency) is desirable.

Random Excitation. In the most common situations, random environments are
assumed to be associated with ergodic (see Chap. 1) processes.24 The computation of
structural dynamic response to random excitation, in such a situation, utilizes
numerical results from the response to a simple harmonic excitation. If a random
environment is imposed at several discrete structural degrees of freedom or as sev-
eral geometric load patterns, the frequency responses associated with the individual
loads are denoted as

Hij(ω) = Ui(ω)/Fo,j(ω) (23.91)

where these functions are computed either by the modal or direct method. There-
fore, the frequency-domain response associated with several excitations is

Ui(ω) = �
j

Hij(ω) ⋅ Fo,j(ω) (23.92)

or in matrix form
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U(ω) = [H(ω)]{Fo(ω)} (23.93)

Describing the correlated random excitations in terms of the input cross-spectral
density matrix, [GFF(ω)], the response autospectral density is

Wuu(ω) = [H(ω)] ⋅ [GFF(ω)] ⋅ [H(ω)]T* (23.94)

where the asterisk [ ]T* denotes the complex conjugate transpose of a matrix. Finally,
the mean square of response is calculated as the integral

Ψ2
u = u�i�(�t�)�2� = �ω2

ω1

Wuu(ω)dω (23.95)

In order to ensure the accurate computation of a mean square response, this inte-
gral must be evaluated with a frequency grid with refinement consistent with Eq.
(23.90). If too coarse a frequency grid is used, the mean square response may be
severely underestimated.
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CHAPTER 24
STATISTICAL ENERGY

ANALYSIS

Richard G. DeJong

INTRODUCTION

Two situations often occur in which a statistical analysis of vibrating systems is use-
ful.The first occurs when the excitation of a system appears to be random in time, in
which case it is convenient to describe the temporal response of the system statisti-
cally rather than deterministically.This form of data analysis is presented in Chap. 19.
The second situation occurs when a system is complicated enough that its resonant
modes appear to be distributed randomly in frequency, in which case it is convenient
to describe the frequency response of the system statistically rather than determin-
istically. This form of analysis is called statistical energy analysis (SEA)1 and is pre-
sented in this chapter.

In either situation, the randomness need only appear to be so. For example, in
random vibration, it may be that the excitation could be calculated exactly if enough
information were known. However, if the excitation is adequately described by sta-
tistical parameters (such as the mean value and variance), then a statistical analysis
of the system response is valid. Similarly, in a complicated system, the modes can
presumably be analyzed deterministically. However, if the modal distribution is ade-
quately described by statistical parameters, then an SEA of the system response is
valid whether or not the excitation is random.

STATISTICAL RESPONSE OF A 

SINGLE-DEGREE-OF-FREEDOM SYSTEM

In this section, the single-degree-of-freedom (SDOF) resonator shown in Fig. 24.1 is
analyzed to obtain an expression for the mean square response of the mass when the
base is subjected to a random vibration. The equation of motion for this system is
derived in Chap. 2 as

z̈ + ż + z = −ÿ (24.1)
k
�
m

c
�
m

24.1



where z = x − y is the motion of the mass relative to the base. This equation is simi-
lar in form to the equation for a force excitation F(t) on the mass and a rigid base:

ẍ + ẋ + x = (24.2)

In this chapter, the form of Eq. (24.1) is used, but the results can be transformed to
the case of a force excitation by the appropriate substitution of variables. Defining

fn = �� = the natural frequency

ζ = = the critical damping ratio

(24.3)

gives a standard parametric form:

z̈ + 4πζ fn ż + (2πfn)2z = ÿ (24.4)

The response of the system is given in terms of a frequency dependent transfer func-
tion H( f ) (or frequency response function) with a magnitude given as

1
|H( f )|2 = =

�1 − � 	
2


2

+ �2ζ 	
2

(24.5)

For a broadband random source, if ζ << 1 so that |H(f)|2 is sharply peaked at 
f = fn and the source is stationary with a relatively smooth spectrum, as illustrated in
Fig. 24.2, then the mean square response of the system is determined by the source
spectrum at f = fn times the area under the |H( f )|2 curve:

�̈z�2� = Wÿ( fn)�∞

0
|H( f )|2 df = Wÿ(fn) (24.6)

πfn�
4ζ

f
�
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f
�
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�
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FIGURE 24.1 Example of a resiliently mounted mass m with stiffness k and viscous
damper c. When the base is exposed to a broadband random vibration, the mass will have a
narrowband random response.
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The resonance of the system acts as a narrowband filter on the source spectrum, as
illustrated in Fig. 24.1. The vibration is essentially at frequency fn with a gaussian
amplitude distribution. The mean square displacement and velocity levels are
related to the acceleration response by ��̈z2 = (2πfn)2 ��̇z2 = (2πfn)4 �z�2�.

The autocorrelation of the stationary response is found to be

Rz̈(τ) = �̈z�2� e−2πζfnτ�cos(2πfdt) + sin(2πfdt) (24.7)

where fd = fn �1� −� ζ�2�

Of interest is the transient response of the resonator when the random source is sud-
denly turned on and remains stationary thereafter. The transient mean square
response starting from rest (for ζ << 1) is then found to be:2

�̈z�2�(τ) = Wÿ(fn) (1−e−4πζfnt) (24.8)

The mean square response grows to the steady-state value in the same way that a
first-order dynamic system responds to a step input.This is an important result, illus-
trating that the dynamical power in a vibrating system is transmitted according to
the simple first-order diffusion equation with a time constant τ = 1/(4πζfn).

This result can be used to estimate the shock response spectrum (SRS) of a tran-
sient random excitation with a known time-dependent mean square acceleration level
�ÿ�2�(t,Δf ) in the frequency band Δf. The mean square acceleration response �̈z�2� of a res-
onator to this excitation can be found by solving the following first-order differential
equation either numerically or using the Laplace transform method (see Chap. 8):

�̈z�2� + (4πζ fn)�̈z�2� = �ÿ�2� (24.9)

assuming fn is within the bandwidth Δf.
For example, Fig. 24.3 shows the measured transient acceleration of a concrete

floor slab in a building with an operating punch press. As with many transient vibra-
tion time histories, the smoothed mean square level can be approximated by

�̈z�2�(τ) = At e−βt (24.10)

(2πfn)2

�
4Δf

d
�
dt

πfn�
4ζ

ζ
�
�1� −� ζ�2�
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FIGURE 24.2 Power spectral density W(f ) of the
response of a resonator with ζ << 1 excited by a broad-
band random source having the spectrum shown by the
dashed curve.



24.4 CHAPTER TWENTY-FOUR

FIGURE 24.3 Transient response of a concrete floor slab with an operating punch press. (A) Mea-
sured acceleration signal. (B) Mean square smoothed signal (solid curve) and curve fit (dashed
curve) using Eq. (24.10). (C) Measured energy spectral density. (D) Computed acceleration shock
response spectrum (symbols) and statistical estimate (dashed curve) using Eq. (24.14).

where, for this case, A � 0.2g2/s and β � 35/s with Δf � 80 Hz. The solution of Eq.
(24.9) with this form of excitation is given by

�̈z�2�(τ) = �  (24.11)

where α = 4πζfn. The undamped SRS is the maximum response level as α → 0,
which is

�̈z�2�max → (24.12)

The undamped SRS is the peak root-mean-square (rms) response as a function of
fn (see Chap. 20), which can be estimated with 95 percent certainty as the 2σ level,
assuming a gaussian distribution:

z̈peak � 2���̈z�2�max = �� (24.13)

This result is plotted in Fig. 24.3D along with the exact calculation of the SRS at 
5-Hz intervals using a particular sample of the acceleration time history.

STATISTICAL RESPONSE OF MULTIPLE-DEGREE-

OF-FREEDOM SYSTEMS

Real elastic systems have many degrees of freedom (DOF) and, therefore, many
modes of resonance, as discussed in Chaps. 2 and 7. However, each of these normal

2πfn�
β

A
�
Δf

(2πfn)2A
�

4Δf β2

t(α − β)e−βt + e−αt − e−β t

���
(α − β)2

(2πfn)2A
�

4Δf



modes ψn responds as a simple resonator, and the total response of a system can be
obtained by summing the response of all of the modes (modal superposition):

z(X,t) = �
n

qn(t)ψn(X) (24.14)

where X represents the spatial dimension(s) of the system.
If the damping in the system is distributed proportionately to the mass and stiff-

ness, the normal modes are uncoupled and each has an equation of motion in the
form of Eq. (24.4) with a source term given by

ÿn(t) = �ÿ(X,t)ψn(X) dX � ϕn ��s�2�(��X�,�t�)� (24.15)

where ϕn is the modal participation factor of the source. The transfer function for
each mode will be of the form of Eq. (24.5) so that the resulting sum of the modal
responses gives

�̈z�2� = �
n

ϕn
2 ψn

2Ws( fn) (24.16)

If the damping is not distributed proportionately but is small (ζ << 1), the super-
position of normal modes gives approximately correct results. This is illustrated by
the two-DOF system shown in Fig. 24.4A. An instrument housing (m1) is resiliently
mounted on a vibrating base. A vibration absorber (see Chap. 6) is attached to sup-
press the vibration of the housing at frequency f2. Of interest here is the broadband

πfn�
4ζn
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FIGURE 24.4 (A) Response of a two-degree-of-freedom system to a base excitation x0. (B) Mean
square relative displacement responses z1 and z2, normalized to the response of m1 alone. Solid curves
are calculated using the modal summation of Eq. (24.16). Dashed curves are the exact calculations.



response of the system when the base vibration has a uniform acceleration spectral
density Ẅÿ0. The equations for the relative responses, z1 = x1 − y0 and z2 = x2 − x1 in
symmetric, dimensionless form are

� 1 0 � z̈1� � 4πζ1 f1 −4πμζ2 f2 � ż1�0 z̈2

+
−4π ζ1 f1 (1 + μ) (2πf2)2 ż2

� (2πf1)2 −μ(2πf2)2

�z1� �−ÿ̈0� (24.17)+
−μ(2πf2)2 (1 + μ) (2πf2)2 z2

=
0

where μ = m2/m1, 2πfi = �k�i/m�i�, and 4πζi fi = ci/mi. The damping is symmetric only if 
ζ1 f2 = ζ2 f1.

Consider a specific example where μ = 0.04 and ζ1 = ζ2 = 0.05, so the damping is
not symmetric. Figure 24.4 shows the calculated values of the mean square responses
z�1�2� and z�2�2� as a function of f2/f1. The amplitudes are plotted relative to the mean
square response that m1 would have without the attached vibration absorber z�1��o

2�, as
calculated using Eq. (24.6). The modal superposition calculation ignores the small
cross-coupling between the normal modes due to the nonsymmetric damping.These
results are compared to the exact solution for the two-DOF system.3 The mean
square response of m1 is suppressed only when f2 � f1 and only by about 4 dB.

STATISTICAL ENERGY ANALYSIS OF 

COMPLEX SYSTEMS

Statistical energy analysis models the vibration response of a complex system as a
statistical interaction between groups of modes associated with subsections of the
system. While the theoretical development of SEA has its roots in the field of ran-
dom vibration, it does not require a random excitation for the statistical analysis.
Instead, SEA uses the random variation of modal responses in complex systems to
obtain statistical response predictions in terms of mean values and variances of the
responses. Theoretically, the statistical averaging is over ensembles of nominally
identical systems. However, in practice many systems have enough inherent com-
plexity that the variation in the response over frequency and location is adequately
represented by the ensemble statistics.

This is seen even in the relatively simple case of the distribution of bending
modes in a simply supported rectangular flat plate (Fig. 24.5A). The resonance fre-
quencies of the modes are given by

fm,n = � 	hcL�� 	
2

+� 	
2

 (24.18)

where L1 and L2 are the length dimensions, h is the thickness, cL is the longitudinal
wave speed of the plate material, and m and n are integers. The resonance frequen-
cies are seen to follow approximately along a straight line. This slope of this line is
the average frequency spacing δ�f� (inverse of modal density per Hz) given by

δ�f� = (24.19)
hcL

�
�3�L1L2
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One way to represent the variation in the actual resonant frequencies is to plot
the distribution in the frequency difference between two successive resonances,
which can be plotted as shown in Fig. 24.5B. This distribution appears to be Poisson.
Repeating this analysis for other plates with the same surface area, thickness, and
material (thus having the same δ�f� ), but with different values of L1 and L2, gives
essentially the same results. This indicates that one way of looking at the modes of
any one particular plate is to consider it as one realization from an ensemble of
plates having the same statistical distribution of resonances. SEA uses this model to
develop estimates of the vibration response of systems based on averages over the
ensemble of similar systems. However, since the modes are usually a function of 
the parameter ( fL/c), variations in the frequency f in a complex system often have
the same statistics as variations in L (dimensions) and c (material properties) in an
ensemble of similar systems.

The statistical model of a system is useful in a variety of applications. In the pre-
liminary design phase of a system SEA can be used to obtain quantitative estimates
of the vibration response even when all of the details of the design are not com-
pletely specified. This is because preliminary SEA estimates can be made using the
general characteristics of the system components (overall size, thickness, material
properties, etc.) without requiring the details of component shapes and attachments.

SEA is also useful in diagnosing vibration problems.The SEA model can be used

STATISTICAL ENERGY ANALYSIS 24.7

FIGURE 24.5 Mode count of a 2.6- × 2.4- × 0.01-meter
simply supported, steel plate. (A) Resonance frequen-
cies. (B) Distribution of resonance frequency spacings.



to identify the sources and transfer paths of the vibrational energy. When measured
data is available, SEA can help to interpret the data, and the measured data can be
used to improve the accuracy of a preliminary SEA model. Since the SEA model
gives quantitative predictions based on the physical properties of the system, it can
be used to evaluate the effectiveness of design modifications. It can also be used with
an optimization routine to search for improved design configurations.

SEA MODELING OF SYSTEMS

The statistical energy analysis (SEA) model of a complex system is based on the sta-
tistical analysis of the coupling between groups of resonant modes in subsections of
the system. The modal coupling is based on the analysis of two coupled resonators,
as shown in Fig. 24.6. This is a more general case of the two-degree-of-freedom sys-

24.8 CHAPTER TWENTY-FOUR

tem analyzed for a random vibration (see Fig. 24.4). Here there are two distinct res-
onators coupled by stiffness, inertial, and gyroscopic interactions (represented by kc ,
mc, and gc , respectively). If the two resonators are excited by different broadband
force excitations, then the net power flow between them through the coupling is
given by

Π12 = −kc �z�2��̇z�1�� − gc �̇z�2��̇z�1�� + mc �̈z�2��̇z�1��

= B (E1 − E2) (24.20)

where

B = [Δ1 f2
4 + Δ2 f1

4 + f1 f2(Δ1 f2
2 + Δ2 f1

2)]

+ [(γ 2 + 2μκ)(Δ1 f2
2 + Δ2 f1

2) + κ2(Δ1 + Δ2)]

Ei = (mi + mc /4)�̇zi
2

1
�
d

(2πμ)2

�
d

1
�
4

FIGURE 24.6 Two linear, coupled resonators, with dis-
placement y, mass m, stiffness k, damper c, and gyroscopic
parameter g.



and

d = (1 − μ2)[(2π)2( f1
2 − f2

2)2 + (Δ1 + Δ2)(Δ1 f2
2 + Δ2 f1

2)]

Δi = ci/(mi + mc /4)

fi
2 = (1/2π)2(ki + kc)/(mi + mc/4)

μ = �mc /4	�m1 + mc /4	
−1/2

�m2 + mc /4	
−1/2

γ = gc�m1 + mc /4	
−1/2

�m2 + mc /4	
−1/2

κ = kc�m1 + mc /4	
−1/2

�m2 + mc /4	
−1/2

This result can be interpreted by defining the two individual uncoupled res-
onators as the subsystems that exist when one of the degrees of freedom is con-
strained to zero. For either uncoupled resonator, the kinetic energy averaged over a
cycle (m + mc /4)ż�i�2�/2 is equal to the average potential energy (k + kc)z�i�2�/2. Equation
(24.20) can then be seen to state two important results: (1) the power flow is pro-
portional to the difference in the vibrational energies of the two resonators, and (2)
the coupling parameter B is positive definite and symmetrical so the system is recip-
rocal and power always flows from the more energetic resonator to the less ener-
getic one. As a corollary, when only one resonator is directly excited, the maximum
energy level of the second resonator is that of the first resonator.

It should be noted that this analysis is exact for a coupling of arbitrary strength as
long as there is no dissipation in the coupling. Even when there is dissipation in the
coupling, this analysis is approximately correct as long as the coupling forces due to
the dissipation are small compared to the other coupling forces. In practice, when
systems have interface damping at the connections between subsystems (such as in
bolted or spot welded joints), the associated damping can be split between subsys-
tems and the interface considered damping free.

As an example of how this analysis is extended to a distributed system, consider the
two coupled beams in Fig. 24.7A. The modes of the system can be obtained from an
eigenvalue solution of the complete system, or they can be obtained from a coupled
pair of equations for the individual (or uncoupled) straight beam subsystems.The lat-
ter case leads to coupled mode equations similar to the ones used for the two coupled
resonators. However, in this case each mode in one beam subsystem is coupled to all
of the relevant modes in the other beam subsystem.The total power flow between the
two beam subsystems is then the sum of the individual mode-to-mode power flows.

If the significant coupling is assumed to occur in a limited frequency range Δf (a
good assumption for ζ << 1 and Δf >> ζf ), then the average net power flow can be
found by averaging the value of B over Δf and using average beam subsystem modal
energies in Eq. (24.20). This gives

Π12 = B�N1N2� − 	 (24.21)
E2�
N2

E1�
N1
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with

B� = �μ2(2πf)2 + (γ2 + 2μκ) + 
where N1 and N2 are the number of modes in the two beam subsystems with reso-
nance frequencies in Δf.

For either beam, the total vibrational energy is Ei = mi ˙�z�i�2�, where mi is the total
mass of the beam and ˙�z�i�2� is the mean square velocity averaged over space and time.
Equation (24.21) shows that the power flow between two distributed subsystems is
proportional to the difference in the average modal energies Ei /Ni, not the differ-
ence in the total energies (which are proportional to the vibration level).This means
it is possible for a thick beam with fewer resonant modes in a frequency band and a
lower vibration level to be the source of power for a connected thinner beam with
more resonant modes and a higher vibration level.

A more useful form of Eq. (24.21) is obtained by defining a coupling loss factor
η12 � B�N2/(2πf ) (and by reciprocity η21 � N1η12/N2).The coupling loss factor is anal-
ogous to the damping loss factor for a subsystem defined by ηi = 2ζi. The coupling
loss factor is a measure of the rate of energy lost by a subsystem through coupling to
another subsystem, whereas the damping loss factor is a measure of the rate of
energy lost through dissipation. The average power flow is then given by

Π12 = 2πf(η12E1 − η21E2) (24.22)

Using the equivalent expression for the power dissipated in each subsystem,
Πi,diss = 2πfηiEi , the following set of equations can be written for the conservation of
energy between two coupled subsystems (Πin = Πout + dE/dt):

Π1,in = 2πf(η1 + η12)E1 − 2πfη21 E2 +

Π2,in = −2πfη12E1 + 2πf(η2 + η21)E2 +

(24.23)
dE2�
dt

dE1�
dt

κ2

�
(2πf)2

1
�
4Δf
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FIGURE 24.7 Modeling of distributed systems. (A) Two coupled beams. (B) SEA model of two
coupled subsystems with power flow Π.



where Πi,in is used to denote power supplied by external sources.The SEA block dia-
gram for this power flow model of two coupled subsystems is shown in Fig. 24.7B.
These equations are first-order differential equations for the diffusion of energy
between subsystems. They are in a form analogous to heat flow or fluid potential
flow problems. For steady-state problems the dE/dt terms are zero.

For narrowband analysis, the SEA equations can be used to obtain averages in
the response of the system over frequency. In this case it is more convenient to use
the average frequency spacing between modes δ�f� = Δf/N as the mode count in Eq.
(24.21). This gives

Π�1�2� = η12(E1δ�f�1� − E2δ�f�2�) (24.24)

The terms 2πEiδ�f�i� have units of power and are called the modal power potential.
The value of η12 is difficult to evaluate directly from B� in practice. Instead, indi-

rect methods are often used as described in the section “Coupling Loss Factors.”The
normalized variance in the value of η12 averaged over Δf for edge-connected subsys-
tems is given by

=
1

(24.25)

πf� + 	 + Δf� + 	
The variance in the coupling depends primarily on the system modal overlap fac-

tor defined by MS = πf(η1/δ�f�1� + η2/δ�f�2�)/2, which is the ratio of the effective modal
bandwidth to the average modal frequency spacing.When the system modal overlap
factor is less than 1, the variance is larger than the square of the mean value, which
may be unacceptably large. This indicates why SEA models tend to converge better
with measured results at frequencies above where MS = 1.

Note that the modal overlap in each uncoupled subsystem does not have to be
large in order for the variance in the coupling to be small. In fact the SEA model can
be used to evaluate the response of a single resonator mode attached to a vibrating
flat plate as illustrated in Fig. 24.8. The power flow equations in the form of Eq.
(24.23) are used.The uncoupled resonator has one mode at f2 = �k�2/�m�2�, so N2 = 1.The
mean-square vibration velocity level of the plate in a frequency band Δf encompass-
ing f2 is ·z1

2 = Wẏ1( f )Δf. The average number of plate modes resonating in this fre-
quency band is N1 = Δf/δ�f�1�. The coupling loss factor is evaluated to be

η21 = (24.26)

Since Π12 = Π2,diss, the mean square response of the resonator mass is given by

�̇z2
2 = (24.27)

Even if the resonator damping goes to zero, its maximum energy level is limited to
the average modal energy in the plate:

m2 �̇z2
2,max = m1Wẏ1( f )Δf (24.28)

f2Wẏ1( f )
�
η21 + η2

π
�
2

m2
�
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f2
�
δ�f�1�

π
�
2

1
�
δ�f�2�

1
�
δ�f�1�
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η1
�
δ�f�1�

ση12
2
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η12
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2πf
�
δ�f�1�

STATISTICAL ENERGY ANALYSIS 24.11



If the resonator energy momentarily gets higher, it transmits the energy back into
the plate. Therefore, the plate acts both as a source of excitation and as a dissipator
of energy for the resonator. The effective loss factor for the resonator is η21 + η2.

The frequency response function for the resonator can then be evaluated using
Eq. (24.5). Figure 24.8B compares this result with the measured narrowband fre-
quency spectrum of a 0.1-kg mass attached to a 2.5-mm steel plate with a resilient
mounting having negligible damping and f2 = 85 Hz. The measured response of the
mass is multimodal since the resonator responds as a part of all of the modes of the
coupled system. However, the statistical average response curve accurately repre-
sents the multimodal response. The normalized variance of the narrowband SEA
response calculation is estimated from Eq. (24.25) to be 0.5.

For larger systems the following procedure can be used to develop a complete
SEA model of the system response to an excitation:

1. Divide the system into a number of coupled subsystems.
2. Determine the mode counts and damping loss factors for the subsystems.
3. Determine the coupling factors between connected subsystems.
4. Determine the subsystem input powers from external sources.
5. Solve the energy equations to determine the subsystem response levels.

The steps in this procedure are described in the following sections of this chapter.
When used properly, the SEA model will calculate the distribution of vibration
response throughout a system as a result of an excitation. The response distribution
is calculated in terms of a mean value and a variance in the vibration response of
each subsystem averaged over time and the spatial extent of the subsystem.

24.12 CHAPTER TWENTY-FOUR

FIGURE 24.8 Response of a resonator with vibration Vm, mounted on a
plate with vibration Vp. (A) Comparison of the measurement configura-
tion and the SEA model. (B) Comparison of the measured response and
the SEA predictions.



MODE COUNTS

In this section the mode counts for a number of idealized subsystem types are given
in terms of the average frequency spacing δ�f� between modal resonances. Experi-
mental and numerical methods for determining the mode counts of more compli-
cated subsystems are also described.

The mode count is sometimes represented by the average number of modes, N or
ΔN, resonating in a frequency band, and sometimes by the modal density, repre-
sented in cyclical frequency as n( f) = dN/df. These are related to the average fre-
quency spacing by

n( f ) = � (24.29)

For a one-dimensional subsystem, such as a straight beam or bar, with uniform mate-
rial and cross-sectional properties and with length L, the average frequency spacing
between the modal resonances is given by

δ�f� 1D = (24.30)

where cg is the energy group speed for the particular wave type being modeled.
For longitudinal waves, cg is equal to the phase speed cL = �E�/ρ�, where E is the

elastic (Young’s) modulus and ρ is the density of the material. For torsional waves cg

is equal to the phase speed cT = �G�J/�ρ�Ip�, where G is the shear modulus of the mate-
rial, and J and Ip are the torsional moment of rigidity and polar area moment of iner-
tia, respectively, of the cross section. For beam bending waves (with wavelengths
long compared to the beam thickness) the group speed is twice the bending phase
speed cB, or cg = 2cB = 2�2�π�fκ�cL�, where κ is the radius of gyration of the beam cross
section. For a beam of uniform thickness h, κ = h/�1�2�.

For a two-dimensional subsystem, such as a flat plate, with uniform thickness and
material properties and with surface area A, the average frequency spacing between
the modal resonances is given by

δ�f� 2D = (24.31)

where cp is the phase speed for the particular wave type being modeled. For plate
bending waves (with wavelengths long compared to the plate thickness) cg = 2cp =
2cB′ = 2�2�π�fκ�cL�′�, where κ is the radius of gyration, cL′ = �E�/ρ�(1� −� μ�2)�, and μ is Poisson’s
ratio. For in-plane compression waves cg = cp = cL′. For in-plane shear waves cg = cp =
cS = �G�/ρ�.

For a three-dimensional subsystem, such as an elastic solid, with uniform material
properties and with volume V, the average frequency spacing between the modal
resonances is given by

δ�f� 3D = (24.32)

where co is the ambient shear or compressional wave speed in the medium.
For more complicated subsystems, the mode counts can be obtained in a number

of other ways. Generally, the mode counts only need to be determined within an
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accuracy of 10 percent in order for any resulting error to be less than 1 dB in the sta-
tistical energy analysis model. For more complicated wave types, such as bending in
thick beams or plates, the formulas given above for δ�f� can be used with the correct
values of cg and cp obtained from the dispersion relation for the medium.

For more complicated geometries, a numerical solution, such as a finite element
model, can be used to determine the eigenvalues of the subsystem. Then the values
of δ�f� can be obtained using Eq. (24.29). In this case it is often necessary to average
the mode count over a number of particular geometric configurations or boundary
conditions in order to obtain an accurate estimate of the average modal spacing.

When a physical sample of the subsystem exists, experimental data can be used to
estimate or validate the mode count. For large modal spacing (small modal overlap)
the individual modes can sometimes be counted from a frequency response meas-
urement. However, this method usually undercounts the modes because some of
them may occur paired too closely together to be distinguished. An alternate exper-
imental procedure is to use the relation between the mode count and the average
mobility of a structure:

δ�f� = (24.33)

where m is the mass of the subsystem and G� is the average real part of the mechan-
ical mobility (ratio of velocity to force at a point excitation; see Chap. 9).As with the
numerical method, the experimental measurement should be averaged over a varia-
tion in the boundary condition used to support the subsystem since no one static
support accurately represents the dynamic boundary condition the subsystem sees
when it is part of the full system. Also the measurement of G� should be averaged
over several excitation points.

DAMPING LOSS FACTORS

In this section typical methods for determining the damping loss factor of subsystems
are given along with some typical values used in statistical energy analysis models of
complex structures. The damping in SEA models is usually specified by the loss fac-
tor, which is related to the critical damping ratio ζ and the quality factor Q by

η = 2ζ = (24.34)

Chapters 35 and 36 describe the damping mechanisms in structural materials and
typical damping treatments. In complex structures the structural material damping is
usually small compared to the damping due to slippage at interfaces and added
damping treatments. Because the level of added damping is so strongly dependent
on the details of the application of a damping treatment, measurements are usually
needed to verify analytical calculations of damping levels.

One method to measure the damping of a subsystem is the decay rate method,
where the free decay in the vibration level is measured after all excitations are
turned off. The initial decay rate DR (in dB/sec) is proportional to the total loss fac-
tor for the subsystem:

η = (24.35)
DR
�
27.3f

1
�
Q

1
�
4mG�
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If the subsystem is attached to other structures, the coupling loss factors will be
included in the total loss factor value. Therefore, the subsystem must be tested in a
decoupled state. On the other hand, if the connection interfaces provide significant
damping due to slippage, then these interfaces must be simulated in the damping
test.

Another method of measuring the damping is the half-power bandwidth method
illustrated in Fig. 2.22. The width of a resonance Δf in a frequency response meas-
urement is measured 3 dB down from the peak and the damping is determined by

η = (24.36)

As with other measurements of subsystem parameters, the damping measure-
ments must be averaged over multiple excitation points with a variety of boundary
conditions.

For preliminary SEA models an empirical database of damping values is useful
for initial estimates of the subsystem damping loss factors. Figure 24.9 is an illustra-
tion of the typical damping values measured in steel and aluminum machinery
structures for different construction methods and different applied damping treat-
ments.

The initial estimates of damping levels in a preliminary SEA model can be
improved if measurements of the spatial decay of the vibration levels in the system
are available. The spatial decay calculated in the SEA model is quite strongly
dependent on the damping values used.Therefore, an accurate estimate of the actual
damping can be obtained by comparing the SEA calculations to the measured spa-
tial decay (assuming the other model parameters are correct).

Δf
�
fn
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FIGURE 24.9 Empirical values for the damping loss factor η in steel and aluminum
machinery structures with different damping mechanisms (assumed to be efficiently
applied, but in less than ideal laboratory conditions).



COUPLING LOSS FACTORS

The coupling loss factor is a parameter unique to statistical energy analysis. It is a
measure of the rate of energy transfer between coupled modes. However, it is
related to the transmission coefficient τ in wave propagation. This can be illustrated
with the system shown in Fig. 24.10. For a wave incident on a junction in subsystem
1 with incident power Πinc, the power transmitted to subsystem 2, Πtra, is by definition
of the transmission coefficient τ12 given by

Πtra = τ12Πinc (24.37)
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FIGURE 24.10 Evaluation of the coupling loss fac-
tor using a wave transmission model for an incident
wave Vinc at a junction, resulting in a reflected wave
Vref and a transmitted wave Vtra.

In addition, the junction reflects some power, Πref, back into subsystem 1 given by

Πref = (1 − τ12)Πinc (24.38)

assuming there is no power dissipated at the junction. The energy density in subsys-
tem 1 is given by E1′ = cg1

(Πinc + Πref). The corresponding SEA representation of the
system is

Πtra = Π1 → 2 = 2πfη12E1 (24.39)

For a subsystem of length L1, δ�f�1� = cg1
/(2L1) and E1 = L1E1′. Solving for the coupling

loss factor gives

η12 = (24.40)

A more detailed analysis indicates that this result is valid for point connections in
a system with a modal overlap greater than 1. If the system has a constant modal 
frequency spacing δ�f�, then the Nth mode will occur at f = Nδ�f�. If the damping loss
factor is η, the system modal overlap is given by MS = πη f/(2δ�f� ). Then the 
modal overlap is greater than 1 for frequencies f > 2δ�f�/(πη) or for mode numbers 
N > 2/(πη). SEA is still valid below this frequency and mode number, but the vari-
ance of the model calculations (and in the measured frequency response functions)
becomes large.

For point-connected subsystems the transmission coefficient can be evaluated
from the junction impedances:4

τ12�
2 − τ12

δ�f�1��
πf



τ12 = (24.41)

where Ri is the real part of the impedance Zi (ratio of force to velocity at a point
excitation) at the junction attachment point of subsystem i. When more than two
subsystems are connected at a common junction, the denominator of Eq. (24.41)
must include the sum of all impedances at the junction.

For subsystems with line and area junctions the analysis of the coupling loss fac-
tor is complicated by the distribution of angles of the waves incident on the junction.
However, approximate results have been worked out for many important cases. Eq.
(24.40) can be generalized for all cases as

η12 = (24.42)

where τ12(0) is the normal incidence transmission coefficient for waves traveling per-
pendicular to the junction, and I12 contains the result of an average over all angles of
incidence.

For line-connected plates the coupling loss factor between bending modes is
found using

I12 = � 	
1/4

(24.43)

where Lj is the length of the junction and ki = 2πf/cBi is the wave number of the
modes in subsystem i.

When experimental verification of the evaluation of the coupling loss factor is
desired, measurements similar to those used for damping can be used. A decay rate
measurement of a subsystem connected to another (heavily damped) subsystem will
give a loss factor equal to the sum of the damping and coupling loss factor for the
first subsystem.Alternately, subsystem 1 can be excited alone and the spatially aver-
aged response levels of the two connected subsystems can be measured. Using 
Π12 = Π2,diss, the coupling loss factor is found from

η12 = (24.44)

This result indicates a potential problem in determining the coupling loss factor
from measured results. If E2δ�f�2� � E1δ�f�1�, then taking the difference between their val-
ues in Eq. (24.44) will greatly magnify the experimental errors in determining the
parameters used in this formula. This indicates why it is mathematically unstable to
use measured levels in a multiple subsystem model to back-calculate the coupling
loss factors. However, good results can be obtained for a single junction between two
subsystems if one is excited and the other is artificially damped in order to increase
difference between E1δ�f�1� and E2δ�f�2�. Figure 24.11 shows the results of an experimen-
tal validation of Eqs. (24.42) and (24.43) for the coupling loss factor between two
plates connected at a point. The experimental error is also included, which even in
this idealized laboratory environment is more than 50 percent. While the back cal-
culation of the coupling loss factors tends to be unstable, the forward calculation in
the SEA model is relatively insensitive to errors in the coupling loss factor values,
making the model fairly robust.
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MODAL EXCITATIONS

The power put into subsystem modes by the system excitations is needed in order to
use the statistical energy analysis model for calculations of absolute response levels.
The mode counts, damping, and coupling loss factors can be used to evaluate relative
transfer functions in the system for a unit input power. However, for actual
response-level calculations the modal input power from the actual excitation
sources must be calculated.

For a point force excitation F(t) the average power put into a system is

Πin = �F 2 G� (24.45)

where G� is the average real part of the mobility at the excitation point. For a pre-
scribed point velocity source ẏ(t) the average power put into a system is

Πin = �̇y� 2� R� (24.46)

where R� is the average real part of the impedance at the excitation point.
The normalized variance in the input power due to variations in the mode shapes

and frequency response function of the system is approximated by

= (24.47)

where Δf is the bandwidth of the excitation. For more complicated excitations the
input power can be estimated by measuring the response of a system to the excitation
and using the SEA model to back-calculate the input power. Alternatively, the mea-
sured response levels of the excited subsystem can be used as “source” levels, and the
power flow into the rest of the system can be evaluated using the SEA model.

SYSTEM RESPONSE DISTRIBUTION

To solve for the distribution of vibrational energy in a system it is convenient to
rewrite Eq. (24.23) in symmetric form:

3δ�f�
�
πfη + Δf

σΠin
2

�
Πin

2
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FIGURE 24.11 Coupling loss factor η12 for point connected plates;
measured data with 95 percent confidence intervals; —— calculated values
using Eqs. (11.80) and (11.81).



[B]{Φ} + [I]� � = {Πin} (24.48)

where [I] is the identity matrix, {Φ} = 2π{E/δ�f� } is the vector of modal power poten-
tial, and [B] is the symmetric matrix of coupling and damping terms with off-
diagonal terms Bij = −f ηij/δ�f�i� and diagonal terms Bii = ( f/δ�f�i�)(ηi + Σj ηij). This system
of equations can be solved using standard numerical methods. Solving for the values
of E gives a mean-value estimate of the energy distribution.

The variance in E is more difficult to evaluate because it depends on the evalua-
tion of the inverse matrix [B]−1. If the variance of each term in [B] is small compared
to its mean-square value, then the variances in [B]−1 can be approximated by

[σB−1
2] � [(Bij

−1)2][σB
2][(Bij

−1)2] (24.49)

where the notation [(Bij
−1)2] refers to a matrix with the squares of the elements in

[B]−1, term for term.
The subsystem energy values can be converted to dynamic response quantities

using the relation E = mż2�. For a narrowband vibration at frequency fc (which could
be each 1/3-octave band response in a broadband analysis) the displacement
response is �z2 � ż2��(2π f )2 and the acceleration response is �̈z2 � (2π f )2 ż2�. The rela-
tion between the vibration velocity response and the maximum dynamic strain
depends on the type of motion involved. For longitudinal motion, the mean-square
strain is ��2� = ż2�/cL

2. For bending motion of a uniform beam or plate, the maximum
strain is ��m�a�x�2� = 3ż2�/cL

2.
When the response values in a complex system are plotted on a logarithmic

scale, a surprising result occurs. The log-values are distributed with an approxi-
mately gaussian distribution over frequency. This is illustrated in Fig. 24.12 for a
beam network. The system frequency response function is computed numerically
using a transfer impedance model including bending and longitudinal and tor-
sional motions in each of the four beam segments. A histogram of the computed
response values on the decibel scale compares very well with a gaussian distribu-
tion. This result can be explained by noting that the response value at any particu-
lar frequency results from the product of a large number of quantities. Then the
logarithm of the response value will be the sum of a large number of terms. If the
complexity in the system causes the responses at different frequencies to be inde-
pendent, then by the central limit theorem the log-values will tend to have a gauss-
ian distribution. This means that the mean square response values will have a
log-normal distribution.

The calculated mean values and variances in the SEA model can be converted to
the decibel scale as follows. If the mean square velocity ż2� has a log-normal distribu-
tion with variance σẏ2

2, then the velocity level Lż � 10 log10( ż2/żref
2) has a normal dis-

tribution with a mean value and variance given by

Lż = 10 log10� 	 − 5 log10�1 + 

σLż
2 = 43 log10�1 + 

(24.50)

Note that the mean of the decibel levels is not equal to the decibel level of the mean
square value.
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TRANSIENT (SHOCK) RESPONSE USING SEA

The statistical energy analysis model can solve for the transient response of a system
using Eq. (24.23). The numerical solution methods for equations of this form can be
illustrated using the finite difference method. Given an initial energy state E(0), the
energy state at a short time later is approximated by

E(Δt) � E(0) + Δt (24.51)

where dE/dt = Πin − Πout.This new energy distribution is then used to project forward
to the next time step, etc. The accuracy of the solution depends on the size of Δt rel-
ative to the energy flow time constants in the system, (2πfη)−1. For the finite differ-
ence solution, using Δt ≤ (6πfη)−1 usually provides accurate results.

An example of a transient analysis using SEA is shown in Fig. 24.13. The mea-
sured acceleration response of a shelf on an equipment rack for an impact at the leg
is shown along with the corresponding transient SEA solution of Eq. (24.23). The
energy level of the shelf builds up for the first 0.01 sec before beginning to decay.

dE
�
dt
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FIGURE 24.12 Numerical calculation of the vibration response of a
four-beam network. (A) Normalized frequency response function for 
a point on beam 4. (B) Probability density function of log-levels,

Numerical data histogram, — Normal distribution.



Modeling the transient mean square response with Eq. (24.10), the undamped
shock spectrum for this response signal can be estimated using Eq. (24.13). Alter-
nately, if a shock excitation is modeled as a time-dependent power input to the SEA
model, then the peak response spectrum of the system components can be estimated
directly from the maximum mean square values in the transient SEA solution.
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FIGURE 24.13 Transient response of an equipment shelf. (A) Experi-
mental structure showing the locations of the impact F and the accelera-
tion response a. (B) Comparison of the transient response of the structure;
— Measured data, - - - SEA model.
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CHAPTER 25
VIBRATION TESTING

MACHINES

David O. Smallwood

INTRODUCTION

This chapter describes some of the more common types of vibration testing
machines which are used for developmental, simulation, production, or exploratory
vibration tests for the purpose of studying the effects of vibration or of evaluating
physical properties of materials or structures. A summary of the prominent features
of each machine is given. These features should be kept in mind when selecting a
vibration testing machine for a specific application. Digital control systems for
vibration testing are described in Chap. 26. Applications of vibration testing
machines are described in other chapters.

A vibration testing machine (sometimes called a shake table or shaker and
referred to here as a vibration machine) is distinguished from a vibration exciter in
that it is complete with a mounting table which includes provisions for bolting the
test article directly to it. A vibration exciter, also called a vibration generator, may be
part of a vibration machine or it may be a device suitable for transmitting a vibratory
force to a structure.A constant-displacement vibration machine attempts to maintain
constant-displacement amplitude while the frequency is varied. Similarly, a constant-
acceleration vibration machine attempts to maintain a constant-acceleration ampli-
tude as the frequency is changed.

The load of a vibration machine includes the item under test and the supporting
structures that are not normally a part of the vibration machine. In the case of equip-
ment mounted on a vibration table, the load is the material supported by the table.
In the case of objects separately supported, the load includes the test item and all fix-
tures partaking of the vibration.The load is frequently expressed as the weight of the
material. The test load refers specifically to the item under test exclusive of support-
ing fixtures. A deadweight load is a rigid load with rigid attachments. For nonrigid
loads the reaction of the load on the vibration machine is a function of frequency.
The vector force exerted by the load, per unit of acceleration amplitude expressed in
units of gravity of the driven point at any given frequency, is the effective load for
that frequency. The term load capacity, which is descriptive of the performance of
reaction and direct-drive types of mechanical vibration machines, is the maximum
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deadweight load that can be vibrated at the maximum acceleration rating of the
vibration machine. The load couple for a deadweight load is equal to the product of
the force exerted on the load and the distance of the center of mass from the line of
action of the force or from some arbitrarily selected location (such as a table sur-
face).The static and dynamic load couples are generally different for nonrigid loads.

The term force capacity, which is descriptive of the performance of electrody-
namic shakers, is defined as the maximum rated force generated by the machine.
This force is usually specified, for continuous rating, as the maximum vector ampli-
tude of a sinusoid that can be generated throughout a usable frequency range.A cor-
responding maximum rated acceleration, in units of gravity, can be calculated as the
quotient of the force capacity divided by the total weight of the coil table assembly
and the attached deadweight loads.The effective force exerted by the load is equal to
the effective load multiplied by the (dimensionless) ratio g, which represents the
number of units of gravity acceleration of the driven point [see Eq. (25.1)].

DIRECT-DRIVE MECHANICAL VIBRATION

MACHINES

The direct-drive vibration machine consists of a rotating eccentric or cam driving a
positive linkage connection which forces a displacement between the base and table
of the machine. Except for the bearing clearances and strain in the load-carrying
members, the machine tends to develop a displacement between the base and the
table which is independent of the forces exerted by the load against the table. If the
base is held in a fixed position, the table tends to generate a vibratory displacement
of constant amplitude, independent of the operating rpm. Figure 25.1 shows the
direct-drive mechanical machine in its simplest forms. This type of machine is some-
times referred to as a brute force machine since it will develop any force necessary to
produce the table motion corresponding to the crank or cam offset, short of break-
ing the load-carrying members or stalling the driving shaft.

The simplest direct-drive mechanical vibration machine is driven by a constant-
speed motor in conjunction with a belt-driven speed changer and a frequency-
indicating tachometer. Table displacement is set during shutoff and is assumed to
hold during operation. An auxiliary motor driving a cam may be included to pro-
vide frequency cycling between adjustable limits. More elaborate systems employ
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FIGURE 25.1 Elementary direct-drive mechanical vibration machines:
(A) Eccentric and connecting link. (B) Scotch yoke. (C) Cam and follower.



a direct-coupled variable-speed motor with electronic speed control, as well as
amplitude adjustment from a control station. Machines have been developed
which provide rectilinear, circular, and three-dimensional table movements—the
latter giving complete, independent adjustment of magnitude and phase in the
three directions.

Many types of mechanisms are used to adjust the displacement amplitude and
frequency of the mounting table. For example, the displacement amplitude can be
adjusted by means of eccentric cams and cylinders.

PROMINENT FEATURES

● Low operating frequencies and large displacements can be provided conveniently.
● Theoretically, the machine maintains constant displacement regardless of the

mechanical impedance of the table-mounted test item within force and frequency
limits of the machine. However, in practice, the departure from this theoretical
ideal is considerable, due to the elastic deformation of the load-carrying members
with change in output force.The output force changes in proportion to the square
of the operating frequency and in proportion to the increased displacement
resulting therefrom. Because the load-carrying members cannot be made infi-
nitely stiff, the machines do not hold constant displacement with increasing fre-
quency with a bare table. This characteristic is further emphasized with heavy
table mass loads.Accordingly, some of the larger-capacity machines which operate
up to 60 Hz include automatic adjustment of the crank offset as a function of oper-
ating frequency in order to hold displacement more nearly constant throughout
the full operating range of frequency.

● The machine must be designed to provide a stiff connection between the ground
or floor support and the table. If accelerations greater than 1g are contemplated,
the vibratory forces generated between the table and ground will be greater than
the weight of the test item. Hence, all mass loads within the rating of the machine
can be directly attached to the table without recourse to external supports.

● The allowable range of operating frequencies is small in order to remain within
bearing load ratings.Therefore, the direct-drive mechanical vibration machine can
be designed to have all mechanical resonances removed from the operating fre-
quency range. In addition, relatively heavy tables can be used in comparison to the
weight of the test item. Consequently, misplacing the center of gravity of the test
item relative to the table center for vibration normal to the table surface and the
generation of moments by the test item (due to internal resonances) usually have
less influence on the table motions for this type of machine than would other
types which are designed for wide operational frequency bands.

● Simultaneous rectilinear motion normal to the table surface and parallel to the
table surface in two principal directions is practical to achieve. It may be obtained
with complete independent control of magnitude and phase in each of the three
directions.

● Displacement of the table is generated directly by a positive drive rather than by
a generated force acting on the mechanical impedance of the table and load. Con-
sequently, impact loads in the bearings, due to the necessary presence of some
bearing clearance, result in the generation of relatively high impact forces which
are rich in harmonics. Accordingly, although the waveform of displacement might
be tolerated as such, the waveform of acceleration is normally sufficiently dis-
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torted to preclude recognition of the fundamental driven frequency, when dis-
played on a time base.

REACTION-TYPE MECHANICAL VIBRATION

MACHINE

A vibration machine using a rotating shaft carrying a mass whose center of mass is
displaced from the center of rotation of the shaft for the generation of vibration is
called a reaction-type vibration machine. The product of the mass and the distance of
its center from the axis of rotation is referred to as the mass unbalance, the rotating
unbalance, or simply the unbalance. The force resulting from the rotation of this
unbalance is referred to as the unbalance force.

The reaction-type vibration machine consists of at least one rotating-mass unbal-
ance directly attached to the vibrating table. The table and rotating unbalance are
suspended from a base or frame by soft springs which isolate most of the vibration
forces from the supporting base and floor. The rotating unbalance generates an
oscillating force which drives the table.The unbalance consists of a weight on an arm
which is relatively long by comparison to the desired table displacement.The unbal-
ance force is transmitted through bearings directly to the table mass, causing a vibra-
tory motion without reaction of the force against the base. A vibration machine
employing this principle is referred to as a reaction machine since the reaction to the
unbalance force is supplied by the table itself rather than through a connection to
the floor or ground.

CIRCULAR-MOTION MACHINE

The reaction-type machine, in its simplest form, uses a single rotating-mass un-
balance which produces a force directed along the line connecting the center of 
rotation and the center of mass of the displaced mass. Referred to stationary coordi-
nates, this force appears normal to the axis of rotation of the driven shaft, rotating
about this axis at the rotational speed of the shaft. The transmission of this force to
the vibration-machine table causes the table to execute a circular motion in a plane
normal to the axis of the rotating shaft.

Figure 25.2 shows, schematically, a machine employing a single unbalance pro-
ducing circular motion in the plane of the vibration-table surface. The unbalance is
driven at various rotational speeds, causing the table and test item to execute circu-
lar motion at various frequencies. The counterbalance weight is adjusted to equal
the test item mass moment calculated from d, the plane of the unbalance force,
thereby keeping the combined center of gravity coincident with the generated
force. Keeping the generated force acting through the combined center of gravity of
the spring-mounted assembly eliminates vibratory moments which, in turn, would
generate unwanted rotary motions in addition to the motion parallel to the test
mounting surface. The vibration isolator supports the vibrating parts with minimum
transmission of the vibration to the supporting floor.

For a fixed amount of unbalance and for the case of the table and test item acting
as a rigid mass, the displacement of motion tends to remain constant if there are no
resonances in or near the operating frequency range. If balance force must remain
constant, the amount of unbalance must change with shaft speed.
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RECTILINEAR-MOTION MACHINE

Rectilinear motion rather than circular motion can be generated by means of a
reciprocating mass. Rectilinear motions can be produced with a single rotating
unbalance by constraining the table to move in one direction.

Two Rotating Unbalances. The most common rectilinear reaction-type vibra-
tion machine consists of two rotating unbalances, turning in opposite directions
and phased so that the unbalance forces add in the desired direction and cancel in
other directions. Figure 25.3 shows schematically how rectilinear motion perpen-
dicular and parallel to the vibration table is generated. The effective generated
force from the two rotating unbalances is midway between the two axes of rota-
tion and is normal to a line connecting the two. In the case of motion perpendicu-
lar to the surface of the table, simply locating the center of gravity of the test item
over the center of the table gives a proper load orientation. Tables are designed so
that the resultant force always passes through this point. This results in collinear-
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FIGURE 25.2 Circular-motion reaction-type mechanical vibration 
machine.

FIGURE 25.3 Rectilinear-motion reaction-type mechanical
vibration machine using two rotating unbalances: (A) Vibra-
tion perpendicular to table surface. (B) Vibration parallel to
table surface.



ity of generated forces and inertia forces, thereby avoiding the generation of
moments which would otherwise rock the table. In the case of motion parallel to
the table surface, no simple orientation of the test item will achieve collinearity of
the generated force and inertia force of the table and test item. Various methods
are used to make the generated force pass through the combined center of gravity
of the table and test item.

Three Rotating Unbalances. If a machine is desired which can be adjusted to
give vibratory motion either normal to the plane of the table or parallel to the plane
of the table, a minimum of three rotating unbalances is required. Inspection of Fig.
25.4 shows how rotating the two smaller mass unbalances relative to the single larger
unbalance results in the addition of forces in any desired direction, with cancellation
of forces and force couples at 90° to this direction. Although parallel shafts are usu-
ally used as illustrated, occasionally the three unbalances may be mounted on
collinear shafts, the two smaller unbalances being placed on either side of the single
larger unbalance to conserve space and to eliminate the bending moments and shear
forces imposed on the structure connecting the individual shafts.
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FIGURE 25.4 Adjustment of direction of generated force in a reaction-type
mechanical vibration exciter: (A) Vertical force. (B) Horizontal force.

PROMINENT FEATURES

● The forces generated by the rotating unbalances are transmitted directly to the
table without dependence upon a reactionary force against a heavy base or rigid
ground connection.

● Because the length of the arm which supports the unbalance mass can be large,
relative to reasonable bearing clearances and the generation of a force which does
not reverse its direction relative to the rotating unbalance arm, the generated
waveform of motion imparted to the vibration machine table is superior to that
attainable in the direct-drive type of vibration machine.

● The generated vibratory force can be made to pass through the combined center
of gravity of the table and test item in both the normal and parallel directions rel-
ative to the table surface, thereby minimizing vibratory moments giving rise to
table rocking modes.

● The attainable rpm and load ratings on bearings currently limit performance to a
frequency of approximately 60 Hz and a generated force of 300,000 lb (1.3 MN),



respectively, although in special cases frequencies up to 120 Hz and higher can be
obtained for smaller machines.

ELECTRODYNAMIC VIBRATION MACHINE

GENERAL DESCRIPTION

A complete electrodynamic vibration test system is comprised of an electrodynamic
vibration machine, electrical power equipment which drives the vibration machine,
and electrical controls and vibration monitoring equipment.

The electrodynamic vibration machine derives its name from the method of force
generation. The force which causes motion of the table is produced electrodynami-
cally by the interaction between a current flow in the armature coil and the intense
magnetic dc field which passes through the coil, as illustrated in Fig. 25.5. The table
is structurally attached to a force-generating coil which is concentrically located
(with radial clearances) in the annular air gap of the dc magnet circuit.The assembly
of the armature coil and the table is usually referred to as the driver coil-table or
armature. The magnetic circuit is made from soft iron which also forms the body of
the vibration machine. The body is magnetically energized, usually by two dc field
coils as shown in Fig. 25.5C, generating a radially directed field in the air gap, which
is perpendicular to the direction of current flow in the armature coil. Alternatively,
in small shakers, the magnetic field is generated by permanent magnets. The gener-
ated force in the armature coil is in the direction of the axis of the coil, perpendicu-
lar to the table surface. The direction of the force is also perpendicular to the
armature-current direction and to the air-gap field direction.

The table and armature coil assembly is supported by elastic means from the
machine body, permitting rectilinear motion of the table perpendicular to its surface,
corresponding in direction to the axis of the armature coil. Motion of the table in all
other directions is resisted by stiff restraints.Table motion results when an ac current
passes through the armature coil.The body of the machine is usually supported by a
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FIGURE 25.5 Three main magnet circuit configurations.



base with a trunnion shaft centerline passing horizontally through the center of
gravity of the body assembly, permitting the body to be rotated about its center,
thereby giving a vertical or horizontal orientation to the machine table. The base
usually includes an elastic support of the body, providing vibration isolation between
the body and the supporting floor.

Where a very small magnetic field is required at the vibration machine table due
to the effect of the magnetic field on the item under test, degaussing may be pro-
vided. Magnetic fields of 5 to 30 gauss several inches above the table are normal for
modern machines with double-ended, center air-gap magnet designs, Fig. 25.5C,
without degaussing accessories; in contrast, with degaussing accessories, magnetic
fields of 2 to 5 gauss can be achieved.

Because of copper and iron losses in the electrodynamic unit, provision must be
made to carry off the dissipated heat. Cooling by convection air currents, com-
pressed air, or a motor-driven blower is used and, in some cases, a recirculating fluid
is used in conjunction with a heat exchanger. Fluid cooling is particularly useful
under extremes of hot or cold environments or altitude conditions where little air
pressure is available.

MAGNET CIRCUIT CONFIGURATIONS

Three magnet circuit configurations that are used in the electrodynamic machines
are shown schematically in Fig. 25.5. In Fig. 25.5A, the table and driver coil are
located at opposite ends of the magnet circuit.The advantage of this configuration is
that the location of the annular air gap, the region of high magnetic leakage flux, is
spaced from the table and the body itself acts as a magnetic shield, resulting in lower
magnetic flux density at the table. The disadvantage lies in the loss of rigidity in the
connecting structure between the driver coil and the table because of its length.This
configuration is usually cooled by convection air currents or by forced air from a
motor-driven blower.

In Fig. 25.5B, the table is connected directly to the driver coil. This eliminates the
length of structure passing through the magnet structure, thereby increasing the
rigidity of the driver coil-table assembly and allowing higher operating frequencies.
The leakage magnetic field in the vicinity of the table is high in this configuration. It
is therefore difficult, if not impossible, to reduce the leakage to acceptable levels
without adding extra length to the driver coil assembly, elevating the table above the
air gap. The configuration in Fig. 25.5C has a complete magnet circuit above and
below the annular air gap, thereby reducing the external leakage magnetic field to a
minimum. This configuration also increases the total magnetic flux in the air gap by
a factor of almost 2 for the same diameter driver coil, giving greater force generation
and a more symmetrical magnetic flux density along the axis of the coil. Hence, a
more uniform force generation results when the driver coil is moved axially
throughout its total stroke. All high-efficiency and high-performance electrody-
namic vibration machines use the configuration shown in Fig. 25.5C. Configurations
B and C of Fig. 25.5 may use air cooling throughout or an air-cooled driver coil and
liquid-cooled field coil(s) or total liquid cooling.

The main magnetic circuit uses dc field coils for generating the high-intensity
magnetic flux in the annular gap in all of the larger and most of the smaller units. Per-
manent magnet excitation is used in small portable units and in some general-
purpose units up to about 500-lb (2-kN) generated force.
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INDUCTION-TYPE SHAKER

In the induction-type electrodynamic shaker, a stator coil is fixed in the shaker body
(see Fig. 25.6). The varying current from the power source is passed trough the sta-
tor coil. The armature coil is a cylinder of conductive material (usually aluminum).
The stator current is coupled inductively to the armature coil. The stator coil (many
turns) acts as the primary in a transformer.The armature coil (a single shorted turn)
acts as the secondary in the transformer. The stator current inductively generates a
current in the single-turn shorted armature coil. In Fig. 25.6, the dc magnetic field is
across the paper, the armature current is into the paper, and the generated force is
vertical. The advantages are a rugged armature design, and an armature that is elec-
trically isolated from the rest of the shaker. The disadvantages include a decrease in
performance at low frequencies due to inductive coupling losses and a slight prob-
lem cooling the armature. Because the induction losses are a function of scale, this
design is usually found in the larger electrodynamic shakers.
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FIGURE 25.6 Cross section in the vicinity of the armature of an
induction-type shaker.

FREQUENCY RESPONSE CONSIDERATIONS

Testing procedures (see Chap. 17) can call for the reproduction of sinusoidal, ran-
dom, or transient vibration environments. The frequency response function (the
ratio of the output motion—acceleration, velocity, or displacement—to the shaker
input voltage) of an electrodynamic shaker is a complex (amplitude and phase)
function of frequency. Therefore, a control system is required to perform tests to a
given specification, as detailed in Chap. 26.

CHARACTERIZATION OF AN ELECTRODYNAMIC SHAKER AS A

TWO-PORT NETWORK

An electrodynamic shaker can be modeled as a mixed electrical/mechanical two-
port network1,2 (see Chap. 9). This characterization can give good insight about the



performance capabilities of a shaker and/or a shaker/power supply combination. In
matrix form, this characterization can be written as

� � = �  � � (25.1)

where E = the voltage required to drive the shaker
I = the current required to drive the shaker

A = the acceleration observed at the shaker/load interface
F = the force at the shaker/load interface

All the variables are complex functions of frequency as described in Chap. 19. The
terms in the impedance matrix are frequency response functions defined as

Z11 = 
F = 0
Z12 = 
I = 0

Z21 = 
F = 0
Z22 = 
I = 0

(25.2)

Two of the terms are easily measured. Z11 is the unloaded table (no mechanical load
on the shaker) electrical impedance of the shaker, and Z21 is the ratio of the
unloaded acceleration to input current of the shaker. Z22 is the accelerance (ratio of
acceleration to force) looking into the shaker with the shaker electrical input open
(zero current, but with the field on). Z12 is the ratio of voltage, generated at the open
electrical shaker input, to a driving force applied at the armature. The direct mea-
surement of Z12 and Z22 would require that an external force be applied to the
shaker and the resulting open circuit voltage and acceleration be measured, a diffi-
cult feat in practice. But the terms in the impedance matrix can be measured exper-
imentally by performing experiments with two or more known loads attached to the
shaker. The general case is given by a system of equations for n measured load con-
ditions, where the subscripts indicate the different loading conditions.

�  = �  �  (25.3)

Each test requires the measurement of the input voltage and current and the output
acceleration and force. If the test item is a rigid mass, the force can be estimated from
F = ma. In shorthand, Eq. (25.3) will be written as

E = ZI (25.4)

The impedance matrix can then be found using a Moore-Penrose pseudoinverse3

Z = EI−1 (25.5)

If the number of test conditions is greater than two, the solution is in a least-squares
sense. This assumes the inverse exists. The equation is typically solved at a finite set
of discrete frequencies using techniques described in Chap. 19. Other forms of the
impedance matrix can be defined which give frequency response functions that may
be more useful in a particular application. The admittance matrix is defined as
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� � = �  � � (25.6)

The transmission matrix is defined as

� � = �  � � (25.7)

The reciprocal transmission matrix is defined as

� � = �  � � (25.8)

These matrices are all related by the equations

Y = Z−1 R = T −1

T = �  (25.9)

R = � 
For example, for a sine test, the voltage and current required for a particular load
acceleration are easily determined by substituting

F = ZmA (25.10)

into Eq. (25.7) to give

� � = A�  � � (25.11)

Zm is the driving point (the interface at the shaker) free effective mass4 (the ratio of
force to acceleration) of the load (test item and fixtures). The free effective mass is
related to the mechanical impedance, Z (the ratio of force to velocity), defined in
Chap. 9, by the relationship Zm = jωZ. In general, Zm is a frequency response func-
tion. If the load and fixtures are a rigid mass, Zm is a constant equal to the mass of the
test item and fixtures.

Similarly, for a given shaker power supply with known characteristics (the maxi-
mum output voltage and current capability), the shaker performance capabilities
(the achievable acceleration) for a given load are easily determined from Eq.
(25.11). The maximum acceleration that can be achieved for a given voltage limit is 

AElim = |Elim/(T11 + T12Zm)|

The maximum acceleration that can be achieved for a given current limit is

AIlim = |Ilim/(T21 + T22Zm)|
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The maximum acceleration that can be reached before either limit is reached is the
smaller of these two numbers.

Amax = min(AElim, AIlim)

The development is easily generalized for random and transient testing using the
techniques in Chap. 19.The development can be generalized for the multiple shaker
system driving a single test item.5

A useful review of electrodynamic shakers is given in Ref. 6.

SYSTEM RATINGS

The electrodynamic vibration machine system is rated: (1) in terms of the peak value
of the sinusoidal generated force for sinusoidal vibration testing and (2) in terms of
the rms and instantaneous values of the maximum force generated under random
vibration testing. In order to determine the acceleration rating of the system with a
test load on the vibration table, the weight of the test load, assumed to be effective
at all frequencies, must be known and used in the following expressions:

� =
(25.12)

�rms =

where � = a/g, a dimensionless number expressing the ratio of the peak sinu-
soidal acceleration to the acceleration due to gravity (i.e., the peak
sinuosidal acceleration in g’s)

�rms = arms/g, a number expressing the ratio of the rms value of random
acceleration to the acceleration due to gravity

WL = weight of load
WT = equivalent weight of table driver-coil assembly and associated mov-

ing parts
F = rated peak value of sinusoidal generated force

Frms = rated rms value of random generated force

The force rating of an electrodynamic vibration machine is the value of force
which can be used to calculate attainable accelerations for any rigid-mass table load
equal to (or greater than) the driver coil weight. It is not necessarily the force gener-
ated by the driver coil. These two forces are identical only if the operating frequen-
cies are sufficiently below the axial resonance frequency of the armature assembly,
where it acts as a rigid body. As the axial resonance frequency is approached, a
mechanical magnification of the force generated electrically by the driver coil results.
The design of the driving power supply takes into account the possible reduction in
driver-coil current at frequencies approaching the armature axial resonance fre-
quency, since full current in this range cannot be used without exceeding the rated
value of transmitted force at the table, possibly causing structural damage.

In those cases where the test load dissipates energy mechanically, the system per-
formance should be analyzed for each specific load since normal ratings are based
on a dead-mass, nondissipative type of load. This consideration is particularly signif-
icant in resonance-type fatigue tests at high stress levels.

Frms��
WL + WT

F
��
WL + WT
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PROMINENT FEATURES

● A wide range of operating frequencies is possible, with a properly selected electric
power source, from 0 to above 30,000 Hz. Small, special-purpose machines have
been made with the first axial/resonance mode above 26,000 Hz, giving inherently
a resonance-free, flat response to 10,000 Hz.

● Frequency and displacement amplitude are easily controlled by adjusting the
power-supply frequency and voltage.

● Pure sinusoidal table motion can be generated at all frequencies and amplitudes.
Inherently, the table acceleration is the result of a generated force proportional to
the driving current. If the electric power supply generates pure sinusoidal voltages
and currents, the waveform of the acceleration of the table will be sinusoidal, and
background noise will not be present. Operation with table acceleration wave-
form distortion of less than 10 percent through a displacement range of 10,000-to-
1 is common, even in the largest machines. Velocity and displacement waveforms
obtained by the single and double integration of acceleration, respectively, will
have even less distortion.

● Random vibration, as well as sinusoidal vibration, or a combination of both, can
be generated by supplying an appropriate input voltage.

● A unit occupying a small volume, and powered from a remote source, can be used
to generate small vibratory forces.A properly designed unit adds little mass at the
point of attachment and can have high mobility without mechanical damping.

● Leakage magnetic flux is present around the main magnet circuit. This leakage
flux can be minimized by proper design and the use of degaussing coil techniques.

SPECIFICATIONS

Design Factors

Force Output. The maximum vector-force output for sinusoidal excitation shall
be given for continuous duty and may additionally be given for intermittent duty.
When nonsinusoidal motions are involved, the force may additionally be given in
terms of a root-mean-square (rms) value together with a maximum instantaneous
value. The latter value is especially significant when a random type of excitation is
required.

In some cases of wide-frequency-band operation of the electrodynamic vibration
machine, the upper frequencies are sufficiently near the axial mechanical resonance
frequency of the coil-table assembly to provide some amplification of the generated
force. Most system designs account for this magnification, when present, by reducing
the capacity of the electrical driving power accordingly.

The peak values of the input electrical signal, for random excitation, may extend
to indefinitely large values. In order that the armature coil voltage and generated
force may be limited to reasonable values, the peak values of the excitation are
clipped so that no maxima shall exceed a given multiple of the rms value. The mag-
nitude of the maximum clipped output shall be specified preferably as a multiple of
the rms value. If adjustments are possible, the range of magnitudes shall be given.

Weight of Vibrating Assembly. The weight of the vibration coil-table assembly
shall be given. It shall include all parts which move with the table and an appropri-
ate percentage of the weight of those parts connecting the moving and stationary
parts giving an effective overall weight.
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Vibration Direction. The directions of vibration shall be specified with respect
to the surface of the vibration table and with respect to the horizontal or vertical
direction. Provisions for changing the direction of vibration shall be stated.

Unsupported Load. The maximum allowable weight of a load not requiring
external supports shall be given for horizontal and vertical orientations of the vibra-
tion table. This load in no way relates to dynamic performance but is a design limi-
tation, the basis of which may be stated by the manufacturer.

Static Moments and Torques. Static moments and torques may be applied to
the coil-table assembly of a vibration machine by the tightening of bolts and by the
overhang of the center of gravity of an unsupported load during horizontal vibra-
tion. The maximum permissible values of these moments and torques shall be spec-
ified. These loads in no way relate to the dynamic performance but are design
limitations, the basis for which may be stated by the manufacturer.

Total Excursion Limit. The maximum table motion between mechanical stops
shall be given together with the maximum vibrational excursion permissible with no
load and with maximum load supportable by the table.

Acceleration Limit. The maximum allowable table acceleration shall be given.
(These large maxima may be involved in the drive of resonant systems.)

Stiffness of Coil-Table Assembly Suspension System
AXIAL STIFFNESS: The stiffness of the suspension system for axial deflections of

the coil-table assembly shall be given in terms of pounds per inch of deflection. The
natural frequency of the unloaded vibrating assembly may also be given. Provisions,
if any, to adjust the table position to compensate for position changes caused by dif-
ferent loads shall be described.

SUSPENSION RESONANCES: Resonances of the suspension system should be
described together with means for their adjustment where applicable.

Axial Coil-Table Resonance. The resonance frequency of the lowest axial
mode of vibration of the coil-table assembly shall be given for no load and for an
added deadweight load equal to 1 and to 3 times the coil-table assembly weight. If
this resonance frequency is not obvious from measurements of the table amplitude
versus frequency, it may be taken to be approximately equal to the lowest frequency,
above the rigid-body resonance of the table-coil assembly on its suspension system,
at which the phase difference between the armature coil current and the accelera-
tion of the center of the table is 90°.

Impedance Characteristics. When an exciter or vibration machine is consid-
ered independent of its power supply, information concerning the electrical imped-
ance characteristics of the machine shall be given in sufficient detail to permit
matching of the power-supply output to the vibration-machine input. It is suggested
that consideration be given to providing schematic circuit diagrams (electrical and
mechanical or equivalent electrical) together with corresponding equations that
contain the principal features of the machine.

Environmental Extremes. When it is anticipated that the vibration machine
will be used under conditions of abnormal pressure and temperature, the following
information shall be supplied as may be applicable: maximum simulated altitude (or
minimum pressure) under which full performance ratings can be applied; maximum
simulated altitude under which reduced performance ratings can be applied; maxi-
mum ambient temperature for rated output; low-temperature limitations; humidity
limitations.

Performance. The performance relates in part to the combined operation of the
vibration generator and its power supply.
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Amplitude-Frequency Relations. Data on sinusoidal operation shall be given as
a series of curves for several table loads, including zero load, and for a load at least 3
times the weight of the coil-table assembly. Maximum loads corresponding to 20g and
10g table acceleration under full-rated force output would be preferred.These curves
should give amplitudes of table displacement, velocity, or acceleration, whichever is
limiting, throughout the complete range of operating frequencies corresponding to
maximum continuous ratings of the system. Additionally, the maximum rated force
should be given. If this force is frequency-dependent, it should be presented as a curve
with the ordinate representing the force and the abscissa the frequency.

If the system is for broadband use, necessarily employing an electronic power
amplifier, the exciting voltage signal applied to the input of the system shall be held
constant and the output acceleration shall be plotted as a function of frequency with
and without filters or other compensating devices for the loads and accelerations
indicated above. If the vibrator is used only for sinusoidal vibrations, and employs
servo amplitude control, the curves should be obtained under automatic frequency
sweeping conditions with the control system included.

Waveform. Total rms distortion of the acceleration waveform at the center of the
vibration table, or at the center on top of the added test weight, shall be furnished to
show at least the frequencies of worst waveform under the test conditions specified
under the above paragraph. The pickup type, and frequency range, shall be given to-
gether with the frequency range of associated equipment. It is desirable to have the
overall frequency range at least 10 times the frequency of the fundamental being re-
corded.Tabular data on harmonic analysis may alternatively or additionally be given.

Magnetic Fields. The maximum values of constant and alternating magnetic
fields, due to the vibration exciter, in the region over the surface of the vibration
table should be indicated. If degaussing coils are furnished, these values should be
given with and without the use of the degaussing coils.

Frequency Range. The overall frequency range shall be given. A group of fre-
quency ranges shall also be given for electronic power supplies if they require
changes of their output impedance for the different ranges.

Frequency Drift. The probable drift of a set frequency shall be stated, together
with factors that contribute to the drift. This shall apply for nonresonant loads.

Signal Generator. A vibration pickup, if built into the vibration machine, shall
have calibrations furnished over a specified frequency and amplitude range.

Installation Requirements. Recommendations shall be given as to suitable
methods for installing the vibration machine and auxiliary equipment. Electrical and
other miscellaneous requirements shall be stated.

HYDRAULIC VIBRATION MACHINE

The hydraulic vibration machine is a device which transforms power in the form of a
high-pressure flow of fluid from a pump to a reciprocating motion of the table of the
vibration machine.A schematic diagram of a typical machine is shown in Fig. 25.7. In
this example, a two-stage electrohydraulic valve is used to deliver high-pressure
fluid, first to one side of the piston in the actuator and then to the other side, forcing
the actuator to move with a reciprocating motion.This valve consists of a pilot stage
and power stage, the former being driven with a reciprocating motion by the elec-
trodynamic driver. At the time the actuator moves under the force of high-pressure
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FIGURE 25.7 Schematic diagram of a typical hydraulic vibration machine.

fluid on one side of the piston, the fluid on the other side of the piston is forced back
through the valve at reduced pressure and is returned to the pump.

The electrohydraulic valve is usually mounted directly on the side of the actuator
cylinder, forming a close-coupled assembly of massive steel parts. The close proxim-
ity of the valve and cylinder is desirable to reduce the volume and length of the con-
necting fluid paths between the several spools and the actuator, thereby minimizing
the effects of the compliance of the fluid and the friction to its flow. Many types of
electrohydraulic valves exist, all of which fail to meet the requirement of sufficient
flow at high frequencies to give vibration machine performance equivalent to exist-
ing electrodynamic machine performance at 2000 Hz.

OPERATING PRINCIPLE

In Fig. 25.7, the pilot and power spools of a hydraulic vibration machine are shown in
the “middle” or “balanced” position, blocking both the pump high-pressure flow P and
the return low-pressure flow R. Correspondingly, the piston of the actuator must be
stationary since there can be no fluid flow either to or from the actuator cylinder. If the
pilot spool is displaced to the right of center by a force from the electrodynamic driver,
then high-pressure fluid P will flow through the passage from the pilot spool to the left
end of the power spool, causing it to move to the right also.This movement forces the
trapped fluid from the right-hand end of the power spool through the connecting pas-
sage, back to the pilot stage, and then through the opening caused by the displacement
of the pilot spool to the right, to the chamber R connected to the return to the pump.
Correspondingly, if the pilot spool moves to the left, the flow to and from the power
spool is reversed, causing it to move to the left. For a given displacement of the pilot



spool, a flow results which causes a corresponding velocity of the power spool. A dis-
placement of the power spool to the right allows the flow of high-pressure fluid P from
the pump to the left side of the piston in the actuator, causing it to move to the right
and forcing the trapped fluid on the right of the piston to be expelled through the con-
necting passage to the power spool and out past the right-hand restrictions to the
return fluid chamber R. The transducers shown on the power spool and the actuator
shaft are of the differential transformer type and are used in the feedback circuit to
improve system operation and provide electrical control of the average (i.e., station-
ary) position of the actuator shaft relative to the actuator cylinder.

A block diagram of the complete hydraulic vibration machine system is shown in
Fig. 25.8. The pump, in conjunction with accumulators in the pressure and return
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FIGURE 25.8 Block diagram—hydraulic vibration machine system.

lines at the hydraulic valve, should be capable of variable flow while maintaining a
fixed pressure. Most systems to date have required an operating pump pressure of
3000 lb/in.2 (20 MPa). The upper limit of efficiency of the hydraulic valve is approx-
imately 60 percent, the losses being dissipated in the form of heat. Mechanical loads
are seldom capable of dissipating appreciable power; most of the power in the pump
discharge is converted to a temperature rise in the fluid.Therefore a heat exchanger
limiting the fluid temperature must be included as part of the system.

PROMINENT FEATURES

● Large generated forces or large strokes can be provided relatively easily. Large
forces and large velocities of motion, made possible with a large stroke, determine



the power capacity of the system. For example, one hydraulic vibration machine
has a peak output power of 450,000 lb-in./sec (approximately 34 hp or 25 kW)
with a single electrohydraulic valve. This power can be increased by the installa-
tion of several valves on a single actuator.Appreciable increases in valve flow can
be realized by sacrificing high-frequency performance. Hence, the hydraulic vibra-
tion machine excels at low frequencies where large force, stroke, and power capac-
ity are required.

● The hydraulic machine is small in weight, relative to the forces attainable; there-
fore, a rigid connection to firm ground or a large massive base is necessary to
anchor the machine in place and to attenuate the vibration transmitted to the sur-
rounding area.

● The main power source is hydraulic, which is essentially dc in character from
available pumps. The electrical driving power for controlling the valve is small.
Therefore, the operating frequency range can be extended down to 0 Hz.

● The magnetic leakage flux in the region of the table is insignificant by comparison
with the electrodynamic-type vibration machine.

● The machine, with little modification, is suitable for use in high- and low-
temperature, -humidity, and -altitude environments.

● The machine is inherently nonlinear with amplitude in terms of electrical input
and output flow or velocity.

PIEZOELECTRIC VIBRATION EXCITERS

A piezoelectric material (see Chap. 10) can be used to generate motion and act as a
piezoelectric vibration exciter. Typically, a piezoelectric exciter employs a number of
disks of piezoelectric material, as illustrated in Fig. 25.9; this arrangement increases
the ratio of the displacement output to voltage input sensitivity of the exciter. The
strain is proportional to the charge, and the charge is increased by increasing the
voltage gradients across the piezoelectric material.The voltage gradient is increased
by using many thin layers of piezoelectric material, separated with a conducting
material, with alternating polarity on the conducting separators.This arrangement of
alternating layers of piezoelectric material and conducting material is called a piezo-
electric stack. Because the piezoelectric stack has little tensile strength, the stack
must be preloaded. The stiffness of the preloading mechanism must be much less
than the stiffness of the piezoelectric stack so that preloading will not influence the
mechanical output significantly. The combination of the piezoelectric stack (acting
like a displacement actuator) and a reaction mass forms a reaction-type vibration
exciter as described above. The reaction mass of the piezoelectric exciter can be the
armature mass of a small electrodynamic exciter. This effectively places an electro-
dynamic and a piezoelectric exciter in series, producing a machine with a usable out-
put over a wide frequency range.

PROMINENT FEATURES

● The exciters can have a usable frequency range from 0 to 60 kHz.
● The low-frequency output is severely limited by the displacement limits of the

piezoelectric stack, usually a few thousandths of an inch (a few hundredths of a
millimeter).
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● The high-frequency output is limited by internal resonances of the vibration exciter.
● The force output of the exciter is limited by the displacement limit of the piezo-

electric stack and by the mass of the reaction mass.
● The power supply for a piezoelectric exciter requires high voltages (typically

about 1000 V) and sufficient current to drive the capacitance (typically 10 to 
1000 nF) of the device.

IMPACT EXCITERS

A limited amount of vibration testing, such as some modal testing and some stress
screening, require a broad frequency bandwidth of relatively uncontrolled vibra-
tion. A class of exciters broadly known as impact exciters (and also called repetitive
shock machines) is sometimes used for the above applications. These devices
depend on the property that a short impact generates a broad bandwidth of vibra-
tion energy. Each impact is a short transient (for example, see Chap. 27), but repeated
impacts result in a quasi-steady-state vibration having a wide frequency bandwidth.
If the impacts are periodic, the spectrum is composed of the fundamental frequency
of the impacts and many harmonics of this fundamental frequency; i.e., the excita-
tion is essentially a periodic function. However, the impacts are often varied ran-
domly in magnitude and spacing to produce a time-averaged spectrum that is
smoother, much like random vibration. Nevertheless, the instantaneous spectrum
or Wigner distribution (see Chap. 19) for the excitation will still reveal an instanta-
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FIGURE 25.9 Simplified cross section of a piezoelectric vibration exciter. A compressed piezo-
electric stack is excited with an oscillating voltage. An electrical voltage applied to the electrical con-
nections causes the piezoelectric stack to elongate and contract, producing a relative displacement
between the mounting surface and the reaction mass. The inertia of the reaction mass results in a
force being applied to an item mounted on the mounting surface.



neous periodic function with a time-varying magnitude and fundamental fre-
quency. The probability distribution can vary significantly from a gaussian distribu-
tion. The vibration characteristics are strongly influenced by the dynamics of the
structure on which they are mounted. The impact exciters can be mounted directly
to the test specimen, or the exciters can excite a table on which the test item is
mounted. The latter can be classed as a vibration testing machine.

PROMINENT FEATURES

● The design is usually simple, compact, and rugged.
● The maximum attainable displacement is usually small.
● The vibration is relatively uncontrolled. The user has little control over the spec-

trum of the resulting vibration.

MULTIPLE SHAKERS DRIVING 

A SINGLE TEST ITEM

It is sometimes desirable to have more than one shaker driving a test item. Some of
the reasons include:

Desire to excite many modes. This is the motivation for multiple-input modal
tests. A single input may not be capable of exciting all the modes, but multiple-
input tests have a better chance.
Desire to provide more representative boundary conditions. Many test items are
not mounted in service on rigid foundations. Single-axis testing on rigid fixtures
is often a poor simulation of the boundary conditions of service environments.
Multiple input tests can sometimes provide more realistic boundary conditions.
The vibration input in the field environment is often not through a single point.
Large test items. Large test items are difficult to drive with a single shaker. Exam-
ples include complete airplanes or space launch systems, seismic simulations, auto-
mobiles, and other large transportation systems.The size and/or force requirements
to test these items are often beyond the capabilities of a single shaker.
Desire to provide excitation in more than one direction. Most conventional
shakers excite the test item in one rectilinear direction. Most environments
include vibration in several directions (both rectilinear and rotation) simultane-
ously. In an effort to provide more realistic testing, shaker systems with inputs in
several directions at the same time are desirable.

Multiple exciters driving a single test item have been used extensively in modal
testing (see Chap. 21).This is relatively easy because control of the vibration input is
not usually necessary. Multiple-input tests with controlled inputs are more difficult
because of cross-coupling effects. Cross-coupling is where the input at one point
causes response at the control point of another input. Control of systems with cross-
coupling requires a careful mechanical design and a carefully designed control sys-
tem (see Chap. 26).The shaker, the fixture, and the control system form three legs of
a triad. They must all work together; a weakness in any of the three can result in the
system failure. The mechanical design must minimize cross-coupling effects and the
control system must compensate for the remaining cross-coupling.

Systems with two inputs typically controlling one translation and one rotation
degree of freedom are not very difficult to design. An example would be a horizon-
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tal beam-like structure with the vertical translation controlled independently at each
end. Isolation of the rotation from the shakers can usually be accomplished with fix-
tures that are stiff axially but soft in bending.

The mechanical design of systems with more than two degrees of freedom is
more difficult. The shaker providing the input can usually move in only one direc-
tion. If the test item is to move in more than one direction and/or rotate, the mechan-
ical design of the system must isolate all the motion except in one direction from the
shakers. It is also difficult to restrain other degrees of freedom (DOF), for exam-
ple, rotations. Restraint of unwanted motion is usually accomplished with passive
restraints (for example, hydrostatic bearings) or with active restraints using the
exciters and the control system. Undesired motion, compromising the test, will result
if the uncontrolled degrees of freedom are not restrained.

A system using three electrodynamic shakers controlling three orthogonal
translations, with the three rotations passively restrained, has been built.7 This sys-
tem has a usable bandwidth of almost 2 kHz. Electrodynamic systems with six
DOF have also been built with varying degrees of success. Electrohydraulic shaker
systems with six rigid-body DOF (three translations and three rotations) have
been built.8 These systems have a usable bandwidth of about 500 Hz. Larger elec-
trohydraulic systems with two to six DOF have been built for seismic simulation
with a bandwidth of about 50 Hz (see Chap. 29). Other electrohydraulic systems
with as many as 18 hydraulic actuators with a bandwidth of about 50 Hz are used
as road simulators in the automotive industry. One of these systems is illustrated
in Fig. 25.10. An advantage of electrohydraulic shakers for multiple-input applica-
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FIGURE 25.10 A road simulator which uses a cross-coupled multiple-drive/multiple-control-point
predetermined waveform control system.The predetermined waveforms (with a bandwidth of about 1
to 50 Hz) are measured on the vehicle while driving on a road. The predetermined waveforms are
reproduced on the vehicle during the simulation on the road simulator. Four hydraulic actuators drive
each wheel hub, and two hydraulic actuators drive the vehicle fore and aft at the bumpers. (MTS Corp.)



tions is that their mechanical input impedance is relatively high, reducing the
cross-coupling effects. Their disadvantage is that they are all inherently nonlinear,
which makes control more difficult. All of these systems, both electrodynamic and
electrohydraulic, are capable, with appropriate control systems, of performing
sine, random, and transient tests.

VIBRATION FIXTURES

Test items are usually attached to a shaker with a fixture. Seldom will the test item
mount directly on the shaker. These fixtures are usually designed to be rigid in the
frequency band of interest and lightweight. Rigidity is required because the vibra-
tion test is typically controlled at a single point.The assumption is that the motion of
the control point is representative of the input to the test item. If the fixture is not
rigid, this assumption is obviously not true. Also, flexible fixtures typically have one
or more frequencies where the operating shape at the control point is near zero.This
will result in large, unrealistic responses of the test item. The fixtures need to be
lightweight to maximize the force available to drive the test item. Light weight and
rigidity are contradictory requirements. Design of satisfactory vibration fixtures is a
combination of experience, analysis, and compromise. Vibration fixtures are dis-
cussed in Chap. 18.
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CHAPTER 26
DIGITAL CONTROL SYSTEMS

FOR VIBRATION TESTING
MACHINES

Marcos A. Underwood

INTRODUCTION

This chapter discusses digital vibration control applications that require (1) the syn-
thesis and output of excitation (driving) signals for electrodynamic and electrohy-
draulic exciters (shakers), (2) the acquisition of the structural responses that result
from the exciters’ effects on a common structure, (3) the digital analysis of these
responses to determine important structural characteristics, and (4) the use of these
derived structural characteristics for the feedback control of the structure’s input or
of its response motion during a vibration test.

Because the processing needs of digital vibration control systems (DVCSs) are
extensive, the use of specialized processors, computer architectures, and input and
output signal processing are often necessary to reach the required processing levels.
Because of this, a brief review of these specialized processors, their associated archi-
tectures, and how they are used in modern vibration control systems are discussed in
the following sections.

The use of analog-to-digital converters (ADCs) and digital-to-analog converters
(DACs) is also briefly discussed, particularly how they are used within the response
data acquisition and signal generation subsystems to excite structures and measure
the associated responses during the digital control of vibration tests.

The analysis and synthesis applications associated with vibration control are also
discussed. These include multidimensional spectral analysis, digital tracking filters,
shock response spectrum (SRS) synthesis, and frequency response estimation.

The chapter then discusses digital control systems for shock and vibration testing
of structures using single and multiple exciters. Sections on random, swept-sine, mixed-
mode, and time-domain waveform replication are presented. The chapter concludes
with a brief section on modal testing using multiexciter digital control systems to
cause the input to a structure to agree with predetermined force vectors to optimize
the measurement and analysis of their associated responses.
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SPECIALIZED PROCESSORS AND PERIPHERALS

Specialized processors are designed for a particular activity or type of calculation that
is being performed. They consist of embedded, distributed, and digital signal proces-
sors. These types of processors typically provide the most performance for shock and
vibration control applications, but at a higher level of complexity than that associated
with the use of general-purpose computers. Included in this category are specialized
peripherals such as analog-to-digital converters and digital-to-analog converters that
provide the fundamental interfaces between computer systems and physical systems
such as transducers and exciters, which are used for many shock and vibration testing
and analysis applications. Specialized processor architectures are also used extensively
in shock and vibration control applications, since they provide the necessary power
and structure to accomplish some of the more demanding applications such as the con-
trol of single or multiple vibration test exciters or applications that involve the mea-
surement and analysis of many response channels from a shock and vibration test.

SPECIALIZED PROCESSORS AND ARCHITECTURES

Embedded Processors. Embedded processors are computer systems that don’t
interact directly with the users and are used to accomplish a specialized application.
This type of system is part of a larger system where the embedded portion serves as
an intelligent peripheral for a general-purpose computer host such as a workstation-
or personal computer–based system. The embedded subsystem is used to perform
time-critical functions that are not suitable for a general-purpose system due to 
limitations in its operating systems. The operating system used for embedded
processors is typically a real-time operating system (RTOS), which is optimized for
real-time response to minimize the communication latencies between subsystems. It
is typically dedicated to the signal synthesis, signal acquisition, and processing tasks.
The embedded system typically communicates with the host processor through a
high-speed interface such as wired or wireless Ethernet, USB, Firewire, or a direct
communication between the memory busses of embedded and host computer sys-
tems. An embedded computer system does not interface directly with the computer
system user but uses the host computer system for this purpose. An example of an
embedded system which uses distributed processors is shown in Fig. 26.1. Here, the
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host computer is used to set the parameters for the particular activity—for example,
shock and vibration control and analysis—and the embedded computer subsystem
accomplishes the control and analysis task directly. This frees the host processor to
simply receive the results of the shock and vibration task and to provide the graphi-
cal user interface (GUI) and create associated graphic displays for system users.

Distributed Computer Systems. Distributed computer systems employ a proces-
sor architecture to accomplish their task by using several computer processor sys-
tems in tandem to solve a problem that cannot be suitably solved by an individual
computer or processor system. This type of computer system typically partitions its
task in such a way that each part can be executed in parallel by its respective proces-
sor.This enables the use of several specialized processors to separately accomplish a
demanding subtask, and thus the overall shock and vibration task, in a way that
might not be possible with the use of a single, general-purpose computer system.

Specialized Processor Architecture. An example of a specialized processor
architecture is shown in Fig. 26.1. It is a distributed and embedded computer system
that uses digital signal processors to process data being received from an analog-to-
digital converter by filtering it and extracting the pertinent signal characteristics
needed as part of a shock and vibration test.This filtered data and its extracted char-
acteristics are subsequently sent to a more general processor to perform additional
analysis.The results of this more general analysis may yield a time-series data stream
that is sent to another digital signal processor for filtering, and then sent to an out-
put digital-to-analog converter to produce signals that are used to excite a system
under test. Figure 26.1 also shows, in the form of a block diagram, a typical form and
application of a specialized processor architecture used within a shock and vibration
control system. The distributed system’s central processing unit (CPU) coordinates
the communications between and with the two digital signal processor (DSP) sub-
systems with an RTOS. The host processing system is used to provide the GUI for
the overall system’s user.

Digital Signal Processors. Digital signal processors are specialized processors
that are optimized for the multiply-accumulate operations that are used in digital
filtering– and linear algebra–related processing. They are used extensively in shock
and vibration signal analysis and vibration control systems. These processors are
ideal to implement digital filters, for sample-rate reduction and alias protection
(see Chap. 14), fast Fourier transform (FFT)–based algorithms (see Chap. 14), and
digital control systems. Linear algebra problems, such as those encountered in sig-
nal estimation, filtering, and prediction, are also performed efficiently by this
processor architecture.1,2 The example of a specialized architecture system shown in
Fig. 26.1 also shows a typical application of DSP technology. This processor archi-
tecture has empowered many of the audio and video signal-processing systems in
current use. It has also enabled many of the shock and vibration experimental
applications now in use.

ADCS AND DACS FOR SIGNAL SAMPLING AND GENERATION

Digital signal processors have also enabled analog-to-digital converters and digital-
to-analog converters, which are fundamental to the applications of digital processing,
to be used in the field of shock and vibration. They provide a fundamental interface
between the analog nature of shock and vibration phenomena and the digital pro-
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cessing available from modern computing systems. These important subsystems are
now realized by single integrated circuits (ICs), often incorporating most of the fil-
tering needed for anti-aliasing (see Chap. 14) for ADCs and anti-imaging for DACs,
particularly in those using a sigma-delta (ΣΔ) technology.3 In practice, even when
using ΣΔ technology, additional analog circuitry is needed to complete the anti-
aliasing and anti-imaging function,3 and also to add needed signal amplification and
conditioning to more fully utilize the resolution of modern ADCs and DACs. Please
consult Chap. 13 for a more detailed discussion of this subject.

ADCs and Data Preparation. ADCs furnish the analog-to-digital conversion
function, which is the process by which an analog (continuous) signal is converted
into a series of numerical values with a given binary digit (bit) resolution (see Chaps.
13 and 19). This is the first step in any digital method. The ADC operation is gener-
ally built into self-contained digital analysis systems that use the ADC subsystem as a
peripheral.The host processor is used to set up the ADC hardware’s data acquisition
parameters such as the sampling rate, input voltage range, frequency range, input data
block size (duration of the signal to be digitized), and the number of data blocks to be
digitized.The acquired data is then subsequently analyzed in real time as the test pro-
gresses. Examples of ADC applications are shown in Figs. 26.1 and 26.2.
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FIGURE 26.2 Typical A/D converter–based input subsystem.

In Fig. 26.2, the input amplifier is used to maximize the ADC’s resolution by ampli-
fying the response signal from the system under test, typically as part of an auto-
ranging process with the control software. The amplified signal is filtered to remove
high-frequency energy in the input signal that could be aliased (see Chap. 14) and then
is passed to the ADC for digitization.The digital time series that the ADC produces is
then sent to a digital signal processor for additional filtering and perhaps sample-rate
reduction or other needed specialized processing, before it is sent to the host proces-
sor. For each input channel, the combination of (1) the input amplifier, (2) the anti-
aliasing filter, (3) the ADC, and (4) the DSP is called the input subsystem and is used
by digital vibration control systems, to be discussed later. Sigma-delta ADCs reduce
the complexity of the analog design of the input subsystem, but there are some caveats
to their use in DVCSs, because they use an internal digital filter.

The digital filter causes delay effects in ΣΔ ADCs that can result in stability prob-
lems when used with DVCSs. This is due to the digital filter’s group delay,3,4 which is



typically on the order of 30 samples. This delay can cause closed-loop stability prob-
lems if not addressed properly within the processing software of the digital control
system.

DACs and Signal Synthesis. As discussed previously, DACs convert a digital
time series into an analog signal. This analog signal will have a “staircase” or zero-
order hold nature.5 This occurs because the DAC output signal is held constant for
an output sample-rate period and then is changed according to the next digital sam-
ple at the next sample-clock period. This staircase nature of the output DAC signal
causes its analog output signal spectrum to have high-frequency terms, in addition to
those present in its digital time-series spectrum, with their frequency content cen-
tered about the DAC’s sample-rate frequency (both below the sample rate and
above the sample rate) and its integer multiples.5 These somewhat symmetrical spec-
tral lobes that appear in the DAC output signal spectrum, which are centered at the
sample-rate frequency and its harmonics, are called signal images.5 These spectral
lobes have a bandwidth double that of the bandwidth of the digital time series that
is being sent to the DAC.5 The spectrum of these signal images has a sin (x)/x enve-
lope that is due to the zero-order hold nature of the DAC.5 They are the counterpart
to aliasing that occurs with ADC sampling (see Chap. 19). These signal images
should be removed before using the DAC output signal to excite a system under test.
For this reason and others, the output subsystem should be organized as shown in
Fig. 26.3.
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FIGURE 26.3 Typical D/A converter–based output subsystem.

In Fig. 26.3, the signal flow is the reverse of that for the ADC-based input sub-
system, as shown in Figs. 26.1 and 26.2. In Fig. 26.3, the output signal flows from the
host processor into the digital signal processor in the output subsystem and, option-
ally, into a local high-speed disk storage subsystem. The digital signal processor per-
forms some filtering and perhaps increases the sample rate to minimize the impact
of output signal images, moving them higher in frequency and lower in amplitude.
This filtered and processed output time series is then sent to the DAC, where it is
converted into an analog voltage.This voltage is then sent to an analog anti-imaging
filter to remove any signal images that might still be present in the DAC output volt-
age, usually near the DAC’s sampling frequency and its harmonics. This filtered sig-
nal is then passed to the output attenuator subsystem to set the amplitude of the



resulting output signal. The attenuator is used to maximize the DAC output resolu-
tion. Typically, additional output filtering is provided by the analog circuitry that is
part of the attenuator. Digital vibration control systems typically use the output sub-
system architecture similar to that shown in Fig. 26.3.

Sigma delta (ΣΔ) DACs are also used for shock and vibration control applica-
tions.They use an internal signal flow that is the reverse of that for a ΣΔ ADC.3 These
use internal digital filters for output interpolation to increase the sampling rate from
the system sampling rate to an oversampling rate. If this digital filter is of the finite
impulse response (FIR) type, it can also cause group delay effects like those dis-
cussed for ΣΔ ADCs, which need to be considered by the digital control algorithms
to avoid the associated stability problems.

SHOCK AND VIBRATION DATA ANALYSIS

The basic principles of shock and vibration data analysis6 are thoroughly covered in
other chapters and their references, as summarized in Table 26.1. Only methods that
are fundamental to digital vibration control systems that are not presented else-
where are discussed here. Specifically, this section discusses (1) the definition of the
estimates of the spectral density and cross-spectral density matrices; (2) tracking fil-
ters for the measurement of the amplitude and phase, as a function of frequency, of
response and control data taken during a swept-sine vibration test; (3) the synthesis
of transient signals that achieve a predetermined shock response spectrum (see
Chap. 20); and (4) frequency response estimation.

SPECTRAL DENSITY MATRIX

The spectral density matrix (SDM) is a matrix that consists of both power spectral
density values for its diagonal elements and cross-spectral density values for its
off-diagonal elements. It is the natural extension to matrices of the concepts of
power spectral density and cross-spectral density that are discussed in Chap. 19.
An SDM is both a hermitian and a nonnegative definite matrix.7–12 It can be esti-
mated as follows.

Let {x(t)} be an N-dimensional column-vector of time histories, whose compo-
nents are the waveforms x1(t),…, xN(t), which are assumed to be samples of a gauss-

TABLE 26.1 Summary of Data Analysis Applications

Application Chapter

Spectral analysis for stationary vibration data 14, 19, and 24
Spectral analysis for nonstationary vibration data 19
Correlation analysis for stationary vibration data 24
Probability analysis for stationary vibration data 19 and 24
Fourier and shock response spectral analysis of shock data 20
Modal analysis of structural systems from shock and vibration data 21
Multiple-input/output analysis of shock and vibration data 21
Average values and tolerance limits for shock and vibration data 18
Other statistical analysis of shock and vibration data 19
Matrix methods of analysis for shock and vibration data 22
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ian stationary process.7–9 These waveforms could, for example, be the acceleration
responses of a system under test, at N measurement points, that is being excited by N
vibration exciters with the use of N stationary gaussian drive signals that are partially
correlated (see Chap. 19). If we define their complex finite Fourier transform, as in
Eq. (19.3), with x(t) successively replaced by the xi(t) waveforms, the complex vector
{X(f,T)} is obtained, with the finite Fourier transforms X1(f,T),…, XN(f,T) as its com-
ponents. If the time history vector {x(t)} has a duration much longer than T, then, as
in Chap. 19, it can be partitioned into a series of nonoverlapping segments of data
(often called frames), each of duration T, such that the average can be defined as

[WXX(f,T)] = �
nd

i = 1 � �
i

{X*
1(f,T) X*

2(f,T)  X*
N(f,T)}i (26.1)

or, using a more compact matrix notation, as

[WXX(f,T)] = �
n

2

dT
� �

nd

i = 1
{X(f,T)}i{X(f,T)} i

H (26.2)

In Eqs. (26.1) and (26.2), (1) the average is taken as in Table 19.3, where the esti-
mates for the power and cross-spectra are defined using a finite Fourier transform;
(2) X1

*(f,T) is the complex conjugate of X1(f,T); (3) {X(f,T)}i
H is the complex-

conjugate transpose of the vector {X(f,T)}i; and (4) the subscript i refers to the ith
nonoverlapping frame. As shown in Refs. 7–9, this average is an unbiased estimator
for the SDM of the N-dimensional gaussian stationary process {X(t)}, which con-
verges to the true SDM of the process {x(t)}, as T and nd approach infinity. The use
of windowing7–9 in the definition of the Xi(f,T) that is used in Eqs. (26.1), (26.2), and
(26.3) reduces the errors associated with spectral leakage (see Chap. 14).

CROSS-SPECTRAL DENSITY MATRIX

The cross-spectral density matrix (CSDM) is a matrix that consists of cross-spectral
densities between the components of two multidimensional gaussian stationary ran-
dom processes. It is defined similarly to the previously discussed spectral density
matrix. It is the natural extension of the cross-spectral density concepts that are dis-
cussed in Chap. 19. The CSDM is further discussed in the Refs. 7–11. For simplicity,
and without loss of generality, in the following discussion the CSDM estimate is
defined for the case where the two random process vectors have the same dimension.

Let {x(t)} and {y(t)} be two N-dimensional column-vectors of time histories,
which respectively consist of the waveforms x1(t),…, xN(t) and y1(t),…, yN(t), where
we assume that {x(t)} and {y(t)} consist of waveforms that are samples of gaussian
stationary processes. The {x(t)} waveform vector can, for example, be the vector of
random drive signals that are used to excite the system under test, as in Fig. 26.6.The
{y(t)} waveform vector in this case will be the vector of responses at the N instru-
mented points located on a system under test that is being excited by N-exciters with
the use of the drive vector {x(t)}. If the finite Fourier transform vectors {X(f,T)} and
{Y(f,T)} are similarly defined with components X1(f,T),…, XN(f,T) and Y1(f,T),…,
YN(f,T), it is found that the average cross-spectrum can be defined as

[WYX(f,T)] = �
nd

i = 1
{Y(f,T)}i{X(f,T)} i

H (26.3)
2

�
ndT

X1(f,T)
X2(f,T)


XN(f,T)

2
�
ndT
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where this average is taken as in Eqs. (26.1) and (26.2) but with the use of the vector
{Y(f,T)}i instead of the vector {X(f,T)}i for the ith nonoverlapping frame. As in the
SDM estimator in Eqs. (26.1) and (26.2) and as shown in Refs. 7–9, this average is an
unbiased estimator for the CSDM between the N-dimensional gaussian stationary
processes {x(t)} and {y(t)}, which converges to the true CSDM as T and nd approach
infinity. There are also convergence results for fixed T when {x(t)} and {y(t)} are
ergodic and, with the use of a window function, as nd approaches infinity for Eqs.
(26.1) through (26.3).7

TRACKING FILTERS

Tracking filters are specialized filters that implement a narrow bandpass filter, of selec-
table bandwidth, centered about the instantaneous frequency of a sine wave with a fre-
quency that is changing with time (commonly called a sweeping sine wave).13 These
filters are used to extract the amplitude of the sweeping response sine wave, as well as
its phase with respect to the modulating signal used in the tracking filter implementa-
tion. This algorithm, based on proprietary technologies, provides essentially a time-
varying estimate of the Fourier spectral amplitude, in essentially a continuous manner,
of a sweeping sine wave.13

A simplified implementation of a tracking filter is shown in Fig. 26.4. It accepts a
sweeping sine-wave response from a system under test that is being excited by a
sweeping sine wave. This response signal is shown as A sin (ωt + θ) + n(t), with a fre-
quency of ω radians/sec, an amplitude A, a phase of θ with respect to the modulating
signals sin (ωt) and cos (ωt), and an additive distortion and noise term n(t). By mod-
ulating the input signal with the sine and cosine terms shown in Fig. 26.4, the energy
at the sweep frequency ω is translated to 0 Hz—hence, the name 0-Hz IF detector,
where the data detection13 is accomplished by the two low-pass filters that produce
the imaginary- and real-term estimates of the complex amplitude of the sweeping
sine-wave response of the system under test. From these filter outputs, the amplitude
A and the phase θ, with respect to the modulating signal, are estimated. By analyz-
ing several response signals in this manner, with separate tracking filters that use the
same modulating signals, the relative phase between several sweeping sine-wave
responses can be measured, since their individual phase measurements have a com-
mon phase reference. In this way, tracking filters can be used for such diverse appli-
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cations as frequency response function and matrix estimation and multiexciter and
single-exciter swept-sine-wave control.

The tracking filter operation shown in Fig. 26.4 provides an estimate of the com-
plex amplitude at the modulating signal’s frequency, which is typically the same as
the swept-sine wave’s frequency. It is important that the modulating signals and the
drive signals used to excite the system under test be in frequency and phase syn-
chronization for the best results. Because it can track a sweeping sine wave, it pro-
vides a way of measuring the nonstationary spectral amplitudes associated with
swept-sine-wave tests and rotating machinery vibration analysis. By its nature, it dis-
cards other terms not centered at the sweep frequency, such as unwanted harmonic
and nonharmonic distortion terms. Tracking filters can also be used to track fre-
quencies other than the fundamental response frequency, such as the frequencies of
harmonics. Some modern digital vibration control systems provide the function of
that shown in Fig. 26.4 by using dedicated digital signal processors to implement a
digital tracking filter subsystem. These can provide an estimate of a sweeping sine
wave’s amplitude and phase during a vibration test at the drive signal’s frequency.
Some implementations provide estimates as many as four to eight times per cycle of
the drive signal.13

SHOCK RESPONSE SPECTRUM TRANSIENT/SHOCK SYNTHESIS

Signal synthesis techniques are used in transient testing where the test’s reference
response is specified as a shock response spectrum, as discussed later in this chapter.
This type of application is often referred to as shock synthesis or SRS synthesis. The
primary goal is to create or synthesize a transient signal such that its SRS agrees with
a predetermined SRS. Since the same SRS is possible for a large range of signals (see
Chaps. 20, 27, and 28), many such synthesis techniques are possible. Some are based
on wavelet expansions14,15 for pyroshock testing, and others on a transient created by
windowing a stationary random signal (see Chap. 29).

The methods used for pyroshock testing are based on the use of a weighted sum
of wavelets, which are defined as a set of nearly orthogonal functions with finite
durations. The wavelets used for shock synthesis are either windowed sine waves
with an odd number of half-cycles or damped sinusoids,14,15 which are called real
Laplace wavelets in the literature.16 Either type of wavelet is used to construct a
group of component wavelets that are defined for each frequency at which the SRS
is specified, with a particular delay, and where the Laplace wavelet also has damping
as a parameter. These are used as part of an inverse wavelet transform process to
synthesize transients as the sum14–16 of the chosen component wavelets for each such
frequency, delay, and damping, if appropriate. The amplitude of each such wavelet is
modified until the sum of such wavelets is a transient whose SRS agrees with the
prescribed SRS within an acceptable error bound for each of its specified frequen-
cies.14,15 Since the SRS definition (see Chap. 20) allows for many waveforms to have
the same SRS, this many-to-one relationship allows for the further optimization of
such synthesized transients.15,17,18 They can be optimized, for example, to produce the
least peak acceleration of such transients for a given peak SRS by suitably modify-
ing the time delays of the wavelets used for its synthesis.14,15 This type of optimization
can increase the peak amplitude of the shock response spectra that are possible with
a particular overall test system (see Fig. 26.5), thus extending the performance range
of vibration test machines used for transient/shock testing.

The method employed for seismic simulation, which is used to synthesize artifi-
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cial earthquake motions, involves windowed sections of broadband gaussian sta-
tionary noise, also known as burst-random transients. These random transients are
generated using a prescribed magnitude Fourier spectrum, assigning random phase
to it, and using the inverse fast Fourier transform to create a random transient with
the specified magnitude spectrum.This transient is windowed (see Chap. 19) and its
SRS is calculated. This calculated SRS is compared with the prescribed SRS, and
the discrepancy is used to modify the magnitude of its Fourier spectrum. The syn-
thesis iteration is repeated until the SRS of the synthesized windowed transient
agrees with the prescribed SRS within some acceptable error. Again, the many-to-
one characteristic of the SRS allows for further optimization of the synthesized ran-
dom transient.

FREQUENCY RESPONSE FUNCTION AND FREQUENCY RESPONSE

MATRIX MEASUREMENTS

The computation of frequency response functions and frequency response matrices
makes use of the digital signal processor, analog-to-digital converter, digital-to-
analog converter, embedded, and distributed computer systems discussed previ-
ously.The objective is to excite the system under test in such a way that its frequency
response characteristics can be measured. This type of measurement is done as part
of the modal testing, single-exciter, and multiexciter control system applications to
be discussed later in this chapter.

Single-Input/Multiple-Output (SIMO) Methods. In this method, a single drive
signal is used to excite the system under test at any one time. A digital system, like
those shown in Figs. 26.1, 26.2, and 26.3, can be used to drive a system under test and
acquire multiple response signals from instrumentation on the system under test.
The excitation signals can be impulsive, continuous broadband noise, transient noise,
or swept sine waves. In all these cases, the complex-amplitude spectra are measured
for both the drive and the response signals by the digital system. The cross-spectral
densities between the various response signals and the drive signal, as measured at
the input to the system under test, are divided by the drive signal’s power spectral
density to obtain a frequency response function estimate between the single drive
signal and the response signals (see Table 19.3). Typically, broadband noise and

26.10 CHAPTER TWENTY-SIX

FIGURE 26.5 Overall test system.



swept-sine-wave excitations produce the best estimates for the needed frequency
response functions, but at the expense of longer test times that may stress the test
article or system under test. Frequency response functions (FRFs) can also be mea-
sured while using swept-sine-wave excitation by using the tracking filters discussed
previously.

A multiple-reference frequency response matrix estimate can be obtained by
exciting the system with a hammer or a vibration exciter, one excitation at a time but
at different locations, to successively obtain one column of the frequency response
matrix estimate using this SIMO methodology. These methods may have problems
with repeatability, since the structure’s characteristics may change between excita-
tions (see Chap. 21).

Multiple-Input/Multiple-Output (MIMO) Methods. These methods excite the
system under test with a digital system, as in the previous section, but drive it with
multiple simultaneous excitation signals, acquire the associated response signals, and
process the thus-acquired response and drive signals to obtain the needed system
frequency response matrix estimates. Most estimators used are based on the follow-
ing response equations:7–12

[Wcd(f)] = [H(f)][Wdd(f)] or [Wcc(f)] = [H(f)][Wdc(f)] (26.4)

where [Wcd(f)] is an estimate of the cross-spectral density matrix between the
response vector {c(t)} and the drive-signal vector {d(t)}, as defined in Eq. (26.3).
[Wcc(f)] and [Wdd(f)] are estimates of the SDMs of the response vector {c(t)} and the
drive signal vector {d(t)}, as defined in Eqs. (26.1) and (26.2). [Wdc(f)] is the complex-
conjugate and matrix transpose of [Wcd(f)].7–12 The two equations that are part of Eq.
(26.4) can be solved separately for [H(f)]. The left equation is relatively insensitive
to measurement noise but sensitive to drive signal noise, and the right equation
exhibits the reverse condition. These types of frequency response matrix estimates
are very similar to the type 1 and type 2 frequency response estimators discussed in
Chap. 21. Here the emphasis is on the use of Eq. (26.4) with the SDM and CSDM
estimates, defined in Eqs. (26.1) through (26.3), used to estimate [H(f)]. The use of
Eq. (26.4) for system identification is further discussed as part of the sections on
multiexciter digital vibration control and modal testing.

Note that to use Eq. (26.4), either the matrix [Wdd(f)] or [Wdc(f)] needs to be
inverted. For this reason, the left side of Eq. (26.4) is typically used because it is eas-
ier to guarantee that [Wdd(f)] has a matrix inverse rather than [Wdc(f)]. In many cases,
[Wdc(f)] is a rectangular matrix because the dimensions of {c(t)} and {d(t)} are not
always equal, and clearly [Wdc(f)] would not have a matrix inverse in that case. Some
digital systems make an additional simplification by exciting the system with mutu-
ally uncorrelated random drive signals and thus “ensure” that [Wdd(f)] is a diagonal
matrix. This simplification can cause additional problems, since the measured
[Wdd(f)] will typically not be diagonal even if the drive signals are “uncorrelated” due
to unavoidable measurement and exciter noise. Hence, in practice, it is better to
measure [Wdd(f)] and invert it as a matrix rather than just inverting its diagonal ele-
ments and assuming that its matrix inverse is diagonal. This is the preferred way to
characterize the system under test for multiexciter control applications, to be dis-
cussed later. In many of these cases, the drive signals are measured as inputs to the
test article by load cells (see Chap. 10). The use of MIMO methods can separate
modes that correspond to the same repeated root or eigenvalue (see Chap. 22),
whereas SIMO methods might not (see Chap. 21).
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CONTROL SYSTEMS FOR SHOCK AND

VIBRATION TESTING

The vibratory motions prescribed for the majority of vibration tests are either sinu-
soidal13,17 or random17 (see Chap. 18).A smaller percentage of the vibration tests are
prescribed to be either classical-shock transients18 (see Chap. 27), shock response
spectrum synthesized transients14,15,19 (see Chap. 28), time-domain waveform repli-
cations,20 or mixed-mode21 (sine-on-random or narrowband-on-random) vibratory
motions. These specified environments are typically represented by a reference
response signal, in either the time or the frequency domain, that the digital control
system servo uses as a control reference to achieve the specified control response at
the chosen control point or points that are associated with the test (see Chap. 18).

The reference response is either a frequency-domain or a time-domain signal
that represents the prescribed vibration environment associated with a shock or
vibration test. It is typically specified as a reference spectrum, which describes the
vibration environment in the frequency domain to which the control response spec-
trum is compared as part of the digital vibration control process. It could be a power
spectral density for a random vibration test, an amplitude-versus-frequency profile
for a swept-sine test, an SRS for a shock test, or a finite Fourier spectrum (see Chaps.
14, 18, and 19) for a generalized transient or a long-term reference-response wave-
form. Time-domain waveform replication vibration environments, such as transient
and long-term response waveforms, are represented by a reference pulse or refer-
ence waveform, whereas frequency-domain-specified environments, such as random,
swept-sine, and SRS synthesis shock tests, are specified with an appropriate reference
spectrum. Typically, the time-domain waveform replication reference signals are also
converted to the frequency domain as part of the feedback control and drive signal
synthesis process, using an appropriate time-to-frequency and frequency-to-time
transformation process.

Vibration tests are accomplished with the use of vibration test machines, as dis-
cussed in Chap. 25, and a digital vibration control system. The DVCS employed to
control the vibration level(s) during the test typically utilizes the output signal from 
a control accelerometer mounted at an appropriate location on the vibration exciter’s
test fixture (part of the vibration test machine) or the unit under test (UUT) to pro-
vide a feedback signal to its servo system. The servo system in turn drives the power
amplifier of the vibration testing machine used for the shock or vibration test. The
servo system is largely implemented digitally using analog-to-digital converters,
digital-to-analog converters, digital signal processors, embedded processors, and gen-
eral-purpose processors to adjust the drive signal amplitude and spectrum for the 
system under test so as to maintain the control transducer’s response level and wave-
form characteristics as close to the test’s specified reference response as possible.

The overall block diagram of the vibration test system, when using electro-
dynamic exciters and accelerometers for control transducers, is shown in Fig. 26.5.
In this case, the DVCS drives the system under test with an analog drive signal d(t)
such that the control response at the chosen control point location on the system
under test agrees with the specified reference response with an acceptable error.The
DVCS consists of (1) an input subsystem, which acquires the response waveform of
the system under test c(t); (2) the digital servo subsystem, which creates the digital
drive signal through a closed-loop process that causes c(t) to agree with a suitable
description of the specified test reference signal; and (3) the output subsystem,
which converts the digital description of the generated drive signal into an equiva-
lent analog drive signal d(t) used to drive the system under test.
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A typical system under test configuration for both single and multiple exciters is
shown in Fig. 26.6. If there is only one exciter involved, then only the top leg of the
block diagram in Fig. 26.6 is used. Here, di means the drive signal generated by the
DVCS that is used to drive the ith exciter. This drive signal is sent to the exciter’s
power amplifier (when using electrodynamic exciters), which in turn drives the
exciter. For electrohydraulic exciters, this drive signal is sent to the exciter’s servo
amplifier, which in turn drives the hydraulic servo valve subsystem, as discussed in
Chap. 25. The exciter, either electrohydraulic or electrodynamic, then drives a test
fixture (see Chap. 25), which in turn drives the UUT. The test is instrumented by
mounting control transducers, which are typically accelerometers (see Chap. 10)
either on the test fixture, here shown by the signal c1 through cn, or on the UUT, as
shown by the signals c1 through cn in Fig. 26.6. These chosen control signals are then
sent to the input subsystem of the DVCS, where they are either averaged or their
maximum or minimum, as a function of frequency, is extracted to create a compos-
ite response spectrum.

The signals a1 through am in Fig. 26.6 are additional or auxiliary responses of the
UUT that are monitored during the test as additional signal channels to be ana-
lyzed as part of the test. The signals l1 through lp are input channels that are to be
used for limiting during the test. This limiting may involve either limits on the
response or limits on the applied force to the UUT, as discussed in Chap. 18. For
multiexciter applications, there are n exciter systems with n drive signals d1 through
dn. These drive signals are processed as in the single exciter case discussed previ-
ously. The basic difference is that the n-exciters will drive the UUT jointly through
the fixture that connects the UUT to the multiple exciters.The response to this vec-
tor of drive signals is also a vector composed of the control responses c1 through cn.
This test configuration and its associated control methods are further discussed in a
subsequent section. In the single- or multiexciter control configuration, the control
feedback signals, auxiliary response signals, and limit signals are routed to the input
subsystem of the DVCS.

A block diagram of the input subsystem is shown in Fig. 26.7. Here only the
control feedback signals are shown as inputs to the DVCS’ input subsystem. These
feedback signals, also called control response channels, or simply control signals,
are each sensed through an input signal-conditioning system and an ADC subsys-
tem. The input signal conditioning typically consists of an instrumentation ampli-
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fier, followed by a ranging amplifier to
optimize the signal’s amplitude as pre-
sented to the ADC, and an anti-aliasing
filter (see the input subsystem in Fig.
26.2). This conditioned analog signal,
representing the chosen response sig-
nal, is finally presented to the ADC
subsystem for conversion into a digital
time history.

Typically, other points on the UUT 
or on the vibration test machine are also monitored by the digital control system for
subsequent vibration analysis or limiting. The input subsystem then sends digitized
versions of the control signals, here represented by c1 through cn, to the DVCS’ servo
subsystem, as shown in Fig. 26.8. The digital control response time series c1 through cn

is then sent to a time-to-frequency block shown in Fig. 26.8.The function of this block
varies with the type of vibration control. For random vibration testing, this block esti-
mates the control response power spectral density. For swept sine vibration testing,
this block typically produces either the fundamental amplitude or the overall response
root-mean-square (rms) estimate using tracking filters or variable time-constant rms
detectors.13,17 For the other types of vibration testing, this block is typically a fast
Fourier transform estimator (see Chap. 14). These estimates are further processed to
produce a single control response spectrum C1 for single-shaker control or a control
response vector with components C1 through Cn for multishaker control. The type of
processing is again application specific. These control response amplitude estimates
are then sent to a block that updates the drive signal amplitude and spectrum to min-
imize the difference between these control response amplitudes and the specified test
reference for single-shaker control or the test’s reference-response vector for multi-
shaker control applications.The updated drive amplitude(s) and their respective spec-
tra are then sent to a frequency-to-time transformation block, which converts the
spectral representation of the drive signal(s) into a digital time series of the time-

domain drive that will be used to excite
the system under test, as previously de-
scribed. This digital time series signal or
vector, composed of dl through dn for
multishaker control, is then sent to the
output subsystem (see Figs. 26.3 and 26.9)
for conversion into an analog signal or
signals to be used to drive the previously
discussed system under test in Fig. 26.6.
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The output subsystem is shown in Fig. 26.9. The digital version of the single drive sig-
nal or multiple drive signals is synthesized to analog driving voltages by the system’s
output subsystem.These digital drive signals are then converted into analog signals by
the subsystem’s DACs. The DAC output signals are filtered to eliminate the images
generated by the DACs, and the final output is attenuated from the DAC’s full-scale
voltage to produce the proper amplitude exciter drive signal d1 for single-shaker con-
trol or drive signal vector for multiexciter control (see Fig. 26.3). These conditioned
analog drive signals are output by the DVCS to drive the system under test.

Initially, with the advent of dedicated FFT processors and minicomputers, it
became possible to perform spectral analysis of random processes rapidly enough
to permit the use of digital control systems for random vibration testing. Further
developments in digital signal processors, embedded and distributed processors,
personal computers, and workstation technologies extended the range of vibration
testing to include swept-sine, transient waveform, long-term waveform, and multi-
shaker testing. Most shock and vibration testing remains based on single-shaker
methods, but multishaker testing is becoming more important when the size and
weight of the UUT dictates its need or when the prescribed vibratory motions are
inherently multiaxis or otherwise consist of multi-degree-of-freedom (MDOF)
vibratory motions.20,22,23 Enough differences exist between single- and multishaker
digital control systems for these to be discussed separately in the following sections.
The previous discussion, however, illustrates the areas where they are similar.

SINGLE-EXCITER TESTING APPLICATIONS

The great majority of shock and vibration testing is specified and accomplished
with the use of single exciters or shakers. These are typically single-axis tests. Mul-
tiaxis test specifications are accomplished one axis at a time when using single
exciters. Random, swept-sine, mixed-mode, transient waveform, and time-domain
waveform replication vibration applications can be accomplished as long as the
vibration test machine capabilities and the weight and size of the unit under test
allow it (see Chap. 25).

In many single-exciter vibration tests, especially random and swept-sine tests,
even though only a single drive signal is employed, multiple control accelerometer
input channels are used. In these cases, the multiple control signals are combined by
averaging them or by selecting the largest or smallest response, as a function of fre-
quency, to create a composite control response spectrum, with the control estimation
block shown in Fig. 26.8. Often, multiple input channels are additionally used for
limit control, as discussed earlier.The single-shaker control systems that use a single
drive signal to excite the system under test, and use multiple-input control signals
and/or limit signals, are called multi-input/single-output (MISO) control systems.

Random. These systems excite a test item with an approximation of a stationary
gaussian random vibration (see Chap. 2). Digital random vibration control systems
use signal processing that mimics analog methods in their fundamental control and
measurement methods and offer significant user-interface and graphics subsystems
that provide greater system tailoring and varied displays and graphs of ongoing test
conditions. Digital systems also afford greater stability, more freedom in the control
methods, and superior accuracy than those control systems that directly use analog
methods.17

The control response waveforms from the system under test are low-pass filtered
to prevent aliasing (see Chaps. 13 and 19) and converted to a sequence of control
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samples by the input subsystem of the digital system, as previously discussed. The
averaging control, the spectrum analyzer, and the display are implemented by the
time-to-frequency and control amplitude estimation blocks. These blocks use a dis-
crete Fourier transform (DFT), as discussed in Chap. 14, to estimate the power spec-
tral density (see Table 19.3) of the control responses c1(t) through cn(t). The random
noise generator and the analog equalizer, used in previous analog random vibration
systems, are replaced by an analogous digital process using a DFT and a time-
domain randomization algorithm.17 This is accomplished in the frequency-to-time
processing block within the DVCS in Fig. 26.8. The lines of the DFT (see Chaps. 14
and 19) in the digital system play the role of the contiguous narrowband filters in the
equalizer of the analog system.17,24 Equalization is the adjustment of the amplitude
of the output of a bank of narrowband DFT filters, which is a fast Fourier transform
equivalent (see Chap. 19) whose amplitude is given by the drive signal’s spectrum
amplitude D1(f) that corresponds to the center frequency of each DFT filter such
that the power spectral density of the control response matches that of the test pre-
scribed reference.

The equalization of the drive waveform can be accomplished directly, by gener-
ating an error correction from the difference between the control power spectral
density and the reference spectral density. The equalization can also be accom-
plished indirectly through knowledge of the system frequency response function
magnitude.The required system FRF (see Chap. 21) is the ratio of the Fourier trans-
form of the control response (usually an acceleration) and the Fourier transform of
the drive voltage signal, as discussed in an earlier section. Only the magnitude of the
FRF is required for random control, since the relative phase between frequencies is
random and not controlled.

The drive spectrum D1, which results from the “update drive to minimize control
error” block in Fig. 26.8, is multiplied by a random phase sequence and its inverse
FFT is calculated to create the corrected drive time series d1(t). Samples of the cor-
rected digital drive time series d1(t) are fed through the output subsystem in Fig.
26.9, within the DVCS, converted to an analog signal, low-pass filtered to remove the
images caused by the digital-to-analog converter, further amplified, and then sent as
the analog signal d1 to the power amplifier input of the system under test, which
completes the loop. Corrections to the drive are not made continuously in the digi-
tal random vibration control system. Many samples of the drive (often thousands)
are output between corrections. Many digital systems use a time-domain randomiza-
tion process17,24 that converts the finite-duration d1(t) drive block into an indefinite-
duration signal with a continuous power spectral density that has the same values 
as d1(t)’s at the discrete frequencies at which the FFT was evaluated. The time
between drive corrections is called the loop time. The loop time for digital random
vibration control systems can be from a fraction of a second to a few seconds,
depending on the type of averaging used for control response power spectral density
estimation.

The speed at which the system can correct the control spectrum is determined by
two factors. The first is the loop time. The second is the number of spectral averages
required to generate a statistically sound estimate of the control power spectral den-
sity (see Chap. 14). The loop time is usually the shorter of the two. Typically, a com-
promise is required; an estimate of the power spectral density with a significant error
is used, but only a fraction of the correction is made in each loop. The type of spec-
trum average—linear or exponential—also has a large effect on the averaging time
where the exponential average affords a shorter averaging period but only a fraction
of a correction is made in each control loop to ensure system closed-loop stability.17

In such cases, multiple corrections occur within the averaging period.
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The equivalent bandwidth of the DFT filters is dependent on the number of lines
in the DFT, the type of spectral window that is used (see Chap. 14), and the sampling
rate of the DAC and ADC. These parameters are usually options chosen by the
operator either directly or indirectly. The averaging parameters are also typically
operator specified.

Swept Sine. The objective of a digital sine-wave vibration test control system is
to drive a system under test, as shown in Fig. 26.6, with sweeping sine-wave excita-
tion, such that the control response signals, when processed by the control response
estimation block, shown in Fig. 26.8, agree with the specified test reference within
some acceptable error. The control response outputs c1 through cn of the system
under test are filtered and digitized with the input subsystem of the digital vibration
control system. The needed tracking filters,13 variable time-constant root-mean-
square detectors,17 averaging control, and control signal selection are implemented
within the appropriate blocks in Fig. 26.8 by the use of an embedded digital signal
processor subsystem for the required specialized signal-processing functions. It is
however nontrivial to implement tracking filters digitally,13 as previously discussed.
Many systems, in the interest of simplicity, do not use true tracking filters, but
approximate this function by using fast Fourier transform methods. However, these
FFT methods don’t work as well as the presented tracking filter methods in practice.
In any case, these are implemented in the time-to-frequency transformation and
control-amplitude estimation blocks within the servo subsystem in Fig. 26.8 within
the DVCS.

The sine-wave generator is implemented by using samples of a digitally gener-
ated sine wave, usually by a DSP subsystem within the frequency-to-time transfor-
mation block in Fig. 26.8, which are sent to the output subsystem in Fig. 26.3 and 26.9
to be used to drive the system under test in Fig. 26.6. The swept-sine test parameters
are entered by the test operator through the DVCS’ graphical user interface to be
stored in a test parameter file to be used for a subsequent test. The control response
servo subsystem shown in Fig. 26.8 is implemented by an algorithm which compares
the computed amplitude of the control waveform with the required control ampli-
tude, as defined by the test setup, and generates a corrected sampled drive wave-
form. This function is accomplished by the “update drive to minimize control error”
block as shown in the DVCS’ servo subsystem block diagram in Fig. 26.8. The sam-
pled drive waveform is converted to an analog drive waveform by the DAC and sent
to the low-pass filter and output attenuator shown in Fig. 26.3, which illustrates the
DVCS’ output subsystem block diagram shown in Fig. 26.9. This resultant analog
drive signal d1 is used as the input to the power amplifier within the system under
test block diagram in Fig. 26.6 to complete the closed loop.

Swept-sine vibration tests can require that the frequency be stepped in a sequence
of fixed frequencies or swept in time over a range of frequencies. However, the
stepped approach can generate vibration transients when the frequency of the sine-
wave drive signal is changed. A swept sine is the changing of the frequency from one
frequency to another in a smooth, continuous manner. This is the preferred drive sig-
nal generation method, since it creates no significant transients as the frequency is
changed.Again, many commercial control systems use the stepped-frequency method
because of its simpler implementation.The rate of change of frequency with respect to
time is called the sweep rate. Both logarithmic and linear swept sines are required. For
a logarithmic sweep, the change in the logarithm of the frequency per unit of time is a
constant. For a linear sweep, the change in frequency per unit of time is a constant.
Because the drive waveform is usually generated in blocks of samples, care must be
taken in swept-sine vibration tests to ensure that the frequency and amplitude change
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is continuous. The correction of the drive amplitude in a digital system is not continu-
ous but discrete. The time between amplitude corrections is also called the loop time
and is controlled by the number of samples, which must be taken to define the control
waveform amplitude and the required computations to compute the corrected drive
waveform. Here, as in the other DVCS applications, control-loop iteration is the com-
pletion of one complete cycle from the correction of one drive waveform to the next.

The control response amplitude can vary rapidly as the frequency changes due to
system resonance, and the required loop time is measured in small fractions of a sec-
ond. For stability, the complete correction of the drive waveform is not usually made
each loop. The maximum rate of drive waveform correction is called the compres-
sion speed17 and is usually expressed as decibels per second (dB/sec). If the com-
pression speed is too fast, system instabilities can occur. If the compression speed is
too slow, the correct amplitude will not be maintained. The required compression
speed is a function of (1) frequency, (2) sweep rate, (3) the system dynamics, (4) the
amount of noise present in the response measurement, and (5) the degree to which
the response of the system under test is nonlinear. Limited operator control of the
compression speed is usually provided. The bandwidth of the digital tracking fil-
ter13,17 will affect the stability of the system. Specifically, as the bandwidth of the
tracking filter decreases, the delay in the output of the tracking filter increases.13,17

As the filter delay increases, the compression speed must be decreased to maintain
stability.17 Some of the more advanced DVCSs used for this purpose accommodate
the change in correction rate automatically to ensure a good compromise between
control speed and accuracy. However, users need to make the required compromise
by selecting the bandwidth of the tracking filter or the time constant of the rms
measurement to be used during the swept-sine test, which trades off the ability to
reject components in the control waveform at frequencies other than the drive fre-
quency and the ability of the control system to respond quickly to changes in the
control waveform amplitude.

Transient/Shock. Sometimes it is desirable to perform shock or transient testing
using electrodynamic or electrohydraulic vibration test machines. The ability to em-
ploy this method depends on such parameters as the stroke (the maximum allow-
able motion of the vibration exciter), the peak amplitude and spectral characteristics
of the specified transient waveform, the amount of moving mass during the test, and
the test time.14,18,19 If the required test is within the performance capability of an
available vibration system, the ability to obtain and control the desired motion has
been greatly expanded by the use of digital control equipment.14,18,19 In general, the
servo control of a shock test parallels that used for the other vibration control meth-
ods, but in this case the controller compares the control accelerometer time history
response to a reference waveform as part of the control process. The primary differ-
ence here is that the time-to-frequency and frequency-to-time transformations 
in Fig. 26.8 are accomplished using a fast Fourier transform of the transient, with 
the forward or inverse transformations, respectively. If necessary, the controller
drive signal is altered to minimize the deviation of the control accelerometer re-
sponse from the reference based on the comparison between the control response
and reference response FFT spectrum. This discrepancy is used to update the drive
spectrum in the “update drive to minimize control error” processing block within
the digital vibration control system’s servo subsystem in Fig. 26.8.

Shock test requirements may be specified in one of two ways.The first and more
direct method specifies a certain acceleration waveform, such as a half-sine pulse of
specified duration and maximum acceleration.These are called classical shock tran-
sients (see Chap. 27). The DVCS in this case needs to modify such classical pulses
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by adding a pre- and postpulse to the overall test pulse waveform18 to ensure that
the response of the system under test returns to zero acceleration, velocity, and dis-
placement conditions at the end of the shock test.18 Typical pulses used as the ref-
erence response waveform r(t), in addition to the previously discussed half-sine
pulse, include final and initial peak sawtooth, rectangular, and trapezoidal pulses of
varying duration and amplitudes (see Chap. 27). The control method that is used is
a subset of what is used for time-domain waveform replication control, discussed in
a later section, usually without a need for the overlap-and-add indirect-convolution
method.4

The second method employs the shock response spectrum (see Chaps. 20 and
28) as the means of characterizing the response of the control points.15,19 In this
case, the control response spectrum C(f) and the reference response spectrum R(f)
are specified as an SRS. The requirements for the reference SRS must specify the
frequency range, frequency spacing, damping factor, type of spectrum, and either
maximum or nominal values with an allowable tolerance on spectrum values.14,19

Reference pulses are generated using one of the SRS synthesis techniques14,15 that
were discussed previously. The control method that is used is called the wavelet
amplitude equalization (WAE) method. If the test requirements are specified as an
SRS reference R(f), then during the test, the SRS of the control response wave-
form is computed and compared with the prescribed R(f). The difference is then
used to update the drive signal, which is expressed as a weighted sum of wavelets.
The weights in the sum represent the amplitude of the various wavelets. These
amplitudes are varied as a function of the discrepancy of the control response SRS
and the reference SRS. Care is required when this difference is large, since this
control problem is highly nonlinear due to the nonlinear dependence of the con-
trol response SRS to the wavelet amplitudes of the drive signal. Because of this,
the control corrections are iterative and yield an approximate SRS for the control
response.

Mixed Mode.21 Digital vibration test control systems are available which can con-
trol several sine waves superimposed on a stationary random vibration test. This is
called sine-on-random vibration testing or swept-sine-on-random vibration testing. Sys-
tems are also available that can control swept narrowbands of nonstationary random
vibrations superimposed on a stationary random vibration test. This is called swept-
narrowband-random-on-random testing. It uses a variation of the random vibration
control methods, previously discussed, by modifying the reference response spectrum
during the test to create sweeping narrowbands of random vibrations that are super-
imposed on a broad bandwidth random background.21 The control or servo process for
the case of sine-on-random vibrations works as a parallel connection of a random
vibration and a swept-sine control system. A simplified block diagram of this process
is shown in Fig. 26.10.

The two critical differences between mixed-mode controllers and individual ran-
dom and swept-sine controllers are the presence of the bandpass/reject and synthe-
size composite subblocks in Fig. 26.10. The bandpass/reject subblock in Fig. 26.10
separates the swept-sine and random backgrounds into two separate signal streams.
The swept-sine component is fed into the sine control section, and the random back-
ground section is fed into the random control section. These separate controllers,
with needed synchronization between each other, then create separate drive ampli-
tude updates for control of their respective component. These separate drive ampli-
tude updates are combined into a composite drive signal, containing the random and
swept-sine components in a single drive signal, by the “synthesize composite” sec-
tion in Fig. 26.10. This composite drive is then sent to the system under test to com-
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plete the control loop. The bandpass/reject section should employ advanced signal
estimation techniques to determine the phase and amplitude of the control response
sinusoids that are masked by the background random noise contained in the com-
posite control response signal c(t).

Time-Domain Waveform Replication Control. The objective of a time-domain
waveform replication control, or simply TDWR control, test is to drive the system
under test in Fig. 26.6 with a drive signal d(t) such that the time-domain response of
the chosen control transducer, c1(t) in Fig. 26.6, which is typically mounted on the unit
under test, matches the test-specified reference waveform r(t) within an operator-
specified error margin. The same type of digital vibration control system shown in
Figs. 26.5 through 26.9 can be used for this application.The DVCS is tasked with find-
ing the drive signal d(t) which achieves the waveform control test’s objective.

The control methods used for this application are fundamental. They serve as a
foundation for the control methods used by the previously discussed transient/shock
control systems and the to-be-discussed multiexciter control systems. They also
serve to illustrate many of the problems and solutions associated with properly
addressing this type of control problem as well as their extension to multiexciter
control. For this reason, this application will be discussed in more detail to add back-
ground to the previous transient/shock waveform control and the subsequent multi-
exciter control system discussions.

As previously discussed, this reference response waveform typically represents the
response of the UUT, as monitored at a particular control point during a part of its
service life.These reference response time histories can be quite arbitrary, limited only
by sampling-rate considerations (see Chap. 19), specifications of the test system, the
physical limitations of the excitation system, and the DVCS that is used. These refer-
ence waveforms can be measured using transducers mounted on the UUT during its
service environment, or they can be synthesized from dynamics models that predict,
by back-transforming from these measured responses to the response on the test 
fixture at a test-convenient location the synthesized response needed to achieve the
particular prescribed response of the UUT. These synthesized reference response
waveforms are obtained by using a structural-dynamic model of the UUT and the test
fixture’s interaction and geometry during the waveform control test. Many techniques
are used for this purpose.
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Some DVCS employ the TDWR method to accomplish mixed-mode testing.
Additionally, more complex reference response signals that contain transients are
possible. The reference response signal is thus specified in the time domain using
one of these various methods, as for shock testing, but typically with a time duration
much longer than that encountered during shock testing and therefore requiring a
more complex control and digital signal-processing methodology.

This type of testing is sometimes called long-term response waveform control test-
ing and uses an estimate of the frequency response function of the system under test
to control the response of it. The FRF estimate relates the control response wave-
form ci(t) to the electrical drive waveform d(t) that the DVCS uses to control the sys-
tem under test. It is the principal quantity that is used in the waveform control
process. The FRF needs to be estimated prior to the vibration test. It is measured by
exciting the system under test with a drive-voltage waveform having a bandwidth of
at least that of r(t), which is output through the DVCS’ output subsystem to the sys-
tem under test. During this test phase, which is often called system identification or
characterization, the response of the chosen control point ci(t) is measured, and the
drive signal d(t) used to achieve this response is also stored. These two signals, ci(t)
and d(t), are then used to calculate the FRF H(f) of the system under test (see Table
19.3). H−1(f) and r(t) are then used in conjunction with an overlap-and-add fast 
indirect-convolution method4 to generate a drive signal that should cause the con-
trol response c(t) of the system under test to agree with the prescribed reference
response r(t), within an acceptable error margin.20,22 Often, multiple control itera-
tions that use H−1(f), r(t), and c(t), within the DVCS’ servo subsystem as part of an
overlap-and-add fast indirect-convolution method, are needed to achieve the test’s
goal.20,22

The UUT needs to be part of the system under test, as shown in Fig. 26.6, during
the system identification test phase, since mechanical feedback from the test article
or UUT will change the system’s frequency response function H(f). Numerous wave-
forms can be used for the excitation, including an impulsive transient, the predeter-
mined reference response waveform, a continuous random waveform, or repeated
short bursts of random vibration, with the transient noise having frequency-domain
characteristics like those of the continuous noise. The latter two methods are most
commonly used. Continuous random noise produces better results in practice, but at
the expense of longer vibration times for the UUT during this phase. In all cases, it is
important for the excitation drive signal to have energy at all frequencies of interest,
although of sufficiently small amplitude that the test item is not damaged from this
excitation but a large enough amplitude that a linear extrapolation to full test level
will not cause significant control errors.Averaging, as part of the FRF estimation, can
mitigate the effects of nonlinear response and measurement noise (see Chap. 19) on
the quality of the estimate.

TDWR control systems typically use a long-term convolution algorithm to solve
the convolution problem [problem associated with solving Eq. (26.5)] associated
with finding the drive signal that will cause the system to respond in a predeter-
mined manner.This type of problem is typically solved by using indirect, FFT-based,
fast convolution algorithms.4 The DVCS uses an impulse response function z(t),
which is obtained as the inverse FFT of H(f)−1, which is the inverse of the estimate of
the FRF of the system under test between the chosen control point ci(t) and the
drive signal d(t). The solution can be expressed as a convolution integral between
the prescribed reference response signal r(t), the impulse response function z(t), and
the needed drive signal as

d(t) = z ∗ r(t) = �∞

−∞
z(t − τ)r(τ)dτ (26.5)
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where r(t) is the input and the output is z∗r(t), the convolution of z(t) and r(t), which
is used to obtain the drive signal d(t).4 When r(t) and z(t) are of finite duration, then
z∗r(t) will be finite in duration, with a duration equal to the sum of those of r(t) and
z(t). Although r(t) is finite in duration, z(t) is not typically finite in duration, but is
usually such that its response magnitude decays below some acceptable value—for
example, to a value less than 0.1 percent of its peak amplitude after a finite number
of samples, typically less than 16K. Hence, z(t) can usually be considered to be finite
in duration without incurring significant error.4 If z(t) does not decay quickly
enough, then a windowed version of it needs to be used in order to mitigate the spec-
tral leakage and circular convolution errors that would otherwise occur.4

The convolution problem given by Eq. (26.5) arises because the drive and
response are related by the following frequency-domain formulation:

Ci(f) = H(f)D(f) (26.6)

where Ci(f) and D(f) are, respectively, the Fourier spectra of ci(t) and d(t). Equation
(26.6) can be used to solve for the drive signal spectrum D(f), which should cause the
system under test to respond with a given control response spectrum that agrees
with R(f), which is the Fourier spectrum of the reference response time history r(t).
In this case, the needed drive signal Fourier spectrum D(f) is given by

D(f) = R(f)/H(f) (26.7)

Equation (26.7) is an example of a solution to a deconvolution problem. The con-
trol system converts Eq. (26.7) into the form given by Eq. (26.5) by computing the
inverse FFT of R(f)/H(f), which is d(t), via what is called fast convolution. In this
manner, Eq. (26.5) is indirectly used to create the drive signal d(t), which is to be
used to excite the system during the waveform control test. Eq. (26.5) is useful for
interpreting the various steps associated with fast convolution and the overlap-and-
add method.

Care should be taken to avoid circular convolution and spectral leakage errors in
the evaluation of Eq. (26.5) when using fast convolution methods. Circular convolu-
tion errors4 can be avoided by using an FFT block size such that z(t), which is
obtained as the inverse FFT of H(f)−1, will fit within a half FFT block with the other
half of the block zero-filled prior to the evaluation of the spectra of r(t) and z(t) via
the FFT.4 The spectrum leakage errors can be eliminated if the thus-obtained z(t) fits
completely within one of these half FFT block frames. If not, windowing of z(t) is
needed to minimize the resulting spectral leakage errors (see Chap. 14).

The function z(t) is the impulse response of the inverse system; that is, it maps
outputs to inputs. As such, it is not causal, and the antiresonances of H(f) appear as
resonances in the system described by z(t). The inverse system, described by Eq.
(26.5), that is used to create the drive signals will have the most gain at the antireso-
nances of H(f). If H(f) is measured or estimated accurately and models the system
under test well, then the drive signal thus created should create a system under test
response ci(t) which agrees with the prescribed test reference r(t). On the other
hand, if there are errors in H(f), then the drive signal will create other, uncontrol-
lable responses at the antiresonance frequencies of the system under test.

Because H(f) may contain antiresonances within the frequency test range, H(f)
may attain small values at which it could be imprecise. Since we need to divide by
H(f) in Eq. (26.7) and use it to generate the drive signal d(t) with the indirect use of
Eq. (26.5), care is needed in this division at the antiresonant frequencies or fre-
quency ranges over which the magnitude of H(f) is small. Without proper attention,
a low-valued H(f) with large error will cause numerical problems and a potential
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magnification of the noise floor in the thus-synthesized drive signal d(t). If such a
drive signal is used to drive the system under test, a control response ci(t) may result
that does not agree well with the test-prescribed reference response signal r(t), but
rather the control response would contain large noise amplitudes at the problem
frequencies.14 It is possible, through the use of the measured coherence function,
defined in Eq. (19.20), between the drive signal and its associated control response,
and also some weighting functions based on the values of R(f), to mitigate the
numerical problems associated with using Eqs. (26.5) and (26.7) to generate the sys-
tem under test drive signal d(t).

The estimation of the system’s frequency response to solve for H(f) is given by

H(f) = Ci(f)/D(f) (26.8)

Equation (19.16) can also be used to estimate H(f) by using the estimated cross-
spectral density between the control response and the drive signal, and the power
spectral density of the drive signal (see Table 19.3), and this method is preferred. It
uses averaging to reduce estimation errors that could otherwise occur with the direct
use of Eq. (26.8). In any case, whether using Eq. (26.8) or Eq. (19.13), a division by
the drive signal spectrum is needed to compute the system FRF estimate. For this
reason, it is beneficial to use a drive signal that is spectrally flat and with a voltage
amplitude sufficiently above the electrical noise floor as to optimize the accuracy of
the preceding calculation for the value of H(f). In order to obtain the level at which
to excite the system under test during the system identification phase, it is important
to determine (1) the amplitude of the noise floor of the system under test and of the
DVCS and (2) what the fragility concerns associated with the UUT are. These con-
siderations help determine the amplitude and spectrum shape that should be used
for the drive signal during the system identification phase to minimize the errors
associated with deconvolution, yet also minimize the stress imparted to the system
under test during this test phase.

The actuators and the control instrumentation have frequency responses that roll
off to zero at both the lowest and the highest frequencies.These determine the band-
width of the test system.Additionally, when the UUT and test fixtures are combined
with the actuators, the resultant system under test will have low responses at mid-
range frequencies, usually at the resonant frequencies of the UUT. This combined
system will typically exhibit antiresonant behavior at those frequencies, resulting in
low values for the measured system frequency response function H(f). The solution
of Eq. (26.7), which uses H(f)−1 to calculate the initial drive to achieve the test-
prescribed reference response, may then have numerical difficulties. H(f) can also
have error at its resonant frequencies due to nonlinearities that may be present in
the system under test, which are exacerbated by the higher response at resonance.
This drive signal can be further refined, using the DVCS’ feedback process, and per-
haps even the measured system frequency response, if the DVCS uses an adaptive
control process, which can mitigate these problems.20,25,26 Since it uses a form of Eq.
(26.5), the feedback process may also be sensitive to these numerical problems that
are associated with deconvolution. Control algorithms that converge at these prob-
lem frequencies, at which H(f) is ill conditioned, are essential20,22,25,26 to avoid control
oscillations or overtest conditions that can arise when suitable care is not taken.

The problems that are associated with deconvolution also occur in random and
swept-sine testing, but its negative effects are more severe in time-domain waveform
replication control, since in this case the estimated phase of H(f) is important and
usually is imprecise for the reasons discussed. This is further aggravated in TDWR
control, since most digital control systems perform control updates between test
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iterations. The digital control system, in these cases, is open loop when it is exciting
the system under test with the drive signal computed by the use of the deconvolution
in Eqs. (26.5) and (26.7). Most digital control systems at this point would compute
control errors and update the drive signal to reduce the control errors that occur
during the test once the initial excitation is complete—usually tens of minutes of
such open-loop excitation.Thus, these errors in the drive signal, based on Eqs. (26.5)
and (26.7), at the problem frequencies, would persist potentially for the entire
response waveform control test before being corrected. Random and swept-sine
testing are inherently closed loop and thus see the effects of ill-conditioned decon-
volution more quickly, and they either correct these errors or abort the test if the test
abort levels are exceeded.

If the duration of the reference response time history r(t) and the sample rate
used for the waveform control test result in a frame or block size of r(t) that exceeds
the maximum size that the FFT can use, then Eq. (26.7) needs to be solved in sec-
tions of the reference response signal r(t) that consist of block sizes that can be
processed by the system FFT.This is accomplished by the use of an overlap-and-add
indirect-convolution technique4 to implement the frequency-to-time transformation
in Fig. 26.8, as given by Eqs. (26.5) and (26.7). The overlap-and-add method is also
called high-speed indirect convolution. The overlap-and-add method is a way of
implementing the equivalent of Eq. (26.5) when Eq. (26.7) can be computed for
overlapping sections of r(t), in block sizes that the system’s FFT can evaluate. How-
ever, Ref. 4 and others like it don’t cover all the practical problems that can occur
when using this indirect-convolution method and others related to it, so many sys-
tem manufacturers have developed proprietary methods to overcome the short-
comings of the unmodified methods.

It is sometimes possible to update the system FRF estimate during the waveform
control test.25,26 There are some patented methods20,23 that can use the control re-
sponse signal c1(t), the drive signal d(t), and the reference response signal r(t) to
obtain robust updates to the estimate of H(f) during the waveform control test.They
can prevent the errors associated with a direct implementation of Eq. (26.8) to esti-
mate H(f) by using adaptive control for TDWR control tests.20,25,26 Sometimes this
refining of the drive signals and frequency response estimates is done at a lower test
level to prevent undue stress to the UUT. Once the control and estimation errors are
reduced sufficiently, then the drive signal amplitude is increased in proportion to the
ratio of these low-level test amplitudes to the associated full test level amplitude.
This assumes that the control point response will increase in proportion to the asso-
ciated increase in the drive signal amplitude.

MULTIEXCITER TESTING APPLICATIONS

The simplest example of multiple-exciter testing is when multiple exciters are con-
nected to independent systems under test and are controlled simultaneously. This
configuration corresponds to several single-exciter control systems operating in par-
allel and will not be further discussed.

The more complex and more interesting case is when the multiple exciters act on
the same test fixture and unit under test simultaneously, as shown in Fig. 26.6 and
discussed in more detail in Chap. 25. The attachments of the multiple exciters to the
test fixture can be at several points in a single direction, at one point in several direc-
tions, or combinations of both.20,23 This is the type of configuration that is repre-
sented in the block diagram of the multiexciter system under test in Fig. 26.6. If any
of the drives d1(t) through dn(t) is capable of causing a response on more than one of
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the control responses c1(t) through cn(t), then the multiexciter control system has
cross coupling between control responses. In this situation, the measured frequency
response matrix [H(f)], between the drive signal vector {d(t)} and the control
response vector {c(t)} will have off-diagonal elements that compare in order to the
diagonal elements.

Systems that have cross coupling between the control response signals c1(t)
through cn(t), and which are elements of the vector of control response waveforms
{c(t)}, require the digital vibration control system to have provisions for control of
these cross-coupling effects. These are typically controlled using the measured fre-
quency response matrix in a manner similar to the way the system frequency
response function H(f) is used for TDWR control. The needed frequency response
matrix is measured using the multi-input/multi-output system identification tech-
niques discussed in association with Eq. (26.4).The specifics of how this is done vary
with each application, dictated by the type of MIMO shock and vibration testing
that needs to be accomplished. These are typically multiexciter tests that use a
MIMO methodology within the DVCS used to control such multiexciter tests.These
shock and vibration control applications are called MIMO random, MIMO swept-
sine, MIMO shock, and MIMO time-domain waveform replication tests. Good
mechanical design (the design of the excitation, fixturing subsystems, how the test
article is attached, and where the control points are located on the system under
test) is very important and can reduce the severity of system identification and con-
trol problems that can arise during multiexciter testing. Poor mechanical design can
make the MIMO system under test and the corresponding DVCS unusable, no mat-
ter how advanced the control technology may be.

The complexity of building these systems—that is, designing the control system
and specifying the test parameters—increases much faster than the rate of increase
in the number of exciters. To a first order, the control and test specification com-
plexity increases by at least the square of the number of exciters that is used, due to
the use of n-dimensional signal-processing methods and its use of n-by-n complex
matrices.The design complexity of the system under test in Fig. 26.6 for MIMO test-
ing can also increase, but the reasons are different (see Chap. 25).The resultant phys-
ical constraints of achievable system under test designs typically limit many MIMO
control and excitation systems to frequencies less than 2 kHz, and sometimes much
less than 2 kHz.The significant displacements encountered in low-frequency MIMO
testing also increase the complexity of the design of the vibration fixture that inter-
connects the exciters and the UUT, and that lets the exciters move independently
from each other. However, at lower frequencies, large MIMO test systems are possi-
ble. For example, time-domain waveform replication control systems that have as
many as 18 exciters are used to simulate road conditions in the automobile industry.
Figure 25.10 shows an example of this configuration.

Control can take place when the number of control channels is the same as the
number of exciters (square control) or when the number of control channels exceeds
the number of drive signals (rectangular control).27 Also, with the use of input/output
(I/O) transformations, the number of control degrees of freedom (DOF) can be less
than the number of drive and control signals.28 However, in the interest of simplicity,
only the square control case will be discussed in what follows. Interested readers are
encouraged to read the references27,28 for a more detailed discussion of the theory and
practice behind rectangular and I/O transformation MIMO control applications.

MIMO Random Testing. For multiple-input/multiple-output random testing, the
test’s prescribed vibratory motions are specified in terms of a reference response
spectral density matrix [R(f)]. This matrix consists of both power spectral densities
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along the diagonal and cross-spectral densities along the off-diagonal elements of
the matrix.The elements at the ith diagonal of the reference spectral density matrix,
Rij(f) represent the reference power spectral density to be used for the ith reference
response for the control response ci(t). The ijth off-diagonal matrix elements of 
the reference spectral density matrix Rij(f) represent the reference response cross-
spectral density used to control the control response cross-spectral density between
the ith and jth control response ci(t) and cj(t), as in Eq. (26.1).This cross-spectral den-
sity can also be described by the ordinary coherence and phase between ci(t) and
cj(t) (see Chap. 19), as well as their respective power spectral densities.10,11,20,22,23 The
objective of a MIMO random vibration test control system is to create a drive signal
vector {d(t)} that consists of the exciter drive signals d1(t) through dn(t), which causes
the SDM of the control response vector [Wcc(f)] to agree, within some acceptable
error, with the MIMO random test reference spectral density matrix [R(f)]. The
issues associated with spectrum averaging and input-signal windowing that were dis-
cussed for single-exciter random vibration control need to be considered as well.
Also, I/O transformations can be used to express [Wcc(f)] in terms of physical DOFs
such as translations in X, Y, and Z, as well as roll, pitch, and yaw.28

The control response spectral density matrix [Wcc(f)] of the control response vec-
tor can be modeled by the following result from linear system dynamics and multi-
dimensional stationary stochastic process theory,7–9 which states that the control
response SDM is given by

[Wcc(f)] = [H(f)][Wdd(f)][H(f)]H (26.9)

Equation (26.9) can be solved for the initial drive signals using the measured fre-
quency response matrix [H(f)] and the test-prescribed reference response spectral
density matrix [R(f)]. This result gives the spectral density matrix [Wdd(f)] of the
drive signals as

[Wdd(f)] = [H(f)]−1[Wcc(f)][H(f)]−H (26.10)

The resultant drive spectral density matrix [Wdd(f)] can be further factored, using a
Cholesky decomposition,1,8,10,11,22,24 as

[Wdd(f)] = [Γd(f)][Γd(f)]H (26.11)

where [Γd(f)] is the Cholesky factor of [Wdd(f)], which is a lower-triangular complex
matrix with real and nonnegative diagonal elements that plays the same role as the
drive spectrum plays in single-shaker control.22,24 This Cholesky factor is also associ-
ated with the general study of partial coherence7,9,10 and the partial coherence that
will exist between drive signals that are synthesized using it.10 It is used with the fre-
quency-to-time processing block of Fig. 26.8 to create a vector of drive signals {d(t)}
that has [Wdd(f)] as its SDM.22,24 These are further randomized by a MIMO time-
domain randomization process, similar to what is done in single-exciter random test-
ing, but with the use of a lower triangular matrix of waveforms obtained from
[Γd(f)].22,24 By this means, the coherence and phase between the control response sig-
nals is controlled as well as each individual control response’s power spectral den-
sity.20,24 The drive vector {d(t)} then has the matrix [Wdd(f)] as its SDM and should
cause the MIMO system under test to respond with a control response vector {c(t)}
that has as its spectral density matrix [Wcc(f)], which agrees with the test-prescribed
reference response spectral density matrix [R(f)], within some acceptable error mar-
gin. This process further generalizes to rectangular control, where the dimension of
[Wcc(f)] is greater than the dimension of [Wdd(f)].27
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MIMO random testing, similar to waveform control, uses the matrix inverse of
the measured frequency response matrix [H(f)] to create the initial drive. The
impedance matrix [Z(f)] of the system under test, is given by

[Z(f)] = [H(f)]−1 (26.12)

This matrix needs to be measured prior to the test in the system identification test-
ing phase, as discussed in previous sections on frequency response matrix estima-
tion. Also, the concerns associated with the deconvolution problem that were
discussed in a previous section need to be addressed. The accuracy of this measured
matrix, which is computed before the vibration test, is critical to the success of the
control task. The method employed to estimate [H(f)]7–9,20,25 typically uses the left
expression in Eq. (26.4) to solve for [H(f)] from the computed spectral density
matrix [Wdd(f)] and the measured cross-spectral density matrix [Wcd(f)] as

[H(f)] = [Wcd(f)][Wdd(f)]−1 (26.13)

The MIMO control system uses the frequency response matrix, measured before
the MIMO test with the use of Eq. (26.13), to construct the initial drive as in Eq.
(26.10). A further MIMO control iteration is used to refine the drive and approxi-
mately account for the possible nonlinearities in the control responses.20,22,23,25 The
control iteration uses [Z(f)] to compute the contribution that the control errors at
each of the control points make to each of the drive signals. It effectively decouples
the control errors so they can be used to adjust the proper drive’s relative phase and
coherence to achieve control14,20,22,24,25 according to their respective contribution.

In MIMO random testing, unlike in multiple-input/single-output (MISO) ran-
dom testing, phase cannot be ignored, since the relative phase between the control
responses and the drive signals, and also between the drive vector and the control
response vector, is critical to the success of the MIMO test. Also, since the imped-
ance matrix [Z(f)], which is the inverse of [H(f)], is being used for control, special
care is needed in calculating it at those frequencies where [H(f)] is singular or nearly
singular.20,22,25

For MIMO random testing, the system characterization is done by operating all
exciters in the system under test simultaneously with band-limited gaussian noise.
These system identification drive signals are typically flat spectrally and band-
limited to the maximum frequency of interest. They are also uncorrelated among
themselves. The response levels for the system characterization should be chosen as
high above the noise floor as possible to maximize the accuracy of the [Z(f)] esti-
mate but still ensure that the test article does not experience vibration levels above
some level that is chosen by the operator to ensure that no undue stress or damage
is caused to the test article during the system identification operation. With the sys-
tem excited in this way, the spectral density matrix [Wdd(f)] and the cross-spectral
density matrix [Wcd(f)] are estimated using the methods associated with Eqs. (26.1)
through (26.3). Equation (26.13) is used to compute the estimate of [H(f)], and Eq.
(26.10) is used to generate the initial drive signals based on the Cholesky factor
[Γd(f)] discussed as part of Eq. (26.11).

MIMO Swept-Sine Testing.20,25 MIMO swept-sine control systems operate simi-
larly to the MIMO random control systems discussed previously, with differences in
the control objective. The objective of a MIMO swept-sine test is to impart a con-
trolled excitation to a structure at specified points, with a series of exciters con-
nected to the structure so that the response motion at a chosen number of control
points on the system under test (see Fig. 26.10), as described by the control response
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vector {C(f)} matches a prescribed reference response vector {R(f)} within some
acceptable error margin. In this case, if there are n-exciters and n-control transduc-
ers, the complex vectors of spectra {C(f)}, with components C1(f) through Cn(f), and
{R(f)}, with components R1(f) through Rn(f), are of dimension n for each frequency
within the test range. To accomplish this goal, the linear system model of system
response is solved for the initial drive by

{D(f)} = [H(f)]−1{R(f)} (26.14)

As in other MIMO control applications, Eq. (26.14) is solved for the initial drive
vector {D(f)} using the frequency response matrix for the system under test that is
obtained prior to the test. In MIMO sine testing, the additional problem is that ran-
dom noise excitation, as used in other MIMO applications, is, many times, not suit-
able for the system identification. This is due to the fact that the system’s frequency
response characteristics can be quite different for swept-sine excitation than they
are for random excitation. For this reason, the system identification should be done
with swept-sine excitation one exciter at a time. This can be time consuming and
may cause undue fatigue to the structure under test in Fig. 26.11. Other approaches
that are used involve stepped-sweep methods with a single exciter at a time or with
multiple exciters using multiple phases at each step frequency. There is at least one
commercial system that uses patented adaptive control technology,20,25 that can
refine the [H(f)] matrix estimate, which was obtained using the previously pre-
sented MIMO random method, so that it can be used to control the swept-sine test
and thus minimize the problems of using such an initial system identification phase
for its control.
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FIGURE 26.11 Overall swept-sine multiexciter control system.

The overall block diagrams of the MIMO swept-sine control system and the
MIMO swept-sine controller are shown in Figs. 26.11 and 26.12, respectively. As can
be seen in the block diagram of the overall system in Fig. 26.11, a vector-tracking fil-
ter subsystem plays the role of the time-to-frequency conversion in the digital vibra-
tion control system. As discussed in a previous section, tracking filters estimate the
complex amplitude of the sweeping sine-wave control response signals c1(t) through
cn(t). The resulting complex control response vector {C(f)} is then compared by the
DVCS with the prescribed test reference response vector {R(f)}. The control error
vector is then multiplied by the impedance matrix [Z(f)], to get the contribution of
the control errors at each control location to each drive signal sent to each exciter.A



percentage of this error, given by ε, is added to the previous complex drive’s ampli-
tude spectrum to obtain the next drive signal’s vector spectrum amplitude, as shown
in the multiexciter swept-sine controller block diagram in Fig. 26.12. This corrected
drive signal, with updated amplitude and relative phase, is then sent to the vector
oscillator, which plays the role of the frequency-to-time transformation subsystem
within the DVCS. It provides control of the amplitude of the output drive signals and
the relative phase with respect to the modulating signal used by the vector-tracking
filter shown in Fig. 26.11. Each component of {C(f)} is an output of an individual
tracking filter within the vector-tracking filter in Fig. 26.11, given by Fig. 26.4, which
uses the same modulating signal. There is also a common phase and frequency ref-
erence for the drive signals generated by the complex vector oscillator in Fig. 26.11.
The system is driven as the drive signal vector’s frequency is swept continuously
through the sweep range of the MIMO swept-sine-wave test.
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FIGURE 26.12 Multiexciter swept-sine controller.

MIMO Transient/Shock Testing. MIMO transient waveform control methods
are an extension of the single-shaker transient/shock and MIMO swept-sine control
methods previously discussed. This type of control and system under test is used
principally for seismic simulations.20,28 The application uses shock response spectrum
synthesis techniques to create the waveforms that are to be used as the specified ref-
erence response vector {r(t)}. In this case, the control process matches the prescribed
SRS indirectly by using waveform control to make the control response {c(t)} match
{r(t)}, thereby indirectly matching the specified SRS. This vector of waveforms {r(t)}
typically consists of random transients that have been synthesized such that each
transient matches a specified SRS to be used as the spectral reference response for
each control point, as discussed in the section on SRS synthesis. In other applica-
tions, these transient waveforms sometimes represent data that has been measured
in the field. Many times, it is actual earthquake time-domain response data, from
remote sensors that are located to measure an earthquake’s ground motion when
and where it occurs.

The block diagram of this type of control system is similar to that of MIMO sine
testing. The predominant difference is that the time-to-frequency transformation is
accomplished by a fast Fourier transform, with a frame size large enough to accom-
modate the transient but still avoid circular convolution errors.4 Spectral leakage
errors (see Chap. 14) are mitigated by using windowing.

MIMO Time-Domain Waveform Replication Control. This application is an
extension of the single-exciter TDWR and MIMO transient waveform control dis-
cussed in the previous sections.The primary difference from MIMO transient wave-
form control is in the fact that the test-prescribed reference response vector {r(t)}



consists of waveforms that cannot be processed within a single FFT frame. For this
reason, as in the discussion about single-exciter TDWR control methods, an overlap-
and-add technique4 must be employed in both the time-to-frequency and frequency-
to-time transformations within the DVCS used for MIMO TDWR control. The
issues that are associated with the use of the overlap-and-add indirect-convolution
technique need to be considered and addressed.4,29,30

Again, as in MIMO random, MIMO sine, and MIMO transient/shock applica-
tions, the MIMO system under test is driven with a vector of time histories {d(t)},
such that the control response vector {c(t)}—in this case, a vector of time histories—
agrees within an acceptable error margin with the test-prescribed reference response
vector {r(t)}, which is also a vector of time histories.

Examples include electrohydraulic road simulators and seismic simulators. As
mentioned previously, road simulators with as many as 18 actuators attached to a
single vehicle have been used. I/O transformation control is often used with this type
of configuration.28 This type of multiactuator test system will exhibit significant
cross-coupling and thus needs a digital vibration control system that can resolve it to
achieve satisfactory control. This is done by using a measured impedance matrix, as
discussed for the MIMO random and MIMO transient/shock applications, largely
following the same control approaches as in MIMO sine, with the only significant
differences being in the time-to-frequency and frequency-to-time transformation
blocks. The control equations are thus very similar to those in MIMO sine and
MIMO transient/shock applications, but they use the added complexity of the over-
lap-and-add method, discussed previously for single exciters in the time-to-frequency
and frequency-to-time blocks in Fig. 26.8. It is most like the MIMO transient/
shock application but with the use of this indirect overlap-and-add convolution
method, discussed for single-exciter TDWR, rather than a single FFT as the only sig-
nificant difference. In fact, it reduces to a MIMO transient/shock control method if
the time duration of the reference response time history vector {r(t)} is of a duration,
in samples, that can be accommodated with a single FFT operation and still avoid
circular convolution and spectral leakage errors that can otherwise occur.

The concerns about the proper measurement of [H(f)], the proper handling of sin-
gularities that might be present in [H(f)], the advantages of adaptive control, and the
controllability and observability issues that were discussed in the previous sections
about the other MIMO control applications and single-exciter waveform control
apply in this case. Since many DVCSs perform MIMO TDWR control tests in an
open-loop manner while driving multiple actuators, these matters need to be care-
fully considered and addressed to ensure the success of this type of testing.

MODAL TESTING

Modal testing is conducted to excite a system under test, acquire its drive and
response signals, and estimate its frequency response characteristics to determine
experimentally the natural frequencies, mode shapes, and associated damping fac-
tors of a structure via modal analysis. Modal analysis is discussed thoroughly in
Chap. 21. Typically, much of the DVCS hardware and its shock and vibration data
acquisition and analysis software are useable for this application.

Currently, digital control and analysis systems are applied to modal testing in two
distinct ways. First, for sinusoidal excitation, such systems are employed as an aid in
obtaining the desired purity of the modal excitation as well as in acquiring and pro-
cessing data, usually with operator adjustments of the frequency, the relative phase,
and the amplitude of several sine-wave outputs. These are used to drive a system
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under test so as to achieve a particular relative phase and amplitude between chosen
response points on the system under test that is characteristic of a particular normal
mode response. The use of MIMO sine control methods can simplify this process.
Second, and more commonly, the DVCS is used to excite the system under test with
broad-bandwidth random excitation (either random vibration or transients), usually
with several such outputs.The response and drive signals are acquired and processed
using FFT methods, with the methods discussed on frequency response function and
frequency response matrix estimation, using Eq. (26.4).

The use of MIMO random control methods can simplify this process.They can be
used to control the coherence and phase between the components of the excitation
force vector to separate closely spaced modes or to excite only particular modes that
are significant structurally.31

The FRF are typically measured between chosen response points on the system
under test while exciting the system under test with the chosen excitation at pre-
specified excitation points, as discussed previously and in Chap. 21.The FRFs and/or
frequency response matrices thus estimated are subsequently passed to modal
analysis software for further processing and extraction of the pertinent modal data,
using the methods of Chap. 21.
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CHAPTER 27
SHOCK TESTING MACHINES

Vesta I. Bateman

INTRODUCTION

Equipment must be sufficiently rugged to operate satisfactorily in the shock and
vibration environments to which it will be exposed and to survive transportation to
the site of ultimate use. To ensure that the equipment is sufficiently rugged and to
determine what its mechanical faults are, it is subjected to controlled mechanical
shocks on shock testing machines. Mechanical shock is a nonperiodic excitation (e.g.,
a motion of the foundation or an applied force) of a mechanical system that is char-
acterized by suddenness and severity, and it usually causes significant relative dis-
placements in the system. The severity and nature of the applied shocks are usually
intended to simulate environments expected in later use or to be similar to impor-
tant components of those environments. However, a principal characteristic of
shocks encountered in the field is their variety.These field shocks cannot be defined
exactly. Therefore, shock simulation can never exactly duplicate shock conditions
that occur in the field.

There is no general requirement that a shock testing machine reproduce field
conditions.All that is required is that the shock testing machine provide a shock test
such that equipment which survives is acceptable under service conditions. Assur-
ance that this condition exists requires a comparison of shock test results and field
experience extending over long periods of time. This comparison is not possible for
newly developed items. It is generally accepted that shocks that occur in field envi-
ronments should be measured and that shock machines should simulate the impor-
tant characteristics of shocks that occur in field environments or have a damage
potential which by analysis is shown to be similar to that of a composite field shock
environment against which protection is required.

A shock testing machine (frequently called a shock machine) is a mechanical
device that applies a mechanical shock to an equipment under test.The nature of the
shock is determined from an analysis of the field environment. Tests by means of
shock machines usually are preferable to tests under actual field conditions for four
principal reasons:

1. The nature of the shock is under good control, and the shock can be repeated
with reasonable exactness. This permits a comparative evaluation of the equip-
ment under test and allows exact performance specifications to be written.

2. The intensity and nature of shock motions can be produced that represent an
average condition for which protection is practical, whereas a field test may
involve only a specific condition that is contained in this average.
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3. The shock machine can be housed at a convenient location with suitable facilities
available for monitoring the test.

4. The shock machine is relatively inexpensive to operate, so it is practical to per-
form a great number of developmental tests on components and subassemblies in
a manner not otherwise practical.

SHOCK MACHINE CHARACTERISTICS

DAMAGE POTENTIAL AND SHOCK RESPONSE SPECTRA

The damage potential of a shock motion is dependent upon the nature of an equip-
ment subjected to the shock, as well as upon the nature and intensity of the shock
motion.To describe the damage potential, a description of what the shock does to an
equipment must be given—a description of the shock motion is not sufficient. To
obtain a comparative measure of the damage potential of a shock motion, it is 
customary to determine the effect of the motion on simple mechanical systems.
This is done by determining the maximum responses of a series of single-degree-of-
freedom (SDOF) systems (see Chap. 2) to the shock motion and considering the
magnitude of the response of each of these systems as indicative of the damage
potential of the shock motion.The responses are plotted as a function of these natu-
ral frequencies. A curve representing these responses is called a shock response
spectrum (SRS), or response spectrum (see Chap. 20). Its magnitude at any given fre-
quency is a quantitative measure of the damage potential of a particular shock
motion to an SDOF system with that natural frequency. This concept of the SRS
originally was applied only to undamped SDOF systems, but the concept has been
extended to include systems in which any specified amount of damping exists.

The response of a simple system can be expressed in terms of the relative dis-
placement, velocity, or acceleration of the system. It is customary to define velocity
and acceleration responses as 2πf and (2πf )2 times the maximum relative displace-
ment response, where f is frequency expressed in hertz. The corresponding response
curves are called displacement, velocity, or acceleration shock response spectra. A
more detailed discussion of SRS is given in Chap. 20.

Of the three motion parameters (displacement, velocity, and acceleration)
describing a shock spectrum, velocity is the parameter of greatest interest from the
viewpoint of damage potential. This is because the maximum stresses in a structure
subjected to a dynamic load typically are due to the responses of the normal modes
of the structure, that is, the responses at natural frequencies (see Chap. 21). At any
given natural frequency, stress is proportional to the modal (relative) response
velocity.1 Specifically,

σmax = Cνmax �Eρ� (27.1)

where σmax = maximum modal stress in the structure
νmax = maximum modal velocity of the structural response

E = Young’s modulus of the structural material
ρ = mass density of the structural material
C = constant of proportionality dependent upon the geometry of the

structure (often assumed for complex equipment to be 4 < C < 8)2
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Of course, if the SRS for a test machine–generated shock is computed solely to vali-
date that test results comply with a specified SRS, or for comparison to the SRS com-
puted from measured shocks in a service environment, then either displacement or
acceleration SRS are as meaningful as a velocity SRS. However, if the maximum
stress in the structure subjected to the shock is of primary interest, the velocity SRS
is the most applicable.

MODIFICATION OF CHARACTERISTICS 

BY REACTIONS OF TEST ITEM

The shock motion produced by a shock machine may depend upon the mass and fre-
quency characteristics of the item under test. However, if the effective weight of the
item is small compared with the weight of the moving parts of the shock machine, its
influence is relatively unimportant. Generally, however, the reaction of the test item
on the shock machine is appreciable and it is not possible to specify the test in terms
of the shock motions unless large tolerances are permissible. The test item acts like
a dynamic vibration absorber (see Chap. 6). If the item is relatively heavy, this causes
the shock response spectra of the exciting shock to have minima at the frequencies
of the test item; it also causes its mounting foundation to have these minima during
shock excitation at field installations. Shock tests and design factors are sometimes
established on the basis of an envelope of the maximum values of SRS. However,
maximum stresses in the test item will most probably occur at the antiresonance fre-
quencies where the SRS exhibits minimum values. To require that the item with-
stand the upper limit of spectra at these frequencies may result in overtesting and
overdesign. Considerable judgment is therefore required both in the specification of
shock tests and in the establishment of theoretical design factors on the basis of field
measurements. See Chap. 18 for a more complete discussion of this subject.

DOMINANT FREQUENCIES OF SHOCK MACHINES

The shock motion produced by a shock machine may exhibit frequencies that are char-
acteristic of the machine. These frequencies may be affected by the equipment under
test.The probability that these particular frequencies will occur in the field is no greater
than the probability of other frequencies in the general range of interest.A shock test,
therefore, discriminates against equipment having elements whose natural frequencies
coincide with frequencies introduced by the shock machine.This may cause failures to
occur in relatively good equipment whereas other equipment, having different natural
frequencies, may pass the test even though of poorer quality. Because of these factors,
there is an increasing tendency to design shock machines to be as rigid as possible, so
that their natural frequencies are above the range of frequencies that might be strongly
excited in the equipment under test. The shock motion is then designed to be the sim-
plest shape pulse that will give a desired shock motion or response spectrum.

CALIBRATION

A shock machine calibration is a determination of the shock motions or response
spectra generated by the machine under standard specified conditions of load,
mounting arrangements, methods of measurement, and machine operation. The
purpose of the calibration is not to present a complete study of the characteristics of
the machine but rather to present a sufficient measure of its performance to assure
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the user that the machine is in a satisfactory condition. Measurements should there-
fore be made under a limited number of significant conditions that can be accurately
specified and easily duplicated. Calibrations are usually performed with deadweight
loads rigidly attached to the shock machine.

The statement of calibration results must include information relative to all fac-
tors that may affect the nature of the motion. These include the magnitude, dimen-
sions, and type of load; the location and method of mounting of the load;
factors related to the operation of the shock machine; the locations and mounting
arrangements of transducers; and the frequency range over which the measure-
ments extend.

SPECIFYING A SHOCK TEST

Two methods of specification are employed in defining a shock test: (1) a specifica-
tion of the shock motions (or shock response spectra) to which the item under test is
subjected and (2) a specification of the shock machine, the method of mounting the
test item, and the procedure for operating the machine.

The first method of specification can be used only when the shock motion can be
defined in a reasonably simple manner and when the application of forces is not so
sudden as to excite structural vibration of significant amplitude in the shock
machine. If equipment under test is relatively heavy, and if its normal modes of
vibration are excited with significant amplitude, the shock motions are affected by
the load; then the specified shock motions should be regarded as nominal. If compa-
rable results are to be obtained for tests of different machines of the same type, the
methods of mounting and operational procedures must be the same.

The second method of specification for a shock test assumes that it is impracti-
cal to specify a shock motion because of its complexity; instead, the specification
states that the shock test shall be performed in a given manner on a particular
machine. The second method permits a machine to be developed and specified as
a standard shock testing machine. Those who are responsible for the specification
then should ensure that the shock machine generates appropriate shock motions.
This method avoids a difficulty that arises in the first method when measurements
show that the shock motions differ from those specified. These differences are to
be expected if load reactions are appreciable and complex. It should be noted,
however, that ANSI standards that specify a standard shock machine were with-
drawn in 2004.

A shock testing machine must be capable of reproducing shock motions with
good precision for purposes of comparative evaluation of equipment and for the
determination as to whether a manufacturer has met contractual obligations. More-
over, different machines of the same type must be able to provide shocks of equiva-
lent damage potential to the same types of equipment under test. Precision in
machine performance, therefore, is required on the basis of contractual obligations
and for the comparative evaluation of equipments even though it is not justified on
the basis of a knowledge of field conditions.

Sometimes equipment under test may consistently fail to meet specification
requirements on one shock machine but may be acceptable when tested on a different
shock machine of the same type.The reason for this is that small changes of natural fre-
quencies and of internal damping, of either the equipment or the shock machine, may
cause large changes in the likelihood of failure of the item. Results of this kind do not
necessarily mean that a test has been performed on a faulty machine;normal variations
of natural frequencies and internal damping from machine to machine make such
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changes possible. However, standard calibrations of shock machines should be made
from time to time to ensure that significant changes in the machines have not occurred.

SHOCK TESTING MACHINES

CHARACTERISTIC TYPES OF SHOCKS

The shock machines described below are grouped according to the types of shocks
they produce. When a machine can be classified under several headings, it is placed
in the one for which it is primarily intended. One characteristic shared by all shock
machines is that the motions they produce are sudden and likely to create significant
inertial forces in the item under test. The types of shock shown in Fig. 27.1 are clas-
sified as (A) through (D), simple shock pulses, whose shapes can be expressed in a
practical mathematical form; (E), a single complex shock; and (F), a multiple shock.
In contrast to a simple shock pulse specification, the motions illustrated in Fig. 27.1E
and F often are the result of a shock test in which the shock testing machine, the
method of mounting, and machine operations were specified.

Velocity Shocks. A velocity shock is produced by a sudden change in the net
velocity of the structure supporting the item under test. When the duration of the

shock is short compared to the periods
of the principal natural frequencies of
the item under test, a velocity shock is
said to have occurred. Figure 27.1A
shows a nearly instantaneous change in
velocity. The shocks shown in Fig. 27.1B,
C, and D are also considered velocity
shocks if the above shortness criterion is
met. The full period of the half-sine
wave in Fig. 27.1B is τ/2, as shown.Veloc-
ity shocks produce substantial energy at
the principal natural frequencies of the
item under test.This is illustrated in Figs.
27.2 and 27.3, which show the shock
response spectra (computed with a zero
damping ratio) for the half-sine and
sawtooth acceleration pulses with dura-
tion T in Fig. 27.1B and D, respectively.
Note in both cases that the values of the
velocity SRS are uniform at all frequen-
cies below about Tf = 0.2. Hence, from
Eq. (27.1), they have the potential to
cause substantial damage to the basic
structure of the item under test, assum-
ing the item has natural frequencies
below f = 0.2/T Hz.

Displacement Shocks. Some shock
test machines produce a sequence of
two or more velocity shocks with equal
and opposite velocity magnitudes such
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FIGURE 27.1 Characteristic types of shocks.
(A) Velocity shock, or step velocity change. (B)
Simple half-sine acceleration shock pulse. (C)
Rectangular force pulse. (D) Sawtooth accelera-
tion pulse. (E) Single complex shock. (F ) Multi-
ple shock.



FIGURE 27.3 Normalized shock response spectra for terminal sawtooth
input pulse in Figure 27.1D.

that the test item experiences no net velocity change. For example, the half-sine
acceleration pulse in Fig. 27.1B might be followed by a second half-sine pulse of
equal magnitude in the opposite direction. If the time between the two equal and
opposite acceleration pulses is longer than the duration of the individual pulses, a
substantial displacement of the test item between the positive and negative velocity
changes will occur.This type of shock is commonly called a displacement shock. Such
shocks have a damage potential similar to that of velocity shocks.
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FIGURE 27.2 Normalized shock response spectra for half-sine input pulse in
Figure 27.1B.



High-Frequency Shocks. Metal-to-metal impacts that do not result in a net 
velocity change of the item under test create high-acceleration, high-frequency oscil-
lations in the vicinity of the impact. Figure 27.1E and F are examples of high-
frequency shocks. Since the frequency range of these shocks often exceeds the prin-
cipal natural frequencies of the item under test, the shocks usually are not readily
transmitted far from the point of their creation. Consequently, this type of shock
lacks the damage potential of velocity shocks for all but small and/or brittle compo-
nents of the item under test. Common sources of high-frequency shocks include
pyrotechnic devices, which produce what are commonly referred to as pyroshocks.
Laboratory machines and techniques for the simulation of pyroshocks are detailed
separately in Chap. 28.

SIMPLE SHOCK PULSE MACHINES

Although shocks encountered in the field are usually complex in nature (for exam-
ple, see Fig. 27.1E), it is frequently advantageous to simulate a field shock by a shock
of mathematically simple form. This permits designers to calculate equipment
response more easily and allows tests to be performed that can check these calcula-
tions. This technique is additionally justifiable if the pulses are shaped so as to pro-
vide shock response spectra similar to those obtained for a suitable average of a
given type of field conditions. Machines are therefore built to provide these simple
shock motions. However, note that the motions provided by actual machines are
only ideally simple.The ideal outputs may be given as nominal values; the actual out-
puts can only be determined by measurement.

Drop Tables. A great variety of drop testers are used to obtain acceleration pulses
having magnitudes ranging from 80,000g down to a few g. The machines each
include a carriage (or table) on which the item under test is mounted; the carriage
can be hoisted up to some required height and dropped onto an anvil. Guides are
provided to keep the carriage properly oriented. For practical reasons, drop tables
driven by gravity alone are limited to velocity changes of one-and-a-half-times the
free-fall velocity change.When large velocity changes are required, the carriage may
be accelerated downward by a means other than gravity. Frequently, parts of the car-
riage, associated with its lifting and guiding mechanism, are flexibly mounted to the
rigid part of the carriage structure that receives the impact.This is to isolate the main
carriage structure from its flexible appendages so as to retain the simple pulse struc-
ture of the stopping acceleration.

A typical drop table machine is shown in Fig. 27.4. The desire acceleration pulse
shape is obtained using a programming device between the impacting surfaces.
Devices ranging from liquid programmers to simple pads of elastomeric materials
can be used. The elastic shock cords accelerate the table to create velocities beyond
those that can be obtained with a free fall. Machines of this type can produce accel-
eration waveforms that closely approximate many different types of velocity shocks,
such as the half-sine and terminal sawtooth acceleration pulses in Fig. 27.1B and D,
respectively.These machines can also be used to characterize the impact response of
materials and components placed between the shock table and the seismic mass,
provided a technique to eliminate the structural response of the shock machine is
used.3 Additionally, there are a variety of specialized pneumatic machines available.
For example, smaller, more compact machines have been developed for miniaturized
components,4 and large-displacement, low-frequency machines have been developed
for large components.5
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FIGURE 27.4 Accelerated drop-table for use with programming devices
between the impacting surfaces. (Courtesy of Lansmont Corporation.)

Air Guns. Air guns frequently are used to impart large accelerations to pistons on
which items under test can be attached. The piston is mechanically retained in posi-
tion near the breech end of the gun while air pressure is built up within the breech.
A quick-release mechanism suddenly releases the piston, and the air pressure pro-
jects the piston down the gun barrel. The muzzle end of the gun is closed so that the
piston is stopped by compressing the air in the muzzle end.Air bleeder holes may be
placed in the gun barrel to absorb energy and to prevent an excessive number of
oscillations of the piston between its two ends.

A variety of such guns can provide the acceleration pulses shown in Fig. 27.5A
and B. The peak accelerations may extend from a maximum of about 1000g for the
large-diameter (21 in., 53 cm) guns up to 200,000g for small-diameter (2 in., 5 cm)
guns. The pulse length varies correspondingly from about 50 to 3 milliseconds. The
maximum piston velocity varies from about 400 to 750 ft/sec (122 to 229 m/sec). The
maximum velocities are not dependent upon piston diameter.



High-acceleration gas guns have been developed for testing electronic devices.
The items under test are attached to the piston. The gun consists of a barrel (cylin-
der) that is closed at the muzzle end but which has large openings to the atmosphere
a short distance from the muzzle end. The piston is held in place while a relatively
low-pressure gas (usually air or nitrogen) is applied at the breech end of the gun.The
piston is then released, whereby it is accelerated over a relatively long distance until
it reaches the position along the length of the cylinder that is open to the atmo-
sphere. This initial acceleration is of relatively small magnitude. After the piston has
passed these openings, it is stopped by the compression of gas in the short closed end
of the cylinder. This results in a reverse acceleration of relatively large magnitude.
(Sometimes an inert gas, such as nitrogen, is used in the closed end to prevent explo-
sions which might be caused by oil particles igniting under the high temperatures
incident to the compression.) Thus, in contrast to the previously described devices,
the major acceleration pulse is delivered during stopping rather than starting. An
advantage of this latter technique is that the difficult problem of constructing a
quick-release mechanism for the piston, which will work satisfactorily under the
large forces exerted by the piston, is greatly simplified.

Vibration Machines. Electrodynamic, hydraulic, and pneumatic vibration
machines provide a ready and flexible source of shock pulses, so long as the pulse
requirements do not exceed the force and motion capabilities of the selected
machine. See Chap. 25 for information.

Test Load Reactions. In the above description of the output of shock machines
designed to deliver simple shock pulses of adjustable shapes, it is assumed that the
load imposed on the machine by the item under test has little effect on the shock
motions. This is true only when the effective weight of the load is negligibly small
compared with that of the shock machine mounting platform. If the effective weight
of the load is independent of frequency, i.e., if it behaves as a rigid body, it is simple to
compensate for the effect of the load by adjusting machine parameters. However,
when the load is flexible and the reactions of excited vibrations are appreciable, the
motions of the shock machine platform are complex. Specifications involving the use
of these types of machines should require that the mounting platform have no signif-
icant natural frequencies below a specified frequency. The weight of this platform
together with that of all rigidly attached elements, exclusive of the test load, also
should be specified. Pulse shapes may then be specified for motions of this platform
or for the platform together with given deadweight loads. These may be specified as
nominal values for test loads, but it is neither practical nor desirable to require that
the pulse shape be maintained in simple form for complex loads of considerable mass.
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FIGURE 27.5 Typical acceleration-time curves for (A) 5-in. (13-cm) air gun; (B) 21-in. (53-cm) air
gun.



COMPLEX SHOCK PULSE MACHINES

Because of the infinite variety of shock motions possible under field conditions, it is
not practical or desirable to construct a shock machine to reproduce a particular
shock that may be encountered in the field. However, it is sometimes desirable to
simulate some average of a given type of shock motion. To accomplish this may
require that the shock machine deliver a complex motion. A shock of this type can-
not be specified easily in terms of the shock motions, since the motions are very com-
plex and dependent on the nature and the mounting of the load. It is customary,
therefore, to specify a test in terms of a shock machine, the conditions for its opera-
tion, and a method of mounting the item under test.

High-Impact Shock Machines. The Navy high-impact shock machines are
designed to simulate shocks of the nature and intensity that might occur on a ship
exposed to severe but sublethal, noncontact, underwater explosions. Such severe
shocks produce motions that extend throughout the ship. Equipment intended for
shipboard use can demonstrate its ability to withstand the shock simulations pro-
duced by these high-impact shock machines and thus be considered capable of with-
standing the actual underwater explosion environment.

Lightweight Machines.6,7 The lightweight high-impact shock machine, shown in
Fig. 27.6, is used for testing equipment weighing up to about 350 lb (159 kg). Equip-
ment under test is attached to the anvil plate A. Method of attachment is con-
strained to resemble closely the eventual field attachments.The anvil is struck on the
backside by the pendulum hammer C, or the anvil is rotated 90° on a vertical axis
and struck on the end by the pendulum hammer. The drop hammer B can be made
to strike the top of the anvil, thus providing principal shock motions in the third
orthogonal direction. Shock response spectra of shock motions generated by this
machine are shown in Fig. 27.7 (these results were computed with a damping ratio of
about 0.01).The SRS for the motion at the center of the plate illustrates the amplifi-
cation of the spectrum level at a natural frequency of the plate (about 100 Hz) and
some attenuation at higher frequencies.

Medium-Weight Machines.6,7 This machine is used to test equipment that, with
its supporting structures, weighs up to 7400 lb (3357 kg). This machine consists princi-
pally of a 3000-lb (1361-kg) hammer and a 4500-lb (2041-kg) anvil. Loads are not
attached directly to the rigid anvil structure but rather to a group of steel channel
beams which are supported at their ends by steel members, which in turn are attached
to the anvil table.The number of channels employed is dependent on the weight of the
load and is such as to cause the natural frequency of the load on these channels to be
about 60 Hz.The general nature of the shock is complex, similar to that of the light-
weight machine. Little of the high-amplitude, high-frequency components of the shock
motions are transmitted to the load.

Heavy-Weight Machines.6,8 The floating shock platform (FSP), and the large
floating shock platform (LFSP) are high-load-capacity shock machines of the high-
impact category. They are rectangular barges fitted with semicylindrical canopies
within which test items are installed as they are aboard ship.The shock motions com-
prising the test series are generated by detonating explosive charges beneath the
water surface at various distances.

Hopkinson Bar. When shock testing requires extremely high g levels for light
loads (for example, calibration of accelerometers), the Hopkinson bar has proven
useful.A controlled-velocity projectile is impacted on the end of a metallic bar, caus-
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FIGURE 27.6 Navy high-impact shock machine for lightweight equipment.

FIGURE 27.7 Shock response spectra for a 5-ft. (1.52-m) backblow with
a 57-lb (25.9-kg) load on the mounting plate for four different lightweight
high-impact shock machines.



ing a stress wave of known magnitude to travel along the bar. Often, the magnitude
of the stress wave is measured as it passes the middle of the bar. The item under test
is attached to the extreme end of the bar and experiences a high-g rapid rise time
acceleration when the stress wave arrives at that position.9 See Fig. 11.12.

MULTIPLE-IMPACT SHOCK MACHINES

Many environments, particularly those involving transportation, subject equipment
to a relatively large number of shocks.These are of lesser severity than the shocks of
major intensity that have been considered above, but their cumulative effect can be
just as damaging. It has been observed that components of equipment that are dam-
aged as a result of a large number of shocks of relatively low intensity are usually dif-
ferent from those that are damaged as a result of a few shocks of a relatively high
intensity. The damage effects of a large number of shocks of low intensity cannot
generally be produced by a small number of shocks of high intensity. Separate tests
are therefore required so that the multiple number of low-intensity shocks are prop-
erly emulated.

Vibration Machines. Electrodynamic, hydraulic, and pneumatic vibration test-
ing machines provide a ready and flexible source of multiple shock pulses so long
as the pulse requirements do not exceed force and motion capabilities of the
selected machine. They can be programmed to provide a series of different shock
pulses or to repeat a particular shock motion as many times as desired and to estab-
lish the necessary initial conditions prior to each shock pulse. See Chap. 25 for more
information.

ROTARY ACCELERATOR

A quick-starting centrifuge can is used to quickly attain and maintain an accelera-
tion for a long period of time. The accelerator consists of a rotating arm which is
suddenly set into motion by an air-operated piston assembly. The test object is
mounted on a table attached to the outer end of the arm.The table swings on a pivot
so that the resultant direction of the acceleration is always along a fixed axis of the
table. Initially the resultant acceleration is caused largely by angular acceleration of
the arm, so this axis is in a circumferential direction. As the centrifuge attains its full
speed, the acceleration is caused primarily by centrifugal forces, so this table axis
assumes a radial direction. These machines are built in several sizes. They require
between 5 and 60 milliseconds to reach the maximum value of acceleration. For
small test items (8 lb, 3.6 kg), a maximum acceleration of 450g is attainable; for
heavy test items (100 lb, 45.4 kg), the maximum value is about 40g.
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CHAPTER 28
PYROSHOCK TESTING

Vesta I. Bateman

Neil T. Davie

INTRODUCTION

Pyroshock, also called pyrotechnic shock, is the response of a structure to high-
frequency (thousands of hertz), high-magnitude stress waves that propagate
throughout the structure as a result of an explosive event such as the explosive charge
to separate two stages of a multistage rocket. The term pyrotechnic shock originates
from the use of propellants such as black powder, smokeless powder, nitrocellulose,
and nitroglycerin in devices common to the aerospace and defense industries. These
devices include pressure squibs, explosive nuts and bolts, latches, gas generators, and
air bag inflators.1 The term pyroshock is derived from pyrotechnic shock, but both
terms are used interchangeably in the industry and its literature. A pyroshock differs
from other types of mechanical shock in that there is very little rigid-body motion
(acceleration, velocity, and displacement) of a structure in response to the pyroshock.
The pyroshock acceleration time history measured on the structure is oscillatory and
approximates a combination of decayed sinusoidal accelerations with very short
duration in comparison to mechanical shock described in Chap. 27. The characteris-
tics of the pyroshock acceleration time history vary with the distance from the
pyroshock event. In the near field, which is very close to the explosive event, the
pyroshock acceleration time history is a high-frequency, high-amplitude shock that
may have transients with durations of microseconds or less. In the far field, which is
far enough from the event to allow structural response to develop, the acceleration
time history of the pyroshock approximates a combination of decayed sinusoids with
one or more dominant frequencies. The dominant frequencies are usually much
higher than that in a mechanical shock and reflect the local modal response of the
structure.The dominant frequencies are generally lightly damped. However, since the
frequencies are so high, it typically takes less than 20 milliseconds for the pyroshock
response to dampen out and return to zero. Satellite, aerospace, and weapon compo-
nents are often subjected to pyroshocks created by devices such as explosive bolts
and pyrotechnic actuators. Pyroshock structural response is also found in ground-
based applications in which there is a sudden release of energy, such as the impact of
a structure by a projectile.

Pyroshock was once considered to be a relatively mild environment due to its
low-velocity change and high-frequency content. Although it rarely damages struc-
tural members (except where the fracture of a structural element is intended), pyro-
shock can easily cause failures in electronic components that are sensitive to the
high-frequency pyroshock energy. The types of failures caused by pyroshock com-
monly include relay chatter, hard failures of small circuit components, and the dis-
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lodging of contaminants (e.g., solder balls), which cause short circuits. A significant
number of flight failures have been attributed to pyroshock compared to other types
of shock or vibration sources, and, in one case, an extensive database of the failures has
been compiled.2 Designers must rely on testing for qualifications of their systems and
components that will be exposed to pyroshock environments in the absence of analyt-
ical techniques to predict structural response to a pyroshock. Failures can be reduced
by implementing a qualification testing program for components exposed to a pyro-
shock environment. This chapter describes the characteristics of pyroshock environ-
ments, measurement techniques, test specifications, and simulation techniques.

PYROSHOCK CHARACTERISTICS

COMPARISON OF NEAR-FIELD, MID-FIELD, AND 

FAR-FIELD CHARACTERISTICS

The detonation of an explosively actuated device produces high-frequency tran-
sients in the surrounding structure.The specific character of these acceleration tran-
sients depends on various parameters including: (1) the type of pyrotechnic source,
(2) the geometry and properties of the structure, and (3) the distance from the
source. Due to the endless combinations of these parameters, sweeping conclusions
about pyroshock characteristics cannot be made; however, the following paragraphs
describe useful characteristics of typical pyroshock environments.

A pyrotechnically actuated device produces a nearly instantaneous pressure on
surfaces in the immediate vicinity of the device. As the resulting stress waves propa-
gate through the structure, the high-frequency energy is gradually attenuated due to
various material damping and structural damping mechanisms. In addition, the high-
frequency energy is transferred or coupled into the lower-frequency modes of the
structure. The typical pyroshock acceleration transient thus has roughly the appear-
ance of a multifrequency decayed sinusoid (i.e., the envelope of the transient decays
and is symmetric with respect to the positive and negative peaks).The integral of the
typical transient also has these same characteristics.3 In most cases, the initial portion
of the acceleration transient exhibits a brief period during which the amplitudes of
the peaks are increasing prior to the decay described above (see Figs. 28.1 and 28.2).
This is a result of the interaction of stress waves as they return from various loca-
tions in the structure.

A pyrotechnically actuated device imparts very little impulse to a structure since
the high forces produced are acting for only a short duration and are usually inter-
nal to the structure.The net rigid-body velocity change resulting from a pyroshock is
thus very low relative to the peak instantaneous velocity seen on the integral of the
acceleration transient. Rigid-body velocity changes are commonly less than 1 m/sec.
The duration of a pyroshock transient depends on the amount of damping in a par-
ticular structure, but it is commonly 5 to 20 milliseconds in duration.

Pyroshock may be subdivided into three general categories. Near-field pyroshock
occurs close to the pyrotechnic source before significant energy is transferred to
structural response. It is dominated by the input from the source and contains very
high frequency and very high g energy. This energy is distributed over a wide fre-
quency range and is not generally dominated by a few selected frequencies. Mid-
field and far-field pyroshock environments are found at a greater distance from the
source where significant energy has transferred into the lower-frequency structural
response. They contain lower-frequency and lower-g energy than near-field pyro-
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shock; most of the energy is usually concentrated at one or a few frequencies which
correspond to dominant structural mode(s).

A more detailed discussion of shock response spectrum (SRS; see Chap. 20 for def-
inition) applications is given later in this chapter, but it is introduced here as a means of
describing pyroshock characteristics. Many mid-field and far-field pyroshock environ-
ments have a typical SRS shape as illustrated in Fig. 28.2, which shows an actual mid-
field pyroshock acceleration transient along with its associated SRS. The SRS initially
increases with frequency at a slope of 9 to 12 dB/octave, followed by an approximately
constant or slightly decreasing amplitude. The frequency at which the slope changes is
called the knee frequency, and it corresponds to a dominant frequency in the pyroshock
environment. The knee frequency is often between 3 and 10 kHz for mid-field, but it
could be higher or lower in some cases. Near-field pyroshock may also exhibit this typ-
ical pyroshock SRS except with a higher knee frequency. However, since near-field
pyroshock usually has broadband frequency content, its SRS often exhibits a more
complex shape that contains numerous excursions but on average follows a 6-dB/
octave slope over the entire frequency range of interest. Figure 28.1 shows an example
of this type of near-field SRS. Far-field shock is similar in shape to mid-field shock
except the knee frequency is below 3kHz.

No fixed rules define at what distance from the pyrotechnic source the near-field
pyroshock ends and the mid-field pyroshock begins. It is more appropriate to clas-
sify pyroshock according to the various test techniques that are suitable to employ
in each case.
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FIGURE 28.1 Shock response spectrum and acceleration time history for a near-field
pyroshock. The shock response spectrum is calculated from the inset acceleration time his-
tory using a 5 percent damping ratio.



TEST TECHNIQUES FOR NEAR- AND FAR-FIELD PYROSHOCK

The pyroshock simulation techniques described in this chapter fall into two cate-
gories: (1) pyrotechnically excited simulations and (2) mechanically excited simu-
lations. A short-duration mechanical impact on a structure causes a response
similar to that produced by a pyrotechnic source. Although these mechanically ex-
cited simulations can be carried out with lower cost and better control than pyro-
technically excited simulations, they cannot produce the very high frequencies
found in near-field pyroshock. Mechanically excited simulations allow control of
dominant frequencies up to about 10 kHz (or higher for very small test items). For
environments requiring higher-frequency content, a pyrotechnically excited tech-
nique is usually more appropriate. The following general guidelines apply in
selecting a technique for simulating pyroshock:

Near-field pyroshock. For a test that requires frequency control up to and above
10 kHz, a pyrotechnically excited simulation technique is usually required.
Mid-field pyroshock. For a test that requires frequency control from 3 to 10 kHz,
a mechanically excited simulation technique other than a shaker-induced shock
is usually required.
Far-field pyroshock. For a test that requires frequency control no higher than 
3 kHz, a mechanically excited simulation technique is usually acceptable.
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FIGURE 28.2 A typical shock response spectrum and acceleration time history for a mid-
field pyroshock.The shock response spectrum is calculated from the inset acceleration time-
history using a 5 percent damping ratio.The straight lines indicate tolerance bands (typically
±6 dB as shown) which might be applied for qualification test specification.



These guidelines are not rigid rules, but they provide a reasonable starting point
when planning a pyroshock simulation test.

QUANTIFYING PYROSHOCK FOR TEST SPECIFICATION

An intrinsic characteristic of pyroshock is its variability from one test to another.That
is, even though great care has been taken with the test technique, the measured
response in both the near and the far fields may vary a great deal from test to test.This
variability occurs in the situation where actual explosive devices are used and in the
laboratory where more controlled techniques are employed.As a result, various tech-
niques have been sought to quantify pyroshock for test specification. The purpose of
these techniques is to define the pyroshock in a manner that can be reproduced in the
laboratory and can provide a consistent evaluation for hardware that must survive
pyroshock in field environments.All techniques require that a measurement be made
of the actual pyroshock event at or near the location of the subsystem or component
that will be tested. The measurement may be acceleration, velocity, or displacement,
but acceleration is the most widely used measure.The measurement is then used with
one of the techniques below to obtain a test specification for pyroshock. The shock
response spectrum is considered to be conservative and a potential overtest of compo-
nents and subsystems. However, components and subsystems that survive laboratory
tests specified using SRS generally survive pyroshock field environments, although
they may be overdesigned. Because aerospace systems require lightweight compo-
nents and subsystems, other techniques such as temporal moments and shock intensity
spectrum have been developed so that laboratory tests can more closely simulate
actual pyroshock events and allow tighter design margins.

Shock Response Spectra. By far the most widely used technique for quantifying
pyroshock is the shock response spectrum.This technique provides a measure of the
effect of the pyroshock on a simple mechanical model with a single degree of free-
dom (SDOF). Generally, a measured acceleration time history is applied to the
model, and the maximum acceleration response is calculated. The damping of the
model is held constant (at a value such as 5 percent) for these calculations. An
ensemble of maximum absolute-value acceleration responses is calculated for vari-
ous natural frequencies of the model and the result is a maximax shock response
spectrum. A curve representing these responses as a function of damped natural fre-
quency is called a shock response spectrum (see Chap. 20), and is normally plotted
with log-log scales.Velocity and displacement SRS may be computed (see Chap. 27),
but are not commonly used for pyroshock specification. The SRS for pyroshock has
a characteristically steep slope at low frequencies of 12 dB/octave that is a direct
result of the minimal velocity change occurring in a pyroshock. Occasionally, a
pyrotechnic device, such as an explosive bolt cutter, is combined with another mech-
anism, such as a deployment arm, to position components for a particular event
sequence. In this case, a distinct velocity change is combined with the pyroshock
event, and the low-frequency slope of the SRS will reflect this velocity change. For a
typical far-field pyroshock, the low-frequency slope changes at the knee frequency,
and the SRS approaches a constant value at high frequencies, that is, the peak accel-
eration in the time domain as shown in Fig. 28.2. A typical near-field pyroshock may
have this shape or the shape shown in Fig. 28.1. Conventionally, tolerance bands of
±6 dB are drawn about a straight-line approximation of the SRS for laboratory test-
ing. An example of a typical maximax SRS is shown in Fig. 28.2 with the conven-
tional ±6-dB tolerance bands.
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Band-Limited Temporal Moments. The method of temporal moments may be
used for modeling shocks whose time durations are too short for nonstationary
models and that contain a large random contribution.4 The method uses the magni-
tude of the Fourier spectrum in the form of an energy spectrum (Fourier spectrum
magnitude squared) that is smoothed or formed from an ensemble average to gen-
erate statistically significant values.Temporal moments of the time histories are used
to represent how the energy is distributed in time.The moments are analogous to the
moments of the probability density functions and provide a convenient method to
describe the envelopes of complicated time histories such as pyroshock.The ith tem-
poral moment mi(a) of a time history f(t), about a time location a, is defined as

mi(a) = �+∞

−∞
(t − a)i[f(t)]2 dt (28.1)

The time history energy E is given by

E = �+∞

−∞
|F(ω)|2 dω (28.2)

where F(ω) is the Fourier transform of f(t).The first five moments are used in the tem-
poral moments technique. The zeroth-order moment m0 is the integral of the mag-
nitude squared of the time history and is called the time-history energy. The first
moment normalized by the energy is called the central time τ.A central moment is a
moment computed about the central time, i.e., a = τ. The second central moment is
normalized by the energy and is defined as the mean-square duration of the time
history. The third central moment normalized by the energy is defined as the skew-
ness and describes the shape of the time history.The fourth central moment normal-
ized by the energy is called kurtosis. The moments are calculated for a shock time
history passed through a contiguous set of bandpass filters. A product model is
formed using a deterministic window w(t)4 and a realization of a dimensionless sta-
tionary random process with unity variance x(t) as w(t)⋅x(t + τ). A product model is
then used to generate a simulation that has the same energy and moments in the
mean as the original shock. Band-limited moments characterize the shock and not
the response to the shock as the shock spectrum and do not rely on a structural
model.

Other Techniques. Other techniques to quantify pyroshock include the shock
intensity spectrum based on the Fourier energy spectrum,5 the method of least favor-
able response,6,7 and nonstationary models.8,9 These techniques are not commonly
used but may provide additional insight for quantifying pyroshocks. The Fourier
spectrum is an attractive alternative to the shock response spectrum because it is
easy to compute and readily available in many software packages as a fast Fourier
transform (FFT). Since the Fourier spectrum is complex, both magnitude and phase
information is available. The magnitude generally has intuitive meaning, but the
phase is difficult to interpret and may be contaminated with noise at the high fre-
quencies present in pyroshock. The method of least favorable response provides a
method of selecting the phase to maximize the response of the system under test.
This method results in a conservative test provided that an appropriate measure-
ment point is chosen on the structure. Stationary models for random vibration have
been used for many years. Nonstationary models consist of a stationary process mul-
tiplied by a deterministic time-varying modulating function, which is a product
model.9 A nonstationary model is appropriate for pyroshock and approaches a sta-
tionary model as the time-record length is increased.

1
�
2π
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MEASUREMENT TECHNIQUES

Measurements of pyroshocks are generally made with accelerometers, strain gages,
or laser Doppler vibrometers (LDVs). The accelerometers are used to measure
acceleration, and the strain gages and LDVs are used to measure velocity.The strain
gages may also be used to sense force, stress, or strain. General shock measurement
instrumentation is applicable for pyroshock measurements (see Chap. 10); how-
ever, care must be taken to protect accelerometers from the high frequencies con-
tained in pyroshocks that may cause the accelerometers to resonate and, in some
cases, to fail. If accelerometers are excited into resonance, large-magnitude output
results and may exceed the maximum amplitude of the data acquisition system that
was chosen for the test. The result is that the data magnitude is clipped. If clipped,
the data are rendered useless and the results from the test will be greatly dimin-
ished. Several mechanically isolated accelerometers are available commercially
and should be used if there is a possibility of exciting the accelerometers into reso-
nance. There is only one mechanically isolated accelerometer that can provide the
wide-frequency bandwidth (dc to 10 kHz) required for pyroshock.10,11 Other
mechanical isolators generally provide a frequency bandwidth of about dc to 1 kHz.
Any mechanical isolator that is used in a pyroshock environment must be well
characterized over a range of frequencies and a range of acceleration values using
a shock test technique, for example, Hopkinson bar testing. Strain gages are useful
measurements of the pyroshock environment but are not easily translated into a
test specification. Strain gages have the advantage of high-frequency response (in
excess of dc to 40 kHz) provided that their size is appropriately chosen. Addition-
ally, strain gages do not have the resonance problems that accelerometers have.The
LDV provides velocity measurements that are not contaminated by cross-axis
response because the LDV only responds to motion in the direction of the laser
beam. The LDV is a noncontacting measurement and is easy to set up; consistent
measurements of pyroshock events have been obtained with an LDV.12,13 The LDV
has the disadvantage of being very expensive per channel in comparison to the
other measurement techniques, difficult to calibrate, and must have line of sight to
the measurement location.

Pyroshock Test Specifications. An acceleration or velocity time history is not
adequate for specifying a pyroshock test. The time-history data must be analyzed
using one of the techniques discussed above to quantify the pyroshock for a test
specification. Ideally, the time-history data that are used to develop the qualification
test specification should be measured during a full-scale system test in which the
actual pyrotechnic device or devices were initiated. The full-scale test should be
accomplished with hardware that is structurally similar to the real hardware if the
real hardware is not available. A control point measurement is specified close to
each component or subassembly of interest, preferably at the attachment point to
measure the input pyroshock. Since full-scale testing is expensive, data from a simi-
lar application may be used to develop component or subassembly qualification test
specifications. This practice may result in overtested or overdesigned components 
or subassemblies if a large margin is added to the test specification to account for the
uncertainty in the data. If this practice is used, the test specification should be
revised when better system data become available.

Once the time-history data have been acquired, the data should be scrutinized to
ensure their quality.3 The data should be free of zero-shifts and offsets. Acceleration
and velocity time histories should be integrated and the results examined. The time-
history data should be low-pass filtered at a designated cutoff frequency; a cutoff 
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frequency of 20 kHz is typical. The data must then be analyzed using the same tech-
nique as was used for analysis of the time-history data from which the test specifica-
tion was derived. Test margin and tolerance bands are applied to the data analysis.
For instance, if the SRS is being used, a straight-line approximation of the SRS is
used as the baseline for the test specification process.A margin of �3 dB is typically
added to the baseline SRS, and a customary ±6-dB tolerance is used with the base-
line SRS. A typical test specification may allow the SRS from the actual test to fall
outside the tolerance band at a specified number of frequency points. Pyroshock
tests are highly variable, and the engineer must specify how much variability from
test to test will be accepted; in some cases, a tighter, ±3-dB tolerance may be
required. Additionally, the specification should require that the peak acceleration
(or velocity) value and pulse durations are in agreement with the intended values for
the specified input pulse. Similar approaches are used for other techniques for quan-
tifying pyroshock.

In some cases, two or more pyroshock events, such as stage separation and an
explosive actuator, may be combined into a single test specification. If the events
are significantly different, the resulting test specification may be difficult or impos-
sible to meet. A better practice is to make separate test specifications for each
pyroshock event and to combine the specifications only in the case where a realiz-
able test results.

PYROSHOCK SIMULATION TECHNIQUES

PYROTECHNICALLY EXCITED NEAR-FIELD SIMULATION

Ordnance Devices. Linear, flexible detonating charges may be used to generate
pyroshocks for test purposes.An example of a test configuration using a flexible linear
charge is shown in Fig. 28.3. A steel plate is suspended by bungee cords, and 
the test item is mounted on the plate in the same manner as it is in actual usage. Flex-
ible linear charge is attached to appropriate locations on the bottom and the edges.
The charge configuration may be varied according to experience and the desired
effect.14 For example, the charge may be attached to the backside of the plate directly
opposite to the test item. A mass-mockup of the actual test item is used for the trial
and error required to finalize the test configuration. In some cases, the charges may be
attached to a portion of the structure where the test items are installed.Their storage,
handling, and detonating constitute a hazard to laboratory personnel and facilities.
However, such a fixture would normally be rather expensive because the structure
would be damaged or destroyed during each shock test. The shock produced in this
manner may vary greatly from test to test because actual explosives are used. How-
ever, this test configuration has the advantage of reproducing the pyroshock with real-
istic high accelerations and high frequencies. To ensure repeatability, the grooves
generated by the charge into the surfaces of the shock plates should be machined
down to eliminate the porosity which tends to absorb and modify the explosive
impacts. Other disadvantages are that a qualified explosives facility (with its appropri-
ate safety and security procedures) is required. In comparison to mechanical simula-
tion techniques, considerable time is needed to conduct the numerous trial tests
required to experimentally determine the various test parameters.

Scaled Tests. If the quantity of propellant or explosive is sufficiently large and
the influence of the pyrotechnic device is localized, a scaled portion of the structure
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may be used in simulating the effects of the pyroshock as shown in Fig. 28.4 where a
missile section or rocket payload section is shown. This type of test assumes that the
influence of the pyrotechnic event is insignificant to other parts of the structure and
isolated to the section under test. Actual pyrotechnic device firings on spacecraft
equipment and scientific instruments are conducted in the scaled test. Such a test is
usually an intermediate step in the design of the structure. Components in the sub-
assembly may have been qualified with an ordnance device, and the scaled test adds
another dimension of complexity to the qualification of the subassembly and its
individual components.

Full-Scale Tests. In some cases, if the structure is sufficiently complex, a full-
scale test may be warranted. Full-scale tests, which include multiple firings of certain
critical pyrotechnic devices, are conducted to verify the structural integrity and
design functions as well as to qualify items of hardware that have not been previ-
ously qualified. Full-scale tests are conducted by actuation of the flight pyrotechnic
devices, which provide full-scale shock qualification. A full-scale test is usually the
last test in a sequence of increasingly complex tests; the sequence is from ordnance
to scaled tests to full-scale tests. The advantage of a full-scale test is that it is the real
pyroshock event in its most complex form. The main objectives of the full-scale
pyroshock test firings are: (1) to define shock response in the vicinity of potentially
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FIGURE 28.3 Ordnance-generated pyroshock simulator. (Courtesy of
National Technical Systems.)



sensitive equipment so that component test specifications may be derived or verified
and (2) to conduct full-scale qualification and thus verify the design values for
shock.The disadvantage of a full-scale test is that considerable time and expense are
required to obtain all the required hardware.The hardware must then be assembled,
instrumented, and removed for post-test evaluation. Generally, special facilities are
required for the use of explosives.

MECHANICALLY EXCITED MID-FIELD AND FAR-FIELD SIMULATION

Standard Shock Testing Machines. Shock machines such as the drop tables
described in Chap. 27 usually are not suitable for pyroshock simulation.The single-
sided pulses produced by these machines bear little or no resemblance to a pyro-
shock acceleration transient; such pulses produce significantly greater velocity
change than a pyroshock environment.A severe overtest at low frequencies can be
expected if a drop table is used to simulate pyroshock environments. This can
result in failures of structural members that would not have been significantly
stressed by the actual pyroshock. However, in certain cases, drop tables may pro-
duce acceptable pyroshock qualification testing. For example, if a test item has sig-
nificant design margin at low frequencies, then a drop table may be acceptable.
Also, if the lowest natural frequency of the test item is higher than the overtested
low-frequency range, then the low-frequency overtest may be irrelevant since the
effect on the test item is dominated by the peak g’s of the acceleration time history.
In these cases there is strong motivation to use drop tables due to their common
availability and low test cost. If a drop table is selected as a means of conducting a
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FIGURE 28.4 Scaled tests using representative structure. The test vehicle midbody
section is a portion of the full-scale structure where the explosive event is located.Two
input control stations A and B are used to determine that the test was properly con-
ducted. Response measurements are made at test specimens A and B. (Courtesy of
Wyle Laboratories.)



pyroshock qualification test, the test item must be subjected to a shock in both pos-
itive and negative directions for each axis tested, since the drop table produces only
a single-sided pulse. MIL-STD-810 and the Pyroshock Testing Techniques Recom-
mended Practices have good discussions of pyroshock testing techniques and prac-
tices.15,16

Electrodynamic Shakers. Pyroshock environments can be simulated with an
acceleration transient produced on an electrodynamic shaker (see Chap. 25). In this
method the acceleration transient is synthesized so that its shock response spectrum
closely matches the test requirement. With this method a relatively complex SRS
shape can be matched within close tolerances up to about 3000 Hz. The equipment
limits (maximum acceleration) restrict this method to the simulation of lower-
energy pyroshock environments. However, recent developments show moderate
success to higher frequencies for very small items.17 Even if the desired SRS is pre-
cisely met, an overtest is likely due to the high mechanical impedance of the shaker
relative to the structure to which the test item is attached in a real application.

Resonant Fixtures. This section describes a variety of resonant fixture tech-
niques used to simulate pyroshock environments. All of these methods utilize a fix-
ture (or structure) which is excited into resonance by a mechanical impact from a
projectile, a hammer, or some other device.A test item attached to the fixture is thus
subjected to the resonant response, which simulates the desired pyroshock. There is
no single preferred method since each has its own relative merits. Some of the meth-
ods require extensive trial-and-error iterations in order to obtain the desired test
requirement. However, once the procedures are determined, the results are very
repeatable. Other methods eliminate the need for significant trial and error but are
usually limited to pyroshock environments which exhibit the typical mid-field and
far-field character as explained in Fig. 28.2.

Full-Scale Tests. Some mechanically excited simulation techniques involve
the use of an actual or closely simulated structure18,19 (e.g., an entire missile pay-
load section). The pyrotechnic devices (e.g., explosive bolt cutters) normally
located on this structure would then be replaced with hardware that allow a con-
trolled impact at this same location. Since a closely simulated structure is used, it is
anticipated that the impact will cause the modes of vibration of the structure to be
excited in a manner similar to the actual pyrotechnic source. In principle, test
amplitudes can be adjusted by changing the impact speed or mass. This method is
relatively expensive due to the cost of the test structure and because significant
trial and error is required to obtain the desired test specification. Since this method
applies to a specific application, it is not suited as a general-purpose pyroshock
simulation technique.

In a variation of the above method20 the pyrotechnic source and a portion of the
adjacent structure are replaced by a “resonant plate” designed so that its lowest-
resonance frequency corresponds to the dominant frequency produced by the
pyrotechnic device and its associated structure. The resonant plate is then attached
to the test structure in a manner which simulates the mechanical linkage of the
pyrotechnic source, as shown in Fig. 28.5. When this plate is subjected to a mechani-
cal impact, its response will provide the desired excitation of the test structure.A res-
onant fixture has successfully simulated component shock response spectra for
frequencies up to 4000 Hz on a full-scale structure weighing 400 lb.21

General-Purpose Resonant Fixtures. Instead of developing application-
specific pyroshock methods as described above, it may be desirable to implement a
more general-purpose test method which can be used for a variety of test items
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and/or test specifications. This can be accomplished by using a simple resonant fix-
ture (usually a plate) instead of the complex structures described above. When such
a fixture is excited into resonance by a mechanical impact, its response can provide
an adequate pyroshock simulation to an attached test item. Excitation of the fixture
can be achieved as the result of the impact of a projectile, pendulum hammer, pneu-
matic piston, or the like on the fixture.The response of the fixture is dependent on a
large number of parameters including: (1) plate geometry and material, (2) impact
mass or speed, (3) impact duration, which is controlled with various impact materi-
als (e.g., metals, felt, elastomers, wood, etc.), (4) impact location, (5) test item loca-
tion, and (6) various clamps and plate suspension mechanisms. In theory these
parameters could be varied with the aid of an analytical model, but they are usually
evaluated experimentally. A significant effort is therefore required to obtain each
pyroshock simulation.

Mechanical Impulse Pyroshock (MIPS) Simulator. The MIPS simulator22,23 is a
well-developed embodiment of the trial-and-error resonant fixture methods. It is uni-
versally referred to by its acronym and is widely used in the aerospace industry. Its
design facilitates the easy variation of many of the parameters described above. The
MIPS simulator configuration shown in Fig. 28.6 consists of an aluminum mounting
plate which rests on a thick foam pad. The shock is generated by a pneumatic actua-
tor which is rigidly attached to a movable bridge, facilitating various impact loca-
tions. The impactor head is interchangeable so that different materials (lead,
aluminum, steel, etc.) may be used to achieve variation of input duration.Although a
triaxial acceleration measurement is usually made at the control point near the test
item, it is unlikely that the test requirement will be met simultaneously in all axes.
Separate test configurations must normally be developed for each test axis. Once the
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FIGURE 28.5 Full-scale pyroshock simulation with resonant fixture. Measurements at
component locations confirm simulation success.



test configuration and procedures are determined, the results are very repeatable.
The configuration for a new test specification can be obtained more quickly if records
of previous setups and results are maintained for use as a starting point for the new
specification. Reference 19 provides some general guidelines for parameter varia-
tion, as well as results obtained from several different test configurations.

Tuned Resonant Fixtures with Fixed Knee Frequency. It is possible to greatly
reduce the amount of trial and error required by the MIPS simulator and other res-
onant fixture test methods. In order to do this, a simple resonant fixture is designed
so that its dominant response frequency corresponds to the dominant frequency in
the shock response spectrum test requirement. These tuned resonant fixtures are
primarily limited to pyroshock environments which exhibit more or less typical
characteristics with knee frequencies up to 3 kHz (or higher for small test items).
The basic design principle is to match the dominant fixture response frequency
(usually the first mode) to the SRS knee frequency.When this fixture is excited into
resonance, it will “automatically” have the desired SRS knee frequency and the typ-
ical 9-dB/octave initial slope. This concept was originally developed using a plate
excited into its first bending mode and a bar excited into its first longitudinal
mode.24 The methods described in the following sections require relatively thick
and massive resonant fixtures compared to the structures to which the test item
might be attached in actual use. Because of this, the motion imparted to the test
item attached to a resonant fixture is approximately in phase from point-to-point
across the mounting surface. Whereas, the actual pyroshock motion may not be in
phase if the test item is mounted to a thin structure in actual use. The in-phase
motion of resonant fixtures yields some degree of conservatism when selecting
these methods for qualification testing. One significant advantage of using a thick
resonant fixture is that its response is not greatly influenced by the attached test
item. This allows the same test apparatus to be used for a variety of different test
items.
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FIGURE 28.6 MIPS simulator. The mounting plate is excited into
resonance by an impact from the actuator. The plate response simu-
lates far-field pyroshock for the attached test item. (Courtesy of
Martin Marrietta Astrospace.)



Each of the tuned resonant fixture test methods described below produces a
simulated pyroshock environment with the same basic characteristics. These simi-
larities are illustrated in Fig. 28.7, which shows a typical acceleration record and
SRS from the tunable resonant beam apparatus described later.The other methods
produce pyroshock environments with initial SRS slopes that are slightly less than
9 dB/octave due to a small velocity change inherent with these other methods. The
SRS shown in Fig. 28.7 exhibits the desired typical shape, and the energy is con-
centrated at the knee frequency.The absence of significant frequency content above
the knee frequency may cause the SRS to be too low at these frequencies. In prac-
tice, the attached test item adds some frequency content above the knee frequency,
which tends to increase the SRS. These test methods allow good control and
repeatability of the SRS, especially below the knee frequency.

When using tuned resonant fixtures, the test item is usually attached to an inter-
mediate fixture such as a rectangular aluminum plate. This adapter fixture must be
small enough and stiff enough so that the input from the resonant fixture is not sig-
nificantly altered. Since the resonant fixture is designed to produce the pyroshock
simulation in only one direction, the adapter fixture should be designed so that it
may be rigidly attached to the resonant fixture in three orthogonal orientations (e.g.,
flat down and on each of two edges). The acceleration input should be measured
next to the test item on the adapter fixture. It is good practice to measure the accel-
eration in all three axes because it is possible (although infrequently) to simulta-
neously attain the desired test specification in more than one axis.

A number of different techniques are used to provide the mechanical impact
required by the tuned resonant fixture methods described below. Pendulum hammers
have been used, as well as pneumatically driven pistons or air guns.The method which
is selected must provide repeatability and control of the impact force, in both mag-
nitude and duration.The magnitude of the impact force controls the overall test ampli-
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FIGURE 28.7 Typical shock response spectrum and acceleration time his-
tory from a tuned or tunable resonant fixture test. The shock response spec-
trum is calculated from the inset acceleration time history using a 5 percent
damping ratio.



tude, and the impact duration must be appropriate to excite the desired mode of the
tuned resonant fixture. In general, the impact duration should be about one-half the
period of the desired mode.The magnitude of the impact force is usually controlled by
the impact speed, and the duration is controlled by placing various materials (e.g., felt,
cardboard, rubber, etc.) on the impact surfaces.

Resonant Plate (Bending Response). The resonant plate test method25,26 is illus-
trated in Fig. 28.8, which shows a plate (usually a square or rectangular aluminum
plate) freely suspended by some means such as bungee cords or ropes. A test item is
attached near the center of one face of the plate, which is excited into resonance by a
mechanical impact directed perpendicular to the center of the opposite face.The res-
onant plate is designed so that its first bending mode corresponds to the knee fre-
quency of the test requirement.The first bending mode is approximately the same as
for a uniform beam with the same cross section and length. The required dimensions
for a square aluminum resonant plate for a particular test can be calculated by

= (28.3)

where t = thickness of the plate
L = length dimension for square plate
f = frequency of first bending mode of plate (equal to 

desired knee frequency)

The plate must be large enough so that the test item does not extend beyond the
middle third of the plate. This ensures that no part of the test item is attached at a
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FIGURE 28.8 Resonant plate test method. The first bending
mode is excited by an impact as shown. The plate’s response simu-
lates mid-field and far-field pyroshock for the attached test item.
The plate is sized so that its first bending mode frequency corre-
sponds to the desired knee frequency of the test.



nodal line of the first bending mode. Usually, the resonant fixture with an attached
test item is insufficiently damped to yield the short-duration transient (5 to 20 mil-
liseconds) required for pyroshock simulation. Damping may be increased by adding
various attachments to the edge of the plate, such as C-clamps or metal bars. These
attachments may also lower the resonance frequency and must be accounted for
when designing a resonant plate.

Resonant Bar (Longitudinal Response). The resonant bar concept25,26 is illus-
trated in Fig. 28.9, which shows a freely suspended bar (typically aluminum or steel)
with rectangular cross section. A test item is attached at one end of the bar, which is
excited into resonance by a mechanical impact at the opposite end.The basic princi-
ple of the resonant bar test is exactly the same as for a resonant plate test except that
the first longitudinal mode of vibration of the bar is utilized.The bar length required
for a particular test can be calculated by

l = (28.4)

where l = length of the bar
c = wave speed in bar
f = first longitudinal mode of the bar (equal to desired knee frequency)

The other dimensions of the bar can be sized to accommodate the test item, but they
must be significantly less than the bar length.As with the resonant plate method, the
response of the bar can be damped with clamps if needed. These are most effective
if attached at the impact end.

c
�
2f
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FIGURE 28.9 Resonant bar test method. The first longitudinal bar mode is excited by
an impact as shown. The bar is sized so that its first normal mode frequency corresponds
to the desired knee frequency in the test.

Tunable Resonant Fixtures with Adjustable Knee Frequency. The tuned res-
onant fixture methods described above can produce typical pyroshock simulations
with knee frequencies that are fixed for each resonant fixture. A separate fixture
must be designed and fabricated for each test requirement with a different knee fre-
quency, so that a potentially large inventory of resonant fixtures would be necessary
to cover a variety of test requirements. For this reason, tunable resonant fixture test
methods were developed which allow an adjustable knee frequency for a single test
apparatus.

Tunable Resonant Bars. The frequency of the first longitudinal mode of vibra-
tion of the resonant bar shown in Fig. 28.9 can be tuned by attaching weights at
selected locations along the length of the bar.25 If weights are attached at each of the
two nodes for the second mode of vibration of the bar, then the bar’s response will be
dominated by the second mode (2f). Similarly, if weights are attached at each of the



three nodes for the third mode of the bar, then the third mode (3f ) will dominate. It
is difficult to produce this effect for the fourth and higher modes of the bar since the
distance between nodes is too small to accommodate the weights. This technique
allows a single bar to be used to produce pyroshock simulations with one of three dif-
ferent knee frequencies. For example a 100-in. (2.54-m) aluminum bar can be used for
pyroshock simulations requiring a 1000-, or 2000-, or 3000-Hz knee frequency. If the
weights are attached slightly away from the node locations, the shock response spec-
trum tends to be “flatter” at frequencies above the knee frequency.27

Another tunable resonant bar method28 can be achieved by attaching weights
only to the impact end of the bar shown in Fig. 28.9. This method uses only the first
longitudinal mode, which can be lowered incrementally as more weights are added.
A nearly continuously adjustable knee frequency can thus be attained over a finite
frequency range. The upper limit of the knee frequency is the same as given by Eq.
(28.4) and is achieved with no added weights. In theory, this knee frequency could be
reduced in half if an infinite weight could be added. However, a realizable lower
limit of the knee frequency would be about 25 percent less than the upper limit.

Tunable Resonant Beam. Figure 28.10 illustrates a tunable resonant beam
apparatus28 which will produce typical pyroshock simulations with a knee frequency
that is adjustable over a wide frequency range. In this test method, an aluminum
beam with rectangular cross section is clamped to a massive base as shown. The
clamps are intended to impose nearly fixed-end conditions on the beam. When the
beam is struck with a cylindrical mass fired from the air gun beneath the beam, it will
resonate at its first bending frequency, which is a function of the distance between
the clamps. Ideally, the portion of the beam between the clamps will respond as if it
had perfectly fixed ends and a length equal to the distance between the clamps. For

PYROSHOCK TESTING 28.17

FIGURE 28.10 Tunable resonant beam test method. A beam, clamped near each end to a massive
concrete base, is excited into its first bending mode by an impact produced by the air-gun.



this ideal case, the frequency of the first mode of the beam varies inversely with the
square of the beam length. In practice, the end conditions are not perfectly fixed, and
the frequency of the first mode is somewhat lower than predicted. This method pro-
vides a good general-purpose pyroshock simulator, since the knee frequency is con-
tinuously adjustable over a wide frequency range (e.g., 250 to 7000 Hz) by varying
the beam thickness. This tunability allows small adjustments in the knee frequency
to compensate for the effects of test items of different weights.

MECHANICALLY EXCITED NEAR-FIELD SIMULATION

All test methods described above require that the test item be attached and tested
along three separate axes. Additionally, all methods have some cross-axis response
in addition to the intended in-axis response, so overtesting of the test item occurs.
However, in some cases, all three axes may be tested with one test on a thick reso-
nant fixture. These fixtures must be designed for the specific test requirement and
for small test items. Time history magnitudes of 1000 g to 80,000 g with knee fre-
quencies in excess of 15 kHz have been achieved.29,30
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CHAPTER 29
VIBRATION OF STRUCTURES

INDUCED BY 
GROUND MOTION

William J. Hall

Billie F. Spencer, Jr.

Amr S. Elnashai

INTRODUCTION

This chapter opens with a discussion of examples of typical sources of ground
motion (industrial drop hammers, railroads, automobile traffic, and mine blasting)
that may affect the response performance of buildings and included equipment.
Most of the chapter centers on seismic effects, by virtue of their great importance in
the design and performance of large structural and infrastructure systems whose
damage or failure can impact the safety and lives of people and possibly lead to
major property loss as well. Presented in limited detail, yet supported by ample mod-
ern references, are such matters as seismic motions, characterization of response of
simple single-degree-of-freedom (SDOF) systems through response spectra, devel-
opment of design response spectra, and spectra for simple inelastic systems. There
follows a short discussion of the use of these tools in the design/analysis process and
of some of the more important considerations in the overall design and construction
process. Also included for the first time are short sections on the role of structural
damping systems and isolators and on seismic risk assessment in the design process.
The latter two topics have been developed to the point of being important consider-
ations in seismic design today.

GROUND MOTION

SOURCE OF GROUND MOTION

Ground motion may arise from any number of sources such as earthquake excita-
tion (described in detail in this chapter) and high explosive or nuclear device deto-
nations. In such cases, the source excitation can lead to major vibration of the
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primary structure or facility and its many parts, as well as to transient and permanent
translation (displacement) and rotation of the ground on which the facility is con-
structed. Detonations may result in drag and side-on overpressures, ballistic ejecta,
and thermal and radiation effects.

Other sources of ground excitation, although usually not as strong, can be
equally troublesome. For example, the location of a precision machine shop or chip
manufacturing facility near a railroad or highway or of delicate laboratory appara-
tus in a plant area containing heavy drop-forging machinery or unbalanced rotating
machinery are typical of situations in which ground-transmitted vibrations may
pose serious problems. Another, different class of vibrational problems arises from
excitation of the primary structure by other sources, e.g., wind blowing on a bridge,
earthquake excitation of a building or bridge, or people walking or dancing on a
floor in a building. Vibration of the primary structure in turn can affect secondary
elements such as mounted equipment and people located on a floor (in the case of
buildings) and vehicles or equipment (in the case of bridges).

The variables involved in problems of this type are exceedingly numerous and,
with the exception of earthquakes, few specific well-defined measurements are gen-
erally available to serve as a guide in estimating the ground motions that might be
used as computational guidelines in particular cases.A number of acceleration-versus-
time curves for typical ground motions arising from the operation of machines and
vehicles are shown in Fig. 29.1. Another record arising from a rock quarry blast is
shown in Fig. 29.2. Although the records differ somewhat in their characteristics, all
can be compared directly with similar measurements of earthquakes, and response
computations generally are handled in the same manner.

In most cases, to analyze and evaluate such information one needs to (1) develop
an understanding of the source and nature of the vibration, (2) ascertain the physical
characteristics of the structure or element, (3) develop an approach for modeling and
analysis, (4) carry out the analysis, (5) study the response (with parameter variations if
needed), (6) evaluate the behavior of service and function limit states, and (7) develop,
in light of the results of the analysis, possible courses of corrective action, if required.
Merely changing the mass, stiffness, or damping of the structural system may or may
not lead to acceptable corrective action in the sense of a reduction in deflections or
stresses; careful investigation of the various alternatives is required to change the
response to an acceptable limit.Advice on these matters is contained in Refs. 1–6.

RESPONSE OF SIMPLE STRUCTURES TO GROUND MOTIONS

Four structures of varying size and complexity are shown in Fig. 29.3: (A) a simple,
relatively compact machine anchored to a foundation, (B) a 15-story building, (C) a
40-story building, and (D) an elevated water tank. The dynamic response of each of
the structures shown in Fig. 29.3 can be approximated by representing each as a sim-
ple mechanical oscillator consisting of a single mass supported by a spring and a
damper as shown in Fig. 29.4. The relationship between the undamped angular fre-
quency of vibration ωn = 2πfn, the natural frequency fn , and the period T is defined in
terms of the spring constant k and the mass m:

ωn
2 = (29.1)

fn = = = �� (29.2)
k
�
m

1
�
2π

ωn�
2π

1
�
T

k
�
m
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FIGURE 29.1 Ground-acceleration-vs.-time curves for typical machine and vehicle excitations. (A)
Vertical acceleration measured on a concrete floor on sandy loam soil at a point 6 ft from the base of
a drop hammer. (B) Horizontal acceleration 50 ft from drop hammer. The weight of the drop ham-
merhead was approximately 15,000 lb, and the hammer was mounted on three layers of 12- by 12-in.
oak timbers on a large concrete base. (C) Vertical acceleration 6 ft from a railroad track on the well-
maintained right-of-way of a major railroad during passing of luxury-type passenger cars at a speed
of approximately 20 mph. The accelerometer was bolted to a 2- by 2-in. by 21⁄2-in. steel block which
was firmly anchored to the ground. (D) Horizontal acceleration of the ground at 46 ft from the above
railroad track, with a triple diesel-electric power unit passing at a speed of approximately 20 mph. (E)
Horizontal acceleration of the ground 6 ft from the edge of a relatively smooth highway, with a large
tractor and trailer unit passing on the outside lane at approximately 35 mph with a full load of gravel.1
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FIGURE 29.2 Typical quarry blast data. (A) Time-history of velocity
taken by a velocity transducer and recorder. (B) Corresponding
response spectrum computed from the record in (A) using Duhamel’s
integral.3

FIGURE 29.3 Structures subjected to earth-
quake ground motion. (A) A machine anchored
to a foundation. (B) A 15-story building. (C) A
40-story building. (D) An elevated water tank.

FIGURE 29.4 System definition; the dynamic
response of each of the structures shown in 
Fig. 29.3 can be approximated by this simple
mechanical oscillator.



In general, the effect of the damper is to produce damping of free vibrations or
to reduce the amplitude of forced vibrations. The damping force is assumed to be
equal to a damping coefficient c times the velocity u̇ of the mass relative to the
ground. The value of c at which the motion loses its vibratory character in free
vibration is called the critical damping coefficient; for example, cc = 2mωn . The
amount of damping is most conveniently considered in terms of the fraction of crit-
ical damping, ζ, as defined in Eq. (2.12).

ζ = = (29.3)

For most practical structures ζ is relatively small, in the range of 0.005 to 0.2 (i.e., 0.5
to 20 percent), and does not appreciably affect the natural period or frequency of
vibration (see Chap. 2).

EARTHQUAKE GROUND MOTION

Strong-motion earthquake acceleration records with respect to time have been
obtained for a number of earthquakes. Ground motions from other sources of dis-
turbance, such as quarry blasting and nuclear blasting, also are available and show
many of the same characteristics. As an example of the application of such time-
history records, the recorded accelerogram for the El Centro, California, earthquake
of May 18, 1940, in the north-south component of horizontal motion is shown in Fig.
29.5. On the same figure are shown the integration of the ground acceleration a to

c
�
2mωn

c
�
cc
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FIGURE 29.5 El Centro, California, earthquake of May 18, 1940, north-south component. (A)
Record of the ground acceleration. (B) Variation of ground velocity v with time, obtained by integra-
tion of (A). (C) Variation of ground displacement with time, obtained by integration of (B).



give the variation of ground velocity v with time and the integration of velocity to
give the variation of ground displacement d with time. These integrations normally
require baseline corrections of various sorts, and the magnitude of the maximum
displacement may vary depending on how the corrections are made. The maximum
velocity is relatively insensitive to the corrections, however. For this earthquake,
with the integrations shown in Fig. 29.5, the maximum ground acceleration is 0.32g,
the maximum ground velocity is 13.7 in./sec (35 cm/sec), and the maximum ground
displacement is 8.3 in. (21 cm). These three maximum values are of particular inter-
est because they help to define the response motions of the various structures con-
sidered in Fig. 29.3 most accurately if all three maxima are taken into account.

RESPONSE SPECTRA

ELASTIC SYSTEMS

The response of the simple oscillator shown in Fig. 29.4 to any type of ground motion
can be readily computed as a function of time. A plot of the maximum values of the
response, as a function of frequency or period, is commonly called a response spec-
trum (or shock response spectrum). The response spectrum may be defined as the
graphical relationship of the maximum response of a single-degree-of-freedom lin-
ear system to dynamic motions or forces. This concept of a response spectrum is
widely used in the study of the response of simple oscillators to transient distur-
bances; for a number of examples, see other chapters herein.

A careful study of Fig. 29.4 will reveal that there are nine quantities represented
there: acceleration, velocity, and displacement of the base, mass, and their relative val-
ues denoted by u. Commonly the maxima of interest are the maximum deformation of
the spring, the maximum spring force, the maximum acceleration of the mass (which is
directly related to the spring force when there is no damping), or a quantity having the
dimensions of velocity, which provides a measure of the maximum energy absorbed in
the spring.The details of various forms of response spectra that can be graphically rep-
resented, uses of response spectra, and techniques for computing them are discussed
in detail in Refs. 7–10. A brief treatment of the applications of response spectra fol-
lows. The maximum values of the response are of particular interest. These maxima
can be stated in terms of the maximum strain in the spring um = D, the maximum spring
force, the maximum acceleration A of the mass (which is related to the maximum
spring force directly when there is no damping), or a quantity, having the dimensions
of velocity, which gives a measure of the maximum energy absorbed in the spring.This
quantity, designated the pseudo-velocity V, is defined in such a way that the energy
absorption in the spring is 1⁄2mV 2. The relations among the maximum relative dis-
placement of the spring D, the pseudo-velocity V, and the pseudo-acceleration A,
which is a measure of the force in the spring, are

V = ωD (29.4)

and A = ωV = ω2D (29.5)

The pseudo-velocity V is nearly equal to the maximum relative velocity for sys-
tems with moderate or high frequencies but may differ considerably from the maxi-
mum relative velocity for very low frequency systems. The pseudo-acceleration A
is exactly equal to the maximum acceleration for systems with no damping and is 
not greatly different from the maximum acceleration for systems with moderate
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amounts of damping, over the whole range of frequencies from very low to very high
values.

Typical plots of the response of the system to a base excitation, as a function of
period or natural frequency, are called response spectra (also called shock spectra).
Plots for acceleration and for relative displacement, for a system with a moderate
amount of damping and subjected to an input similar to that of Fig. 29.5, can be
made. This arithmetic plot of maximum response is simple and convenient to use.
Various techniques of computing and plotting spectra may be found in the refer-
ences cited at the end of this chapter, especially in Refs. 7–10.

A somewhat more useful plot, which indicates the values for D,V, and A, is shown
in Fig. 29.6. This plot has the virtue that it also indicates more clearly the extreme or
limits of the various parameters defining the response.All parameters are plotted on
a logarithmic scale. Since the frequency is the reciprocal of the period, the logarith-
mic scale for the period would have exactly the same spacing of the points, or in
effect the scale for the period would be turned end for end. The pseudo-velocity is
plotted on a vertical scale.Then on diagonal scales along an axis that extends upward
from right to left are plotted values of the displacement, and along an axis that
extends upward from left to right the pseudo-acceleration is plotted, in such a way
that any one point defines for a given frequency the displacement D, the pseudo-
velocity V, and the pseudo-acceleration A. Points are indicated in Fig. 29.6 for the
several structures of Fig. 29.3 plotted at their approximate fundamental frequencies.
Many other formats are used in plotting spectra, for example, u, u̇, ω u, or ẍ versus
time. Such examples are shown in Ref. 8c.

In developing spectral relationships, a wide variety of motions have been con-
sidered, ranging from simple pulses of displacement, velocity, or acceleration of
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FIGURE 29.6 Smooth response spectrum for typical earthquake.



the ground, through more complex motions such as those arising from nuclear-
blast detonations, and for a variety of earthquakes as taken from available strong-
motion records. Response spectra for the El Centro earthquake are shown in Fig.
29.7. The spectrum for small amounts of damping is much more jagged than indi-
cated by Fig. 29.6, but for the higher amounts of damping the response curves are
relatively smooth. The scales are chosen in this instance to represent the amplifi-
cations of the response relative to the ground-motion values of displacement,
velocity, or acceleration.

The spectra shown in Fig. 29.7 are typical of response spectra for nearly all types
of ground motion. On the extreme left, corresponding to very low frequency sys-
tems, the response for all degrees of damping approaches an asymptote correspon-
ding to the value of the maximum ground displacement. A low-frequency system
corresponds to one having a very heavy mass and a very light spring. When the
ground moves relatively rapidly, the mass does not have time to move, and therefore
the maximum strain in the spring is precisely equal to the maximum displacement of
the ground. For a very high frequency system, the spring is relatively stiff and the
mass very light.Therefore, when the ground moves, the stiff spring forces the mass to
move in the same way the ground moves, and the mass therefore must have the same
acceleration as the ground at every instant. Hence, the force in the spring is that
required to move the mass with the same acceleration as the ground, and the maxi-
mum acceleration of the mass is precisely equal to the maximum acceleration of the
ground. This is shown by the fact that all the lines on the extreme right-hand side of
the figure asymptotically approach the maximum ground-acceleration line.

For intermediate-frequency systems, there is an amplification of the motion. In
general, the amplification factor for displacement is less than that for velocity,
which in turn is less than that for acceleration. Peak amplification factors for the
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FIGURE 29.7 Response spectra for elastic systems subjected to the El Centro earthquake for var-
ious values of fraction of critical damping ζ.



undamped system (ζ = 0) in Fig. 29.7 are on the order of about 3.5 for displacement,
4.2 for velocity, and 9.5 for acceleration.

The results of similar calculations for other ground motions are quite consistent
with those in Fig. 29.7, even for simple motions. The general nature of the response
spectrum shown in Fig. 29.8 consists of a central region of amplified response and
two limiting regions of response in which for low-frequency systems the response
displacement is equal to the maximum ground displacement, and for high-frequency
systems the response acceleration is equal to the maximum ground acceleration.
Values of the amplification factor reasonable for use in design are presented in the
next sections.
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FIGURE 29.8 Typical tripartite logarithmic plot
of response-spectrum bounds compared with
maximum ground motion.

DESIGN RESPONSE SPECTRA

A response spectrum developed to give design coefficients is called a design
response spectrum or a design spectrum. As an example of its use in seismic design,
for any given site, estimates are made of the maximum ground acceleration, maxi-
mum ground velocity, and maximum ground displacement. The lines representing
these values can be drawn on the tripartite logarithmic chart of which Fig. 29.9 is
an example. The heavy lines showing the ground-motion maxima in Fig. 29.9 are
drawn for a maximum ground acceleration a of 1.0g, a velocity v of 48 in./sec (122
cm/sec), and a displacement d of 36 in. (91.5 cm). These data represent motions
more intense than those generally considered for any postulated design earth-
quake hazard. They are, however, approximately in correct proportion for a num-
ber of areas of the world, where earthquakes occur on either firm ground, soft
rock, or competent sediments of various kinds. For relatively soft sediments, the
velocities and displacements might require increases above the values correspon-
ding to the given acceleration as scaled from Fig. 29.9, and for competent rock, the
velocity and displacement values would be expected to be somewhat less. More
detail can be found in Refs. 8a and c. It is not likely that maximum ground veloci-
ties in excess of 4 to 5 ft/sec (1.2 to 1.5 m/sec) are obtainable under any circum-
stances.

On the basis of studies of horizontal and vertical directions of excitation for var-
ious values of damping,7,8a representative amplification factors for the 50th and
84.1th percentile levels of horizontal response are presented in Table 29.1. The



84.1th percentile means that one could expect 84.1 percent of the values to fall at or
below that particular amplification. With these amplification factors and noting
points B and A to fall at about 8 and 33 Hz, the spectra may be constructed as shown
in Fig. 29.9 by multiplying the ground maxima values of acceleration, velocity, and
displacement by the appropriate amplification factors. Further information on, and
other approaches to, construction of design spectra may be found in Refs. 8a and c.

TABLE 29.1 Values of Spectrum Amplification Factors

Damping, percent Amplification factor
of critical

Percentile damping D V A

50th 0.5 2.01 2.59 3.68
2.0 1.63 2.03 2.74
5.0 1.39 1.65 2.12

10.0 1.20 1.37 1.64
84.1th 0.5 3.04 3.84 5.10

2.0 2.42 2.92 3.66
5.0 2.01 2.30 2.71

10.0 1.69 1.84 1.99
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FIGURE 29.9 Basic design spectrum normalized to 1.0g for a value of damping
equal to 2 percent of critical, 84.1th percentile level. The spectrum bound values
are obtained by multiplying the appropriate ground-motion maxima by the corre-
sponding amplification value of Table 29.1.



RESPONSE SPECTRA FOR INELASTIC SYSTEMS

It is convenient to consider an elastoplastic resistance-displacement relation be-
cause one can draw response spectra for such a relation in generally the same way
as the spectra were drawn for elastic conditions. A simple resistance-displacement
relationship for a spring is shown by the light line in Fig. 29.10A, where the yield
point is indicated, with a curved relationship showing a rise to a maximum resis-
tance and then a decay to a point of maximum useful limit or failure at a displace-
ment um; an equivalent elastoplastic resistance curve is shown by the heavy line. A
similar elastoplastic resistance function, more indicative of seismic response, is
shown in Fig. 29.10B. The ductility factor μ is defined as the ratio between the max-
imum permissible or useful displacement to the yield displacement for the effective
curve in both cases.
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FIGURE 29.10 (A) Monotonic resistance-displacement relationships for a spring, shown
by the light line; an equivalent elastoplastic resistance curve, shown by the heavy line. (B) A
similar elastoplastic resistance function, more indicative of seismic response.

The ductility factors for various types of construction depend on the use of the
building, the hazard involved in its failure (assumed acceptable risk discussed later),
the material used, the framing or layout of the structure, and above all on the
method of construction and the details of fabrication of joints and connections. A
discussion of these topics is given in Refs. 7, 8, 10, and 11. Figure 29.11 shows accel-
eration spectra for elastoplastic systems having 2 percent of critical damping that
were subjected to the El Centro, 1940, earthquake. Here the symbol Dy represents
the elastic component of the response displacement, but it is not the total displace-
ment. Hence, the curves also give the elastic component of maximum displacement
as well as the maximum acceleration A, but they do not give the proper value of
maximum pseudo-velocity. This is designated by the use of the V′ for the pseudo-
velocity drawn in the figure. The figure is drawn for ductility factors ranging from 1
to 10. A response spectrum for total displacement also can be drawn for the same
conditions as for Fig. 29.11. It is obtained by multiplying each curve’s ordinates by
the value of ductility factor μ shown on that curve.



What is observed, as would be expected, is that with increasing energy absorption
the controlling spectral values decrease as compared to the elastic spectrum. Guide-
lines for constructing a modified spectrum to account for inelastic action is an
approximation at best; for approximate civilian structural analysis applications (as
opposed to military applications) the ductility value should be 3 or less, and nor-
mally more like 1.3 to 1.5. (See Refs. 7 and 8a). This observation means that the
deformation is relatively small. One last word of caution in the use of such modified
spectra is that for it to be representative of structural behavior, the controlling defor-
mation of the element or system must actually be near in value to the ductility value
assumed; thus, iterative analysis is normally required.

MULTIPLE-DEGREE-OF-FREEDOM SYSTEMS

USE OF RESPONSE SPECTRA

A multiple-degree-of-freedom (MDOF) system has as many modes of vibration as
the number of degrees of freedom. For example, for the shear beam shown in Fig.
29.12A the fundamental mode of lateral oscillation is shown in (B), the second mode
in (C), and the third mode in (D). The number of modes in this case is 5. In a system
that has independent (uncoupled) modes (this condition is often satisfied for build-
ings) each mode responds to the base motion as an independent single-degree-of-
freedom system.Thus, the modal responses are nearly independent functions of time.
However, the maxima do not necessarily occur at the same time.

For MDOF systems, the concept of the response spectrum can also be used in most
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FIGURE 29.11 Deformation spectra for elastoplastic systems with 2 percent of critical damping
that were subjected to the El Centro earthquake.



cases, although the use of the inelastic re-
sponse spectrum is only approximately
valid as a design procedure.10,11 For a sys-
tem with a number of masses at nodes in
a flexible framework, the equation of
motion can be written in matrix form as

Mü + Cu̇ + Ku = −M(ÿ){1} (29.6)

in which the last symbol on the right rep-
resents a unit column vector. The mass
matrix M is usually diagonal, but in all
cases both M and the stiffness matrix 
K are symmetrical. When the damping
matrix C satisfies certain conditions, the
simplest of which is when it is a linear

combination of M and K, then the system has normal modes of vibration, with
modal displacement vectors un. Analysis techniques for handling MDOF systems
are described in Refs. 8 and 12.

DESIGN ISSUES

Before beginning a short overview of design, analysis, and construction, where
ground motion events and other natural hazard excitation may occur, it is necessary
to point out the two overriding caveats for such processes—namely, that design and
construction of infrastructure of any kind (buildings, bridges, power plants, pipelines,
etc.) must be directed (1) to protection of human life from injury or death and (2) to
minimize the likelihood of damage or loss of the principal structure, and to minimize
damage to contents, hopefully to the extent of maintaining functionality. For a sam-
pling of important publications pertaining to seismic analysis, design, and related
important construction issues, see Refs. 8, 9, and 11–24.

GRAVITY (NORMAL) DESIGN AND CONSTRUCTION

The normal design process for structures of all kinds begins with general planning
and the development of specific plans, while determining that all local and state per-
mits (including environmental) are identified and obtainable.At the same time, land
is identified/procured and studied for foundation suitability, drainage, and access, as
well as availability of utilities. Even at this early stage, a host of natural and man-
made loadings must normally receive at least initial study, including various gravity
loadings and earthquake, wind, snow, flood, ice, and rain loadings, as well as any pos-
sible imposed deformations. In special cases in today’s world, accidental and man-
made blast and shock loadings require consideration. Provisions in design and
construction for many of these effects often serve as dual-purpose strengthening and
quite often can be undertaken at this stage in an economical manner.

In earthquake-prone regions additional early studies normally focus as well on
evaluating the possibility of landslides or ground instability that could affect the per-
formance of the physical infrastructure, coupled with studies of transportation access
in times of earthquake or other hazard occurrence—for example, tornados or hurri-
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FIGURE 29.12 Modes of vibration of shear
beam.The first three (1, 2, 3) relative mode shapes
are shown by (B), (C), and (D), respectively, for
lateral vibration.



canes. At this point, preliminary design (approximate proportioning of members)
proceeds for the proposed building, bridge, and so on. Preliminary proportioning is
required as a starting point for subsequent analyses under various combinations of
dead and live loadings.

One design item of major importance is that of identifying “load paths” for han-
dling the gravity and live loads from floors down to the foundation, considering
carefully the adequacy for carrying the variable loads that might be placed here and
there within the structure, much less externally (ice and snow). Almost of equal
importance is the matter of evaluating redundancy, to ensure that damage or failure
of key members or connections does not lead to total collapse. Normally, many
analysis runs are made in order to investigate the adequacy of the structure to han-
dle the anticipated variability in loads, their possible placement, and even imposed
deformations, as, for example, from foundation movements.

SEISMIC DESIGN

If seismic issues are to be addressed, then the design effort also entails a series of
additional steps. Foremost is the matter of load path again, to be sure that in the
event of an earthquake the lateral (and occasionally vertical and torsional) dynamic
loadings and deformations can be accommodated properly to ground without sig-
nificant distress. Depending upon the form and framework chosen, the seismic
analyses can range from the equivalent lateral load procedure in the simplest case, as
presented in many building and bridge codes and standards, on up through use of
modal analysis, or finite element analyses of many types, with design response spec-
trum or time-history input as deemed appropriate.

In a short chapter such as this, space precludes even presenting a simple example
of the many factors involved in a comprehensive design. For such examples, readers
are referred to texts, manuals, and trade and technical journal articles. However, to
provide some idea of the complexity associated with actual structural design, fol-
lowing are some titles of only a few of the normally listed seismic code and standards
provisions:

Materials and Properties (Steel, Reinforced Concrete, Post-tensioned Concrete,
Masonry, Wood)
Loads and Combination of Loads
Seismic Ground Motion Values and Seismic Input (Time-History, Spectral, etc.)
Importance Factor, Occupancy Category, Seismic Design Categories
Structural System Selection (Including Diaphragm Considerations)
Analysis Procedures (Equivalent Lateral Force Procedure, Modal Analysis, etc.)
Drift Limits and Fixed Deformations
Foundation Design (Including Piling)
Seismic Design for Nonstructural Components
Connections Between Girders/Beams and Columns
Base Isolation and Special Damping Systems

The foregoing is but a small sample of the issues to be addressed with respect to
seismic design of a building or other specific piece of infrastructure. In many cases,
the major codes, standards, and guidelines provide specific recommendations and
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formulae without much technical background (even in the commentaries) from
which to draw judgments about source and adequacy. Many procedures are over-
whelming in detail; in order to have some basis for judgment, it is imperative that
designers/analysts know something about the background of the provisions. Only in
this way can analysts judge the adequacy and sufficiency of the code and standard
provisions.

Prudent professional practice, as well as applicable laws, require that codes, stan-
dards, and guidelines be followed. However, with increasing knowledge about mate-
rials, member connections, stability, and the like, such referenced prescriptive details
may not be totally sufficient.Today’s structural designers need to have a clear under-
standing of the likely behavior of the structure under design for many types of com-
plex loadings and related situations—some of a static nature, others dynamic in
nature. To be able to properly assess such matters, it behooves designers to keep up
(through workshops and reading of texts and literature) as much as possible, so as to
develop a basis for judgment. By way of example, in recent earthquakes throughout
the world, connection performance has been identified as a major factor to be con-
sidered in structural design, and immense research has been/is under way on that
topic for many types of construction materials. Similarly, attention to such matters as
corrosion, aging, and many other items that can be classified as essential to structural
health is needed. At present, there is some degree of research related to continuous
structural health monitoring.

Included for the first time in this chapter are short sections on energy dissipative
devices and some observations on an increasingly important related subject, namely,
seismic risk assessment. In advanced modern seismic design, these two topics have
been developed to the point of being important considerations.

EQUIPMENT AND LIFELINES

No introduction to earthquake engineering would be complete without mention of
the importance of adequate design of equipment in buildings and essential building
services, including, for example, communications, water, sewage and transportation
systems, gas and liquid fuel pipelines, and other critical facilities. These important
elements of constructed facilities, as well as sources of energy, have received major
design attention in recent years as the importance of maintaining their integrity has
become increasingly apparent.

It has always been obvious that the seismic design of equipment was important,
but the focus on nuclear power has pushed this technology to the forefront. Many
standards and documents are devoted to the design of such equipment.

ENERGY DISSIPATION DEVICES

(Energy dissipation devices are often denoted as damping systems). Conventionally,
structures have been designed to resist natural hazards through a combination of
strength, deformability, and energy absorption. These structures may undergo
responses well beyond the elastic limit—for example, in a severe earthquake. They
may remain intact only due to their ability to deform inelastically, as this deforma-
tion results in increased flexibility and energy dissipation. However, this deforma-
tion also results in local damage to the structure, as the structure itself must absorb
much of the earthquake input energy.
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As an alternative, a number of innovative protective systems have been proposed
to enhance structural functionality and safety against natural and man-made haz-
ards. These systems work by absorbing or reflecting a portion of the input energy
that would otherwise be transmitted to the structure itself. Consider the following
energy conservation relationship as an illustration of this approach:

E = Ek+ Es+ Eh+ Ed

where E = total input energy from environmental forces
Ek = absolute kinetic energy
Es = recoverable elastic strain energy
Eh = irrecoverable energy dissipated by the structural system 

through inelastic or other inherent forms of damping
Ed = energy dissipated by structural protective systems

Thus, the demand on energy dissipation through inelastic deformation can be re-
duced by using structural protective systems.

By and large, protective systems can be grouped into three broad categories: (1)
base isolation, (2) passive energy dissipation, and (3) active control. Of the three,
base isolation can now be considered a more mature technology with wider applica-
tions as compared with the other two.25

Base isolation systems introduce flexibility and energy absorption capabilities,
thereby reducing the level of energy which can be transmitted to the structure.26 Typ-
ical seismic isolation devices are placed at the foundation of a structure and include
elastomeric bearings, lead rubber bearings, high damping rubber bearings, and slid-
ing friction pendulum bearings. Numerous seismically isolated structures have been
built in many countries during the last 20 years.

Passive energy dissipation systems encompass a range of materials and devices for
enhancing damping, stiffness, and strength and can be used both for seismic hazard
mitigation and for rehabilitation of aging or deficient structures.8b,27 In general, such
systems are characterized by their ability to enhance energy dissipation in the struc-
tural systems in which they are installed. These devices generally operate on princi-
ples such as frictional sliding, yielding of metals, phase transformation in metals,
deformation of viscoelastic (VE) solids or fluids, and fluid orificing. A large number
of passive control systems or passive energy dissipation devices have been devel-
oped and installed in structures throughout the world for performance enhance-
ment under wind and earthquake loads. Guidelines for seismic design using passive
energy dissipation systems have been developed.28

Active and semiactive structural control systems are a natural evolution of passive
control technologies. Active control systems are force delivery devices integrated
with real-time processing evaluators/controllers and sensors within/on the structure.
They act simultaneously with the hazardous excitation to provide enhanced struc-
tural behavior for improved service and safety. Semiactive control systems can be
viewed as controllable passive energy dissipaters, offering the adaptability of active
control devices without requiring the associated large power sources. In fact, many
can operate on battery power, which is critical during seismic events when the main
power source to the structure may fail. The development of active and semiactive
control systems has reached the stage of full-scale application for wind and earth-
quake hazard mitigation, most of which are in Japan. In addition, 15 bridge towers
have employed active systems during erection.28

Cautionary Notes. For many of the systems just described, the damping is usually
nonproportional, resulting in a quadratic eigenvalue problem and complex mode
shapes. In other words, studies through analysis tend to be highly complex, and con-
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trol (and feedback) are likewise complex. Additionally, installation of dampers
results in what is termed a “modified structure,” which itself normally requires sig-
nificant analysis to investigate the limits of motion associated with the dampers, and
also that the forces/deformations associated with and arising from the dampers can
be accommodated by the structure itself, much less the damper.

EARTHQUAKE RISK

The Classic Approach. In its simplest form, risk is the product of hazard and vul-
nerability for a unit value. Earthquake risk may therefore be broken down into the
following three main components8e:

Hazard is a description of the severity of the shaking of the ground during earth-
quakes and the consequential ground deformation during and after ground shak-
ing. The ground shaking characterization may be in several forms, some of which
are mentioned in preceding sections of this chapter and further discussed below.
Vulnerability is the sensitivity of a structural system to the hazard. Vulnerability
may also be expressed in many different forms. For example, the design force of a
building or a bridge is a measure of vulnerability. If this design force is exceeded,
the structure is likely to withstand damage, depending on the level of the force
being exceeded.
Inventory is the count and description of the exposed systems and their value.
Building inventory, for example, is required to estimate the risk from an earth-
quake since the data describing an individual building will include its use and
expected occupancy as well as the value of assets which may be stored in it.

The accuracy and reliability, and a known level of uncertainty, of all three compo-
nents are necessary for earthquake risk assessment.

Assessment of earthquake risk may be probabilistic or deterministic.8e In deter-
ministic assessment, the hazard is described by a given earthquake scenario, expressed
as magnitude of an earthquake, its location, and the type of soil under the civil engi-
neering facility that is being assessed. In probabilistic assessment, the hazard is the
consequence of an earthquake of a particular magnitude (size) that has a probabil-
ity of occurring within a given period of time.The consequence of defining the prob-
abilistic earthquake is expressed as a value (e.g., peak ground acceleration, velocity
of displacement; response acceleration, velocity of displacement) or a set of values
with an attached probability of the value or values being exceeded during the life-
time of the civil engineering facility. Both deterministic and probabilistic hazard
characterizations may be expressed for a specific location when the assessment is
structure-specific, or as a regional map when the assessment is for a population of
structures.

The vulnerability of the system may also be expressed deterministically or prob-
abilistically.29 In deterministic assessment, the vulnerability is expressed as a fixed
value of force or displacement beyond which the system will suffer a predetermined
level of damage. For probabilistic assessment, the measure of vulnerability is usually
defined as a probability of reaching or exceeding a damage state, given the hazard
measure. This latter point, with regard to the multiplicity of limit states, leads to the
definition of multiple vulnerability indices, referred to as multiple limit state assess-
ment or performance-based assessment. The usual limit states in earthquake engi-
neering are (1) minor damage, leading to almost immediate occupancy of the
structure, hence, uninterrupted use; (2) medium damage, which enables the structure
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to be repaired and reused within a short period of time, thus minimizing economic
loss; and (3) heavy damage that does not lead to collapse, hence, the life of the occu-
pants is preserved. The three important limit states of minor, medium, and heavy
damage have social and economic implications and are best addressed by control-
ling the three important structural response properties of stiffness, strength and duc-
tility, where ductility is the ability of the structure to deform beyond its elastic limit.
The relationship between earthquake scenarios, limit states, and socioeconomic con-
sequences, in most general terms, is summarized in Table 29.2.

TABLE 29.2 Relationship Between Hazard and Vulnerability

Return Earthquake Structural Engineering Socioeconomic
period magnitude characteristics limit state limit state

~ 75–200 years ~ 4.5–5.5 Stiffness Minor damage Continued operation
~ 400–500 years ~ 5.5–6.5 Strength Medium damage Limited economic loss
~ 2000–2500 years ~ 6.5–7.5 Ductility Extensive damage Life loss prevention

On Modeling. Among many concerns, caution should be exercised in selecting
the hazard since single values, such as peak ground parameters, may not be adequate
for a particular structural system because the system as a whole will not have been
sufficiently tested.Where actual earthquake signatures are used in the assessment, a
minimum number of about 5 is necessary, and their spectra should encompass the
range of response periods of the structures being assessed. Care should also be exer-
cised in developing a model of the structure for vulnerability determination such
that its mass, stiffness, strength, and ductility are all accurately represented, includ-
ing even properties of vulnerable components such as infills and fixtures. In short,
risk analysis is a complex subject to be approached with great care.

A Second General and Simple Approach. Another quite different, yet simple,
approach to estimating acceptable risk, as well as a decision basis pattern, is presented
in a paper by W. J. Hall and J. R. Wiggins.30 This short paper focuses, as an example, on
some aspects of risk assessment commonly employed for building complexes and uses
for the illustrated case, with discussion, specific elements: (1) the problem, (2) the iden-
tification, (3) the observations, (4) the building codes, (5) the process, (6) the definition,
and (7) the decision. The processes presented here may be helpful to individuals
attempting to grasp the elements of the plethora of complex issues usually encountered
in developing a measure of risk, whether by rigorous analysis or simplistic reasoning.

In summary, risk assessment typically turns out to be a complex task, and ana-
lysts, over and above the various theories, must keep in mind that a meaningful out-
come needs reasonable hazard and performance elements to be identifiable, which
in turn leads to a result that executives can understand and use as a basis to make
decisions.The ability to identify and explain the bounding of uncertainty elements in
an analysis is of paramount importance.
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CHAPTER 30
VIBRATION OF 

STRUCTURES INDUCED 
BY FLUID FLOW

Robert D. Blevins

INTRODUCTION

A surrounding fluid can significantly alter a structure’s vibrational characteristics.
Fluid-structure interaction phenomena are classified in Fig. 30.1.A surrounding qui-
escent fluid decreases the natural frequencies and increases damping of a structure.
A dense fluid couples the vibration of an elastic structure to adjacent structures. A
fluid flow can induce vibration. A turbulent fluid flow exerts random pressures on a
structure, and these random pressures induce a random response. The structure can
resonate with periodic components of the wake, which is called vortex-induced
vibration. If the structure is sufficiently flexible, the structural deformations can
change the fluid force. The resultant coupled vibrations can become unstable once
the fluid velocity reaches a critical threshold value.

ADDED MASS AND INERTIAL COUPLING

If a body accelerates, decelerates, or vibrates in a fluid, then fluid is entrained by the
body. This entrapment of fluid, called the added mass or virtual mass effect, occurs
both in viscous and in inviscid (i.e., ideal) fluids. In general, added mass is practically
important only when the fluid density is comparable to the density of the structure
so that the added mass becomes an appreciable fraction of the total mass in motion.
In light gasses such as air (1.2 kg/m3, 0.075 lb/ft3), added mass is ordinarily negligible
except for very light structures, such as airplanes. But submersion in dense liquids,
such as marine pipelines in seawater (1025 kg/m3, 64 lb/ft3), significantly decreases
natural frequency.

Consider a rigid body, shown in Fig. 30.2, that lies in a large quiescent reservoir of
incompressible, inviscid, irrotational fluid. The one-dimensional equation of conser-
vation of mass of an incompressible fluid is ∂u/∂x = 0, where u is velocity in the x
direction; in multiple dimensions ∇·u = 0, where ∇ is the gradient operator and (·) is
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the vector dot product.The vector fluid velocity u is the gradient of a velocity poten-
tial Φ that is a function of the coordinates x,y,z and time t. Conservation of mass
implies that the velocity potential satisfies Laplace’s equation.1,2

u = ∇Φ(x,y,z,t) ∇2Φ = 0 (30.1)

The equation of conservation of momentum in one dimension is ∂p/∂x = −ρ∂u/∂t,
where ρ is fluid density, so ∂(p + ρ∂Φ∂t)/∂x = 0; in multiple dimensions ∇(p + ρ∂Φ/∂t)
= 0, which implies the static fluid pressure p is a function of the time derivative of the
velocity potential.

p = −ρ∂Φ/∂t (30.2)

The body moves with vector velocity U(t).The body surface’s normal outward veloc-
ity equals the adjacent fluid velocity.

U·n = ∂Φ/∂n (30.3)

where n is the unit outward normal to the body surface. These are the governing
equations of a rigid body in an inviscid incompressible fluid.

The added mass vector force F imposed by the surrounding fluid on the body is
the integral of static pressure over the body surface S.

F = n�SpndS = −ρ �SΦ dS (30.4)

where dS is a surface area element. If the
accelerating rigid body has scalar veloc-
ity U(t), in, say, the i-direction, the veloc-
ity potential can be expressed as the
product Φ(x,y,z,t) = φ(x,y,z)U(t) and the
surface boundary condition [Eq. (30.3)]
can be expressed as ni = ∂φ/∂n, where ni

is the component of the unit outward
normal in the direction of U. The added
mass and added mass force on the body
in the direction of U are scalar versions
of the previous equation.1

∂
�
∂t
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FIGURE 30.1 A classification of flow-induced vibration.

FIGURE 30.2 Fluid-filled region. Fluid den-
sity ρ.



ma = ρ�SΦ dS F = −ma (30.5)

Added mass is proportional to fluid density. Added mass force is proportional to
density times body acceleration. There is no added mass fluid force for steady
translation; this is the D’Alembert paradox for an inviscid, irrotational fluid. Fur-
ther, it can also be shown that added mass is proportional to fluid kinetic energy.1

The general added mass matrix [Ma] = [mij] is a 6×6 symmetric matrix whose
entries are added mass for acceleration in each coordinate direction and for rotary
acceleration about these coordinates.

mij = mji = −ρ�Sφj dS for i, j = 1,2,3 (30.6)

The matrix equation of motion for free vibration of a six-degree-of-freedom
spring-supported rigid body, including added mass, is,

[M] − [Ma]Ẍ or ([M] + [Ma])Ẍ + [K] = 0 (30.7)

where [M] is the structural mass matrix, [K] is the structural stiffness matrix, and X
is the body displacement vector. Because added mass acts in phase with acceleration
[Eq. (30.5)], added mass increases the mass of the body and decreases natural fre-
quencies.

There are 21 (9 diagonal plus 12 off-diagonal) independent entries in the symmet-
ric inviscid 6×6 added mass matrix. Off-diagonal terms couple degrees of freedom.
For example, if a body is not symmetric about the x axis, then acceleration in the x
direction generally induces added mass forces in both the x and y directions and
moments. If the body is symmetric about one or more axes, some or all off-diagonal
coupling terms are zero. The 3×3 added mass matrix for a two-dimensional section
has three independent off-diagonal terms. If the section has two axes of symmetry, its
added mass matrix is a diagonal matrix and the natural frequencies in fluid are lower
than those in a vacuum by the factor M1/2/(Ma + M)1/2, where Ma is added mass and M
is structural mass.

In viscous fluid, added mass is proportional to fluid density times a function of
frequency f (Hz), fluid kinematic viscosity ν, amplitude Xo, and diameter 2a. These
dimensional parameters are reformulated into dimensionless amplitude Xo/a, vis-
cosity parameter a2f/ν, and Reynolds number 4π (a2f/ν)(Xo/a). For example, the
added mass of a circular cylinder per unit length and a sphere with radius a in a vis-
cous fluid for small-amplitude oscillations Xo/a<<1, are2

�ρπa2[1 + 2(ν/πfa2)1/2 + ..] cylinder
ma =

(2/3)ρπa3[1 + 4.5(ν/πfa2)1/2 + ..] sphere
(30.8)

These suggest that an inviscid fluid (ν = 0) added mass is applicable to real fluids if
a2f/ν is greater than a few hundred, which is the case for larger structures and higher
velocities. Shed vortices and separation complicate the added mass in viscous fluids
for larger-amplitude oscillations.

Figure 30.3 has added mass of sections and bodies in incompressible inviscid (ν = 0)
fluids. Additional values are given in Refs. 3 and 4. Most of these are calculated from

∂Φi�
∂n

dU
�
dt

∂Φ
�
∂n
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potential flow. For example, the velocity potential for flow with velocity U in the x
direction over a stationary cylinder with radius a is1

Φ(r,θ,t) = U(t)[(r2 + a2)/r]cosθ = U(t)x + U(t)a2x/(x2 + y2) (30.9)

where r is the radial coordinate and θ is the angular coordinate. In rectangular coor-
dinates, x = r cos θ and y = r sin θ. The velocity potential has two terms. The first is a
mean velocity U in the x direction. The second is associated with the cylinder with
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FIGURE 30.3 Added mass for lateral acceleration.3 The acceleration is left to right; b is
the span for two-dimensional sections.



surface r2 = x2 + y2 = a2. Substituting the second term and its normal derivative in the
U direction dφ/dn = dφ/dr = cos θ on the surface into Eq. (30.6) gives the added mass
for an accelerating cylinder.

ma = ρπa2 (30.10)

The added mass of a cylinder is equal to its displaced mass. The added mass of a
sphere is half of its displaced mass.The added mass moment of inertia of a thin rect-
angular plate rotating about its longitudinal axis is one-half the mass moment of
inertia of the swept fluid cylinder.

If two structures are in close proximity, then the added mass will be a function of
the spacing between the structures and
inertial coupling will be introduced
between the bodies. For example, con-
sider a cylindrical rod centered in a fluid-
filled annulus bounded by a cylindrical
cavity, shown in Fig. 30.4. The radius of
the rod is a and the radius of the outer
cylinder is b. The fluid forces exerted on
the rod and outer cylinder because of
their relative acceleration are5

F1 = −mẍ1 + (M1 + m)ẍ2

F2 = (m + M1)ẍ1 − (m + M1 + M2)ẍ2

(30.11)

where x1, x2 = displacement of inner rod and outer cylinder
F1, F2 = force on inner rod and outer cylinder

m = ρπa2(b2 + a2)/(b2 − a2), added mass of inner rod
M1 = ρπa2

M2 = ρπb2

These forces include not only added mass but also inertial coupling between the
motion of the two structures. [These equations also apply for a sphere contained
within a spherical cavity but here m = (M1/2)(b3 − 2a3)/(b3 − a3), M1 = 4⁄3ρπa3, and M2 =
4⁄3ρπb3.] Coupling is introduced between the cylinder and the rod through the fluid
annulus. The coupling increases with the density of the fluid and decreases with
increasing gap. If the cylinder and the rod are elastic, motion of either structure
tends to set both structures into motion.

For example, consider an array of heat exchanger tubes contained within a shell.
Water fills the shell and surrounds the tubes. If the tubes are closely spaced, then
motion of one tube sets adjacent tubes and the shell into motion. Fluid-coupled
modes of vibration will result in the tubes and the shell moving in fixed modal pat-
terns. In Refs. 6 and 7, analysis is given for inertial coupling of a cylinder contained
eccentrically within a cylindrical cavity, rows of cylinders, and arrays of cylinders.
Concentric cylindrical shells coupled by a fluid annulus are important in the design
of nuclear reactor containment vessels.Approximate solutions are required for both
the vessels and the fluid. Reviews of the analysis of fluid coupled concentric vessels
are given in Refs. 8 and 9.

Finite element numerical solutions, developed for an irrotational fluid, have been
incorporated in the NASTRAN and other computer programs to permit solution
for added mass and inertial coupling. These programs solve the fluid and structural
problems and then couple the results through interaction forces10 (see Chap. 23).
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WAVE-INDUCED VIBRATION OF STRUCTURES

Waves induce vibration of structures, such as marine pipelines, oil terminals, tanks,
and ships, by placing oscillatory pressure on the surface of the structure.These forces
are often well-represented by the inviscid flow solution for many large structures
such as ships and oil storage tanks. For most smaller structures, viscous effects influ-
ence the fluid force and the fluid forces are determined experimentally.

Consider an ocean wave approaching the vertical cylindrical structure as shown
in Fig. 30.5. The wave is propagating in the x direction. Using small-amplitude (lin-
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FIGURE 30.5 A circular cylindrical structure exposed to
ocean waves.

ear) inviscid wave theory, the wave is characterized by the wave height h (vertical
distance between trough and crest), its angular frequency ω, and the associated
wavelength λ (horizontal distance between crests), and d is the depth of the water.
The wave potential Φ satisfies Laplace’s equation [Eq. (30.1)] and a free-surface
boundary condition.11 The associated horizontal component of wave velocity varies
with depth −z from the free surface and oscillates at frequency ω:

U(t,z) = cos � − ωt	 (30.12)

This component of wave velocity induces substantial fluid forces on structures, such
as pilings and pipelines, which are oriented perpendicular to the direction of wave
propagation.

The forces which the wave exerts on the cylinder in the direction of wave propa-
gation (i.e., in line with U) can be considered the sum of three components: (1) a
buoyancy force associated with the pressure gradient in the laterally accelerating
fluid [Eq. (30.12)], (2) an added mass force associated with fluid entrained during
relative acceleration between the fluid and the cylinder [Eq. (30.6)], and (3) a force
due to fluid dynamic drag associated with the relative velocity between the wave and
the cylinder. The first two force components can be determined from inviscid fluid
analysis as discussed previously.The drag component of force, however, is associated
with fluid viscosity.

Thus, the in-line fluid force per unit length of cylinder due to an unsteady flow is
expressed as the sum of the three fluid force components:

F = ρAU̇ + CI ρA(U̇ − ẍ) + 1⁄2ρ |U − ẋ| (U − ẋ)DCD (30.13)

2πx
�

λ
cosh [2π(z + d)/λ]
��

sinh (2πd/λ)
hω
�
2



where x = lateral position of structure in direction of wave propagation
A = cross-sectional area = 1⁄4πD2 of cylinder having diameter D
CI = added mass coefficient, which has theoretical value of 1.0 for circular

cylinder
CD = drag coefficient

This is the generalized form of the Morison equation, widely used to compute the
wave forces on slender cylindrical ocean structures such as pipelines and piers.

If ẋ and ẍ are set equal to zero in Eq. (30.13), the incline force per unit length on
a stationary cylinder in an oscillating flow is obtained:

F(ẋ = ẍ = 0) = CmρȦU + 1⁄2ρ |U | UDCD (30.14)

Because of the absolute sign in the term |U | U, the force contains not only compo-
nents at the wave frequency but also components associated with the drag at har-
monics of the wave frequency. The resultant time history of in-line force due to a
harmonically oscillating flow has an irregular form that repeats once every wave
period.

If the flow oscillates with zero mean flow, U = U0 cos ωt as in Eq. (30.12), then the
maximum fluid force per unit length on a stationary cylinder is

�ρACmωU0 if <
Fmax =

ρU0
2DCD + if >

(30.15)

If the cylinder is large (such as for a storage tank) with diameter D greater than the
ocean wave height h and if the wavelength of the ocean wave is comparable to 
the diameter, then U0 is small compared to ωD and the maximum force is given 
by the first alternative in Eq. (30.15). The drag force is negligible compared to the
inertial forces for large cylinders. As a result, the ocean wave forces on large cylin-
ders can be calculated using inviscid, i.e., potential flow, methods which are discussed
in Refs. 11 and 12.

For the Reynolds number ranges typical of most offshore structures, measure-
ments show that the inertial coefficient Cm = 1 + CI for cylindrical structures gener-
ally falls in the range between 1.5 and 2.0. Cm = 1.8 is a typical value. Cm decreases for
very large diameter cylinders owing to the tendency of waves to diffract about large
cylinders (Refs. 13 and 14). Similarly, measurements show that the drag coefficient
falls between 0.6 and 1.0 for circular cylinders; CD = 0.8 is a typical value.

Wave forces on elastic ocean structures induce structural motion. Since the wave
force is nonlinear [Eq. (30.13)] and involves structural motion, no exact solution
exists. One approach is to integrate the equations of motion directly by applying Eq.
(29.8) at each spanwise point on a structure and then numerically integrate the time
history of deflection using a predictor-corrector or recursive relationship to account
for the nonlinear term. A simpler approach is to assume that the structural defor-
mation does not influence the fluid force and apply Eq. (30.14) as a static load. This
static approximation is valid as long as the fundamental natural frequency of the
structure is well above the wave frequency and the first three or four harmonics of
the wave frequency. However, many marine structures are not sufficiently stiff to
satisfy this condition.

One generally valid simplification for dynamic analysis of relatively flexible struc-
tures is to consider that the wave velocity is much less than the structural velocity so

CmA
�
CDD2

U0�
ωD

(ρACmU0ω)2

��
2πU0

2DCD

1
�
2

CmA
�
CDD2

U0�
ωD
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that |U −ẋ| � |U |.With this approximation, application of Eq. (29.8) to a single-degree-
of-freedom model for a structure gives the following linear equation of motion:

(m + ρACI)ẍ + (2mωN + 1⁄2ρ |U | DCD)ẋ + kx = ρACmU̇ + 1⁄2ρ |U | UDCD (30.16)

where m = structural mass per unit length
k = stiffness
ζ = structural damping

This equation is solved by expanding both x(t) and U(t) in a Fourier series and
matching the coefficients.

The fluid forces contribute added mass and fluid damping to the left-hand side as
well as forcing terms to the right-hand side. This equation may be simplified further
by retaining only the first (constant) term in the series expansion for |U | in the fluid
damping term so that the equation becomes a classical forced oscillator with con-
stant coefficient.12 For low mean velocity, |U | can be set to zero and the resultant lin-
ear equation has an exact solution.

Flexible structures will resonate with the wave if the structural natural period
equals the wave period or a harmonic of the wave period. Since the wave frequen-
cies of importance are ordinarily less than 0.2 Hz (wave period generally greater
than one cycle per 5 sec), such a resonance occurs only for exceptionally flexible
structures such as deep-water oil production risers and offshore terminals. The
amplitude of structural response at resonance is a balance between the wave force
and the structural stiffness times the damping. Since the wave force diminishes with
increased structural motion [Eq. (30.13)], the resultant displacements are necessar-
ily self-limiting. In other words, the response which would be predicted by applying
Eq. (29.9) dynamically is overly pessimistic because the wave force contributes mass
and damping to the structure as well as excitation as can be seen in Eq. (30.16).

The above discussion considers only fluid forces which act in line with the direc-
tion of wave propagation. These in-line forces produce an in-line response. How-
ever, substantial transverse vibrations also occur for ocean flows around circular
cylinders.These vibrations are associated with periodic vortex shedding, which is dis-
cussed below. The models discussed in the following section for steady flow are
applicable to vortex shedding in oscillatory flows provided that the wave period
exceeds the period of shedding, based on the maximum oscillatory velocity so that it
is possible to fit one or more shedding cycles into the wave cycle.13,14

VORTEX-INDUCED VIBRATION

Many structures of practical importance such as buildings, pipelines, and cables are
not streamlined but rather have abrupt contours that can cause a fluid flow over the
structure to separate from the aft contours of the structure. Such structures are
called bluff bodies. For a bluff body in uniform cross flow, the wake behind the body
is not regular but contains distinct vortices of the pattern shown in Fig. 30.6 at a
Reynolds number Re = UD/v greater than about 50, where D is the width perpen-
dicular to the flow and v is the kinematic viscosity. The vortices are shed alternately
from each side of the body in a regular manner and give rise to an alternating force
on the body. Experimental studies have shown that the frequency, in hertz, of the
alternating lift force is expressed as16, 17

fs = (30.17)
SU
�
D
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The dimensionless constant S called the Strouhal number generally falls in the range
0.25 ≥ S ≥ 0.14 for circular cylinders, square cylinders, and most bluff sections. The
value of S increases slightly as the Reynolds number increases; a value of S = 0.2 is
typical for circular cylinders.

The oscillating lift force imposed on a single circular cylinder of length L and
diameter D, in a uniform cross flow of velocity U, due to vortex shedding is given by

F = 1⁄2ρU2CLDLJ sin (2πfst) (30.18)

where the lift coefficient CL is a function of Reynolds number and cylinder motion.
The experimental measurements of CL show considerable scatter with typical values
ranging from 0.1 to 1.0. The scatter is in part due to the fact that the alternating vor-
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FIGURE 30.6 Regimes of fluid flow across circular cylinders.15



tex forces are not generally correlated on the entire cylinder length L. The spanwise
correlation length lc of vortex shedding over a stationary circular cylinder17 is
approximately three to seven diameters for 103 < Re < 2 × 105. In order to account
for the effect of the spanwise correlation on the net force on the cylinder of length
L, a factor J called the joint acceptance has been introduced on the right-hand side
of Eq. (30.18). Two limiting cases exist for the joint acceptance.

J = �� 	
1/2

if lc << L

1 if fully correlated
(30.19)

Thus, if a cylinder is much longer than three to seven diameters, the lack of spanwise
correlation reduces the net vortex lift force [Eq. (30.18)] on the cylinder.

Cylinder vibration at or near the vortex shedding frequency organizes the wake
and changes the fluid force on the cylinder. Vibration of a cylinder in a fluid flow
can:12, 17, 18

1. Increase the strength of the shed vortices.
2. Increase the spanwise correlation of the vortex shedding.
3. Cause the vortex shedding frequency shift from the natural shedding frequency

[Eq. (30.17)] to the frequency of cylinder oscillation. This is called synchroniza-
tion or lock-in.

4. Increase the mean drag on the cylinder. Mean drag can triple for one diameter
amplitude cylinder vibration.

5. Alter the phase sequence and pattern of vortices in the wake. Figure 30.7 shows
the patterns of vortices in the wake of a transversely vibrating cylinder, where 
fs = natural shedding frequency [Eq. (30.17)], f = forced vibration frequency, and 
Ay = vibration amplitude transverse to flow.

As the flow velocity is increased or decreased so that the shedding frequency fs

approaches the natural frequency fn of an elasticly mounted cylinder so that

fn ≈ fs = so ≈ = ≈ 5 (30.20)

the vortex shedding frequency suddenly locks onto the structure natural frequency.
The resultant vibrations occur at or nearly at the natural frequency of the structure
and vortices in the near wake input energy to the cylinder. Large-amplitude vortex-
induced structural vibration can result.

The vortex-induced vibrations of a spring-mounted cylinder in a water flow are
shown as a function of velocity in Fig. 30.8 for five levels of damping. The horizon-
tal scale gives flow velocity nondimensionalized (i.e., divided by the cylinder diam-
eter D times the cylinder natural frequency f ), both of which are held fixed as
velocity U increases. The lower part of the figure shows the measured response
cylinder single amplitude Ay vibration response as a function of flow velocity.
The maximum cylinder amplitude occurs at the resonance condition U/( fD) � 6.
The shedding frequency increases with velocity as predicted by Eq. (30.17) until it
equals the cylinder natural frequency at U/fD = 5 and large-amplitude cylinder
vibrations begin. The shedding frequency is entrained by the cylinder natural fre-

1
�
S

U
�
fsD

U
�
fnD

SU
�
D

lc�
L
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quency. Entrainment persists until velocity is increased to U/fD = 8, at which point
lock-in is broken and the shedding frequency abruptly returns to its natural value.
In general, the larger the structural response to vortex shedding, the larger the
range of lock-in.

Both the amplitude of the structural response and the velocity range over which
lock-in persists are functions of the dimensionless reduced damping parameter δr:

δr = (30.21)

where m = mass per unit length of cylinder, including added mass
ζ = damping factor for vibration in mode of interest, ordinarily measured

in still fluid
ρ = fluid density

D = cylinder diameter

The lower δr, the greater the amplitude of the structural response and the greater
the range of flow velocities over which lock-in occurs (see Ref. 19 and Fig. 30.8). For
lightly damped structures in dense fluids (such as marine pipelines), δr is on the
order of 1 and lock-in can persist over a 40 percent variation in velocity above and
below that which produces resonance.

Within the synchronization band, substantial resonance vibration often occurs.
Peak-to-peak vibration amplitudes of up to three diameters have been observed in
water flows over cables and tubing. The vibrations are predominantly transverse to

2m(2πζ)
�

ρD2
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FIGURE 30.7 Patterns of vortices shed in the wake of a transversely oscillating cylin-
der in a cross flow.



the flow and are self-limiting.12 Lesser amplitude vibrations have also been observed
in the drag direction at twice the vortex shedding frequency and at subharmonic fre-
quencies of the vortex shedding frequency, i.e., at one-fourth, one-third, or one-half
of the flow velocity required for synchronization,21 fs = fn.

If a uniform elastic cylinder is subjected to a cross flow uniformly over its span,
then the oscillating vortex-induced lift force is given by Eq. (30.18). At lock-in, the
vortex shedding frequency equals the natural frequency of the nth vibration mode 
fs = fn, and the amplitude of the cylinder response is

= (30.22)

where the maximum amplitude vibrations along the span are y(t) = Ay sin (2πfnt).
This equation is conservative if CL = J = 1. However, Eq. (30.22) gives overly conser-
vative predictions with CL = J = 1 owing to the tendency of the actual lift coefficient
to decrease at amplitudes in excess of 0.5 diameters and the lack of perfect spanwise
correlation at lower amplitudes. Semiempirical correlations are given in Refs. 12, 22,
and 23. One of these correlations is12

CLJ
�
4πS2δr

Ay
�
D
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FIGURE 30.8 Transverse response amplitude Ay of a spring-supported cylinder in
water to vortex-induced vibration as a function of damping.20 m/ρD2 = 5.0.



= �0.3 + 	
1/2

(30.23)

The mode shape parameter γ falls between 1.0 and 1.4. For a translating rigid rod 
(φ = 1), γ = 1; for a cable or pipeline with a sinusoidal mode shape, γ = 1.15; and for a
cantilever mode shape, γ = 1.4 and Ay is tip amplitude.

Equation (30.23) correctly predicts the self-limiting behavior of the resonance
vibrations. Setting damping to zero, δr = 0, it follows that Ay /D � 1.5, which is a
typical vibration level for lightly damped marine cables in a current. See Fig. 30.9.
Large-amplitude vibrations also are associated with increased steady drag on the
structure. Drag coefficients of up to 3.5 have been measured on resonantly vibrat-
ing marine cables as opposed to the typical value of 1.0 for a stationary cylinder.24

0.72
��
(δr + 1.9)S

0.07γ
��
(δr + 1.9)S2

Ay
�
D
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FIGURE 30.9 Maximum amplitude of vortex-induced vibration as a function of
damping.12

A number of fairings, strakes, and ribbons have been attached to the exterior of
circular cylindrical structures to reduce vortex-induced vibrations as shown in Fig.
30.10. These devices act by disrupting the near wake and disturbing the correlation
between the vortex shedding and vibration. They do, however, increase the steady
drag from that which is measured on a stationary structure. Reviews of vortex sup-
pression devices are given in Refs. 25 and 26.



FLUID ELASTIC INSTABILITY

Fluid flow across an array of elastic tubes can induce a dynamic instability, resulting
in very large amplitude tube vibrations once the critical cross-flow velocity is
exceeded. This is a relatively common occurrence in tube and shell heat exchangers.
Once the critical cross-flow velocity is exceeded, vibration amplitude increases very
rapidly with cross-flow velocity V, usually as Vn where n = 4 or more, compared with
an exponent in the range 1.5 < n < 2.5 below the instability threshold. This can be
seen in Fig. 30.11, which shows the response of an array of metallic tubes to water
flow. The initial hump is attributed to vortex shedding. The cross-flow velocity is
defined as velocity perpendicular to the tube axis at the minimum gap between
tubes. Once the critical velocity is exceeded, the very large amplitude vibrations usu-
ally lead to failures of the heat exchanger tubes.

Often the large-amplitude vibrations vary in time; the amplitudes grow and fall
about a mean value in pseudorandom fashion. Generally the tubes do not move
independently but instead move in somewhat synchronized orbits with neighboring
tubes. This orbital behavior has been observed in tests in both air and water with
orbits ranging from near circles to nearly straight lines. See Fig. 30.12.

As the tubes whirl in orbital motion, they extract energy from the fluid (Refs. 12,
28, and 29). Below the onset of instability, energy which is extracted is less than the
energy which is expended in damping. Above the critical velocity, the energy
extracted from the flow by the tube motion exceeds the energy expended in damp-
ing, so the vibrations increase in amplitude. Restricting the motion or introducing
frequency differences between one or more tubes often increases the critical veloc-
ity for onset of instability. Such increases in critical velocity are generally no greater
than about 40 percent unless additional support is given to all tubes exposed to high-
velocity flow. Often the onset of instability is more gradual in a bank of tubes having
tube-to-tube frequency differences than in a bank with identical tubes. Only a rela-
tively small percentage of the tube will become unstable at one time. Flexible long-
span tubes in areas of high flow velocity (such as at inlets) are most susceptible to
the instability.

At cross-flow velocities beyond those which produce an onset of instability, dam-
aging vibrations are encountered. The tube vibration amplitudes are limited by
clashing with other tubes, by impacting with the tube supports, and by yielding of the
tubes. Sustained operation in the unstable vibration regime ordinarily results in tube
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FIGURE 30.10 Methods of reducing vortex-induced vibration.



failure due to wear or propagation of cracks in the tubes. Fluid elastic instability is
second only to corrosion as a cause of heat exchanger failure.

A displacement model for the fluid elastic forces is given in Ref. 12 which correctly
predicts the observed onset of instability for most cases in air and gases. Results are

less satisfactory in water or when the
motion of some of the tubes is restricted.
More complex models take into account
velocity-induced forces as well as the
displacement-induced forces.29,30 These
theories give somewhat better agree-
ment with data over limited ranges, but
none are entirely suitable for a design
tool.

The most viable, practical procedure
for predicting the onset of instability of
closely spaced arrays of tubes to cross
flow is to use the theoretical form given
by the displacement mechanism but
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FIGURE 30.11 Typical amplitude of vibration of a tube array
in cross flow.27

FIGURE 30.12 Tube vibration patterns for
fluid elastic instability.28



FIGURE 30.13 Velocity for onset of instability of tube arrays in cross flow as a function of the damping parameter.22
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with parameters obtained by filling experimental data. The onset of instability is
predicted as12, 22, 23,31

= C � 
a

(30.24)

where Vcrit = uniform cross flow averaged over minimum gap between tubes (If the
velocity is nonuniform, then either the maximum can be used or a
modal weighted average can be employed.)

fn = fundamental natural frequency of tubing (Ordinarily the fundamen-
tal mode is most susceptible to instability.)

ζ = damping factor of fundamental mode (Typically ζ falls in the range
between 0.01 and 0.03 for tubes with some intermediate supports. For
rolled-in or welded-in tubes with no intermediate supports, ζ can be
as low as 0.001.)

mt = mass per unit length of tube including added mass and internal mass
of fluid

ρ = fluid density

Fitting Eq. (30.24) to the available 174 data points for onset of instability31 shown in
Fig. 30.13 leads to the mean and lower-bound coefficients for the parameter C and
the exponent a given in Table 30.1. The coefficient corresponding to the mean fit 
to the experimental data is Cmean; C90% is the lower bound fit to the data such that 
90 percent of the data are above the curve.

Most of the data used in this correlation come from tube arrays with center-to-
center spacing of between 1.25 and 2.0 diameters and with various array geome-
tries. There is insufficient statistical evidence to determine if certain patterns are
more or less susceptible to instability than others. Instability has been observed for
both straight and curved tubes, tube rows, and tube arrays in a wide variety of tube
patterns.

The most common means of increasing the resistance of an array of tubes to
instability is to add intermediate supports to increase the natural frequency of the
tubes. Details of the tube support (particularly the gap between the tube and the
support) influence the resultant vibration. In general, smaller gaps tend to result in
lower tube-support impact velocities and hence in lower tube wear.32,33

INTERNAL FLOW IN PIPES

Internal flow through a pipe decreases the natural frequency of the pipe. Sufficiently
high internal velocity will induce buckling in a pipe supported at both ends since the
momentum of fluid turning through a small angle of pipe deflection is greater than

mt(2πζ)
�

ρD2

Vcrit�
fnD

TABLE 30.1 Coefficients in Eq. (29.16) for Onset of Instability of Tube Arrays31

mt(2πζ)/ρD2 < 0.7 mt(2πζ)/ρD2 > 0.7

Cmean 3.9 4.0
C90% 2.7 2.4
a 0.21 0.5
rms error in fitted data for Vcrit, % 24.5 32.5



the stiffness of the pipe. If the pipe is restrained at only one end, the pipe will
become unstable at high velocities like an unrestrained garden hose.

The equation of motion for a straight pipe conveying steady fluid flow is34,35

EI + ρAv2 + 2ρAv + M = 0 (30.25)

where E and I are the modulus and moment of inertia of the pipe which conveys
fluid of density ρ through the internal area A of the pipe at a steady velocity v;
Y(x, t) is the lateral deflection of the pipe which has total mass per unit length M.
The first and last terms in Eq. (30.25) are the usual stiffness and mass terms.The mid-
dle terms are associated with fluid forces imposed on the pipe by the internal fluid
as the pipe deflects slightly from its equilibrium position.

Although Eq. (30.25) is a linear partial differential equation with constant coeffi-
cients, its solution is difficult owing to the mixed derivative term (third term from the
left). One technique used to solve the equation is to expand the solution in terms of
the mode shapes of vibration which are obtained for zero flow, v = 0.

Y(x,t) = Σi aiyi(x) sin ωt (30.26)

where yi(x) are the mode shapes for zero flow that satisfy Eq. (30.25) and the
boundary conditions on the ends of the pipe span. Equation (30.20) is substituted
into Eq. (30.25), and the derivatives of yi(x) are expressed in terms of the orthogonal
set yi(x)

yi′(x) = Σibiyi(x) (30.27)

Like terms in the series are equated.
For a uniform pipe with pinned ends, the result can be expressed as a decrease in

natural frequency due to flow.12

= �1 − � 	
2


1/2

(30.28)

where f = fundamental natural frequency
f1 = fundamental natural frequency in absence of flow
vc = critical flow velocity

The critical flow velocity can be expressed as

vc = � 
1/2

(30.29)

where L is the span of the pipe. As the flow velocity approaches vc, the fundamental
natural frequency f1 decreases to zero.The pipe span spontaneously buckles at v = vc.

The buckling velocity is a function of the boundary conditions on the ends of the
pipe, and there can be vibration; these solutions for various boundary conditions are
generally scaled by the velocity vc [Eq. (30.29)]. In general, only exceptionally thin-
walled flexible tubes with very high velocity flows, such as rocket motor feed lines
and penstocks, are prone to vibration induced by internal flow. External parallel
flow can also induce an analogous instability. (See the review given in Ref. 35.) For a
tube subjected to both internal and parallel external flow of the same magnitude, the
velocity for the onset of instability is

EI
�
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π
�
L

v
�
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vc = � 
1/2

(30.30)

where Ai = πDi
2/4 and Ae = πDe

2/4 are the cross-sectional areas associated with the
tube inside and outside diameters Di and De, respectively.

Oscillatory flow in pipes can also cause vibration. Oscillations of fluids in pipes
can be caused by reciprocating pumps and acoustic oscillations produced by flow
through valves and obstructions. Internal flow imposes net fluid force on pipe at
bends and changes in area. For example, the fluid force acting on a 90° bend in a pipe
is the sum of pressure and momentum components:

Fbend = [(p − pa) + ρU 2] Ai − [(p − pa) + ρU 2] Aj (30.31)

Here p is the internal pressure in the pipe, pa is the pressure in the atmosphere sur-
rounding the pipe, and U is the internal velocity in the pipe. The vectors i and j are
unit vectors in the direction of the incoming and outgoing fluid, respectively.

If the pressure and velocity in the pipe oscillates, then the fluid force on the bend
will oscillate, causing pipe vibration in response to the internal flow. This problem is
most prevalent in unsupported bends in pipe that are adjacent to pumps and valves.
Two direct solutions are to (1) support pipe bends and changes in area so that fluid
forces are reacted to ground and (2) reduce fluid oscillations in pipe by avoiding
large pressure drops through valves and installation of oscillation-absorbing devices
on pump inlet and discharge.
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CHAPTER 31
VIBRATION OF 

STRUCTURES INDUCED 
BY WIND

Alan G. Davenport 

J. Peter C. King

INTRODUCTION

Vibration of significant magnitude may be induced by wind in a wide variety of
structures including buildings, television and cooling towers, chimneys, bridges,
transmission lines, and radio telescopes. No structure exposed to wind seems entirely
immune from such excitation. The material presented here describes several mech-
anisms causing these oscillations and suggests a few simpler approaches that may be
taken in design to reduce vibration of structures induced by wind.There is an exten-
sive literature1–7 giving a more detailed treatment of the subject matter.

FORMS OF AERODYNAMIC EXCITATION

The types of structure referred to above are generally unstreamlined in shape. Such
shapes are termed “bluff bodies” in contrast to streamlined “aeronautical” shapes
discussed in Chap. 32. The distinguishing feature is that when the air flows around
such a bluff body, a significant wake forms downstream, as illustrated in Fig. 31.1.The
wake is separated from the outside flow region by a shear layer. With a sharp-edged
body (such as a building or structural number) as in Fig. 31.1A, this shear layer
emanates from the corner. With oval bodies such as the cylinder in Fig. 31.1B, the
shear layer commences at a so-called boundary layer on the upstream surface at
points A and B (the separation points) and becomes a free shear layer. The exact
position of these separation points depends on a wide variety of factors, such as the
roughness of the cylinder, the turbulence in the flow, and the Reynolds number R =
VD/ν, where V = flow velocity, D = diameter of the body, and ν = kinematic viscosity.

The flow illustrated in Fig. 31.1 represents the time-average picture which would
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be obtained by averaging the movements of the fluid particles over a time interval
that is long compared with the “transit time” D/V. The instantaneous picture of the
flow may be quite different, as indicated in Fig. 31.2, for two reasons.

First, if the flow is the wind, it is under almost all practical circumstances strongly
turbulent; the oncoming flow will be varying continuously in direction and speed in
an irregular manner. These fluctuating motions will range over a wide range of fre-
quencies and scales (i.e., eddy sizes).

Second, the wake also will take on a fluctuating character. Here, however, the size
of the dominant eddies (vortices) will be of a similar size to the body.The vortices tend
to start off their career by curling up at the separation point and then are carried off
downstream. Sometimes these eddies are fairly regular in character and are shed alter-
nately from either side; if made visible by smoke or other means, they can be seen to
form a more or less regular stepping-stone pattern until they are broken up by the tur-
bulence or dissipate themselves. In a strongly turbulent flow,the regularity is disrupted.

The flow characteristics of the oncoming flow and the wake are the direct causes
of the forces on the bodies responsible for their oscillation. The forms of the result-
ing oscillation are as follows.

1. Turbulence-induced oscillations. Certain types of oscillation of structures can
be attributed almost exclusively to turbulence in the oncoming flow. In the wind these
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FIGURE 31.1 Wake formation past bluff bodies:
(a) sharp-edged body; (b) circular cylinder.

FIGURE 31.2 Vortex street past circular cylinder (R = 56). (After
Kovasznay, Proc. Roy. Soc. London, 198, 1949.)
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FIGURE 31.3 Main types of wind-induced oscillations: (A) vibration due to turbulence;
(B) vibration due to vortex shedding; (C) aerodynamic instability.

may be described as “gust-induced oscillations” (or turbulence-induced, oscillations).
The gusts may cause longitudinal, transverse, or torsional oscillations of the structure,
which increase with wind velocity (Fig. 31.3A).

2. Wake-induced oscillations. In other instances, the fluctuations in the wake may
be the predominant agency. Since these fluctuations are generally characterized by
alternating flow, first around one side of the body, then around the other, the most sig-
nificant pressure fluctuations act on the sides of the body in the wake behind the sep-
aration point (the so-called after body); they act mainly laterally or torsionally and to
a much lesser extent longitudinally. The resultant motion is known as vortex-induced
oscillation. Oscillation in the direction perpendicular to that of the wind is the most
important type. It often features a pronounced resonance peak (Fig. 31.3B).

While these distinctions between gust-induced and wake-induced forces are
helpful, they often strongly interact; the presence of free-stream turbulence, for
example, may significantly modify the wake.

3. Buffeting by the wake of an upstream structure. A further type of excitation is
that induced by the wake of an upstream structure (Fig. 31.4). Such an arrangement
of structures produces several effects. The turbulent wake containing strong vortices
shed from the upstream structure can buffet the downstream structure. In addition, if
the oncoming wind is very turbulent, it can cause the wake of the upstream structure
to veer, subjecting the downstream structure successively to the free flow and the
wake flow. This frequently occurs with chimneys in line, as well as with tall buildings.

4. Galloping and flutter mechanisms. The final mechanism for excitation is
associated with the movements of the structure itself. As the structure moves rela-
tive to the flow in response to the forces acting, it changes the flow regime sur-
rounding it. In so doing, the pressures change, and these changes are coupled with
the motion. A pressure change coupled to the velocity (either linearly or nonlin-
early) may be termed an aerodynamic damping term. It may be either positive or
negative. If positive, it adds to the mechanical damping and leads to higher effective
damping and a reduced tendency to vibrate; if negative, it can lead to instability and
large amplitudes of movement. This type of excitation occurs with a wide variety of
rectangular building shapes as well as bridge cross sections and common structural
shapes such as angles and I sections.

In other instances, the coupling may be with either the displacement or accelera-
tion, in which case they are described as either aerodynamic stiffness or mass terms,
the effect of which is to modify the mass or stiffness terms in the equations of
motion. Such modification can lead to changes in the apparent frequency of the
structure. If the aerodynamic stiffness is negative, it can lead to a reduction in the
effective stiffness of the structure and eventually to a form of instability known as



divergence. All types of instability feature a sudden start at a critical wind velocity
and a rapid increase of violent displacements with wind velocity (Fig. 31.3C).

These various forms of excitation are briefly discussed in this chapter. Because all
types of oscillations are influenced strongly by the properties of the wind, some basic
wind characteristics are described first.

BASIC WIND CHARACTERISTICS

Wind is caused by differences in atmospheric pressure. At great altitudes, the air
motion is independent of the roughness of the ground surface and is called the
geostrophic, or gradient wind. Its velocity is reached at a height called gradient
height, which lies between about 1000 and 2000 ft (300 and 600 m). Below the gradi-
ent height, the flow is affected by surface friction, by the action of which the flow is
retarded and turbulence is generated. In this region, known as the planetary bound-
ary layer, the three components of wind velocity resemble the traces shown in Fig.
31.5.The longitudinal component consists of a mean plus an irregular turbulent fluc-
tuation; the lateral and vertical components consist of similar fluctuations.These tur-
bulent motions can be characterized in a number of different ways.

The longitudinal motion at height z can be expressed as

Vz(t) = V̄z + v(t) (31.1)

where V̄z = mean wind velocity (the bar denotes time average) and v(t) = fluctuating
component.
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FIGURE 31.4 Buffeting by the wake of an upstream structure.



Mean Wind Velocity. The mean wind velocity V̄z varies with height z as repre-
sented by the mean wind velocity profile (Fig. 31.6). The profiles observed in the
field can be matched by a logarithmic law, for which there are theoretical grounds, or
by an empirical power law

= � 
α

(31.2)

where V̄G = gradient wind velocity, zG = gradient height, and α = an exponent <1.
Gradient height zG and exponent α depend on the surface roughness, which can be
characterized by the surface drag coefficient κ (here referenced to the wind speed at
33 ft or 10 m).

A few typical values of these parameters are given in Fig. 31.6. The mean wind
profiles shown are characteristic of level terrain. They can significantly change, par-
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FIGURE 31.5 Record of horizontal component of wind speed at three heights on
500-ft (152 m) mast in open terrain. (Courtesy of E. L. Deacon.)

FIGURE 31.6 Vertical profiles of mean wind velocity for three typical terrains.



ticularly in the lower region, when the air flow meets an abrupt change in surface
roughness or terrain contour. A sudden increase in roughness reduces the wind
speed near the ground while a hill accelerates the flow over its crest.

The mean wind profiles are useful when predicting the wind speed at a particular
site.The gradient wind speed is estimated using data registered by the nearest mete-
orological stations at their standard height, which is usually 33 ft (10 m). The mean
wind velocity generally depends on the period over which the wind speed is aver-
aged. Periods from 10 to 60 minutes appear adequate for engineering considerations
and usually yield reasonably steady mean values. The same duration is suitable to
define the fluctuating wind component.

Fluctuating Components of the Wind. The fluctuating components of the wind
change with height less than the mean wind and are random in both time and space.
The random nature of the wind requires the application of statistical concepts (see
Chap. 24). The basic statistical characteristics of the velocity fluctuations are the
intensity of turbulence, the power spectral density (power spectrum), the correlation
between velocities at different points, and the probability distribution.

The intensity of turbulence is defined as σv/V̄z, where σv = �v�2�(�t�)� is the root-mean-
square (rms) fluctuation in the longitudinal direction.The intensity of the lateral and
vertical fluctuations can be described similarly. For wind, the intensity of turbulence
is between 5 and 25 percent. The magnitude σv also defines the probability distribu-
tion of the fluctuations which may be assumed to be gaussian (normal).

The energy of turbulent fluctuations (gustiness) is distributed over a range of fre-
quencies. This distribution of energy with frequency f can be described by the spec-
trum of turbulence (power spectral density) Wv( f ). The relationship between the
spectrum and the variance is

�∞

0
Wv( f ) df = σv

2

which leads to another form of the spectrum known as the logarithmic spectrum
fWv( f )/σv

2. This form of the spectrum is dimensionless and preserves the relative
contributions to the variance at different frequencies represented on a logarithmic
scale; its integral is

�∞

0
d ln f = 1

The two forms of spectra are sketched in Fig. 31.7.A generalization of wind spec-
tra for different wind velocities is possible if the frequency scale is so modified that

fWv( f )
�

σv
2
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FIGURE 31.7 Two different ways of presenting power spectral densities.



it too is dimensionless.The ratio f/V̄ is the so-called inverse wavelength related to the
“size” of atmospheric eddies. This may be expressed as a ratio to a representative
length scale L, such as the wavelength of the eddies at the peak of the spectrum.The
dimensionless frequency or inverse wavelength may now be written

f̄ = fL/V̄

Under certain circumstances this relationship is also known as the Strouhal number
or the reduced frequency.

It is generally found that while the length scale L in the oncoming flow corre-
sponds to that of the turbulence itself (this in the natural wind is of the order of
thousands of feet), in the wake the governing length scale is of the same order as the
diameter of the body D. This is illustrated in Fig. 31.8.
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FIGURE 31.8 Universal spectrum of horizontal gustiness
in strong winds and example of spectrum of fluctuations in
wake.

The spectrum of horizontal gustiness in strong winds is largely independent of
height above the ground, is proportional to both the surface drag coefficient κ and
the square of the mean velocity at the standard height of 33 ft (10 m),V̄10, and can be
represented, with some approximations, as8,9

Wv( f ) = 4κV̄10
2 (31.3)

in which f = frequency, Hz, f̄ = fL/V̄10 where L = scale length ≈4000 ft (1300 m), and 
κ is given in Fig. 31.6. This spectrum is shown in Fig. 31.8.

The variance of the velocity fluctuations is

σv
2 = �∞

0
Wv( f ) df = 6.68κV̄10

2 (31.4)

It can be seen from Eqs. (31.3) and (31.4) that large velocity fluctuations can be
expected in rough terrain where coefficient κ is large.

The spatial correlation of wind speeds at two different stations is described by the
coherence function (see Chap. 19),

L/V̄10�
(2 + f̄ 2)5⁄6



γ12
2( f ) = ≤ 1 (31.5)

where W12( f ) = cross spectrum (generally complex) between stations 1 and 2; W1( f)
and W2( f ) are power spectra of the two stations. The coherence function depends
primarily on the parameter Δzf/V̄, where Δz = separation and V̄ = 1⁄2(V̄1 + V̄2) is the
average wind speed. A suitable approximate function is

�C�o�h�e�re�n�ce� = e−c(Δzf/V̄)

where c is a constant having a value of approximately 7 for vertical separation and
approximately 15 for horizontal separation. Coherence decreases with both separa-
tion and frequency. A more detailed discussion of wind characteristics is given in
Refs. 1 and 9.

EXCITATION DUE TO TURBULENCE

When a structure is exposed to the effects of wind, the fluctuating wind velocity
translates into fluctuating pressures, which in turn produce a time-variable response
(deflection) of the structure. This response is random and represents the basic type
of wind-induced oscillations. The theoretical prediction of this oscillation is rather
complex but can be reduced to a simple procedure suitable for design purposes. The
discussion of the oscillation is therefore presented in two parts. In the first part, the
basic theoretical steps are outlined. In the second part, the design procedure known
as the gust-factor approach is given in more detail.

FUNDAMENTALS OF RESPONSE PREDICTION

If the area A of the structure exposed to wind is small relative to the significant tur-
bulent eddies, the so-called quasi-steady theory for turbulence can be used to esti-
mate aerodynamic forces. In the drag direction, the drag force

D(t) = ρCDAV 2(t)

= ρCDAV̄ 2�1 + 2 + 
where ρ = air density (normally equal to 0.0024 slugs/ft3), and CD = drag coefficient.
If v(t) << V̄, the squared term is ignored. The spectra of the fluctuating drag and
velocity are then related as

= 4 (31.6)

where the mean drag (static component of the drag) is

D̄ = ρCDAV̄ 2 (31.7)

and Wv( f) is given by Eq. (31.3).
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2
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With large bodies, the wavelength is comparable to the size of the body itself
(that is, f �A�/V̄ ≈ 1) and it is necessary to modify the drag spectrum by the so-called
aerodynamic admittance function |Xaero( f )|2. This function8 describes the modifying 
influence of any changes in effective drag coefficient as well as the decrease in cor-
relation of the eddies as the wavelength of the eddies approaches the diameter of
the body. Thus, the modified drag spectrum is

= 4|Xaero( f )|2

If these forces act on an elastic spring-mass-damper system, the response of this
system u will have a spectrum

= |Xaero|2|Xmech|2

where static deflection ū =D̄/k, k = stiffness constant, and the mechanical admittance
function is

|Xmech|2 =

where ζ = critical damping ratio, and fn = natural frequency of the system.
The transition from the spectrum of the wind-velocity fluctuations to the spec-

trum of the response is shown diagrammatically in Fig. 31.9. The variance of the
response σu

2 is obtained from the spectrum of the response

σu
2 = �∞

0
Wu( f ) df (31.8)

The relationships above describe the mean and the variance of the response. For
engineering purposes, it is also useful to define extreme values. It is often satisfactory
to assume that the process in question is gaussian, with probability density function
given by

1
���
[1 − ( f/fn)2]2 + 4ζ2( f 2/fn

2)

4Wv( f )
�̄

V2

Wu( f )
�

ū2

Wv( f )
�̄

V2

WD( f )
�̄

D2
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FIGURE 31.9 Transition from gust spectrum to response spectrum.



p(u) = e−(u − ū)2/2σu
2

This distribution is fully described by the mean and the variance. Maximum values
of the response during time T can be written as

umax = ū + gσu (31.9)

where g = peak factor.The average largest value of the peak factor in a period T can
be estimated from6

g = �2� l�n� ν�T� + (31.10)

where ν is an effective cycling rate of the process, generally close to the natural fre-
quency. The relationship of the distribution of the largest peak value to the distribu-
tion of all values is shown in Fig. 31.10. As can be seen, when the period T or the
natural frequency increases, the expected peak displacement also increases.The fac-
tor g usually ranges between 3 and 5.

0.5772
�
�2� l�n� ν�T�

1
�
�2�π� σu
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FIGURE 31.10 Relationship of distribution of largest peak value to dis-
tribution of all values (for a stationary random process).

Further extension of the concept includes the cross correlation of the wind loads
at different stations (e.g., heights), the shape of the vibration mode, and the nonuni-
formity of the mean flow.These factors can be included into the solution formulated
in terms of modal analysis (see Chap. 21). With a prismatic structure, the displace-
ment may be expressed in the form

u(z,t) =  �
∞

j = 1
qj(t)φj(z) (31.11)

where qj(t) = the generalized coordinate of the jth mode, and φj(z) = the jth mode of
natural vibrations to an arbitrary scale.

With damping small and natural frequencies well separated, the cross correlation
of the generalized coordinate can be neglected and the mean square displacement
(the variance) is



u�2�(�z�,�t�)� =  �
∞

j = 1
q�j�2� φj

2(z) (31.12)

The variance of the generalized coordinate q�j�2� is determined by the power spectrum
of the generalized force Qj.When the lateral dimension of the structure is small, only
cross correlation in direction z need be considered. Then the power spectrum of the
generalized force is

WQj
( f ) = �H

0
�H

0
W12(z1,z2, f )φj(z1)φj(z2) dz1 dz2 (31.13)

where W12(z1,z2, f ) = cross spectrum of the wind loads at heights z1 and z2, and 
H = height of the structure.With respect to Eq. (31.6), the cross spectrum of the wind
loads can be expressed in terms of the power spectrum of the wind speed [Eq. (31.3)]
and the coherence function, Eq. (31.5).

The variance of qj is

q�j�2� = �∞

0
WQj( f )

≈ WQj(fj) + �fj

0
WQj( f ) df (31.14)

where fj = jth natural frequency and generalized mass

Mj = �H

0
m(z)φj

2(z) dz (31.15)

where m(z) = mass of the structure per unit length.The approximate integration10 of
Eq. (31.14) yields the response composed of two parts, the resonance effect (the first
term) and the background turbulence effect (the second term), as shown in Fig.
31.11. The variance of the displacement follows from Eq. (31.12), and its standard 
deviation (rms dynamic displacement) is σu(z) = �u�2�(�z�,�t�)��. The peak response is 
established from Eq. (31.9) by means of the peak factor g [Eq. (31.10)] as in one
degree of freedom.The mean deflection ū(z) is the static deflection due to the mean
wind V̄z.

1
��
(2πfj)4Mj

2

1
��
64π3ζ fj

3Mj
2

1
���
[1 − ( f/fj)2]2 + 4ζ2( f/fj)2

1
��
(2πfj)4Mj

2
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FIGURE 31.11 Spectrum of structural response with indication
of resonance effect and background turbulence effect.



Other analyses of slender structures are also available.11–13 In applications to
buildings and free-standing towers, the analysis can usually be limited to the first
modal component in Eq. (31.12).Application to buildings and structures with signif-
icant lateral dimension requires the incorporation of the horizontal cross correlation
as well. A complete solution established by means of simplifying assumptions and
numerical integrations is given below.

GUST-FACTOR APPROACH

The gust-factor approach is a design procedure derived on the basis of the theory
above by means of a few simplifying assumptions.The approach given here is a mod-
ified version of the method described in Ref. 14 and adopted in Ref. 15. It considers
only the response in the first vibration mode which is assumed to be linear. These
assumptions are particularly suitable for buildings. The method yields all the data
needed in design: the maximum response, the equivalent static wind load that would
produce the same maximum response, and the maximum acceleration needed for
the evaluation of the physiological effects of strong winds (human comfort).

The gust factor G is defined as the ratio of the expected peak displacement (load)
in a period T to the mean displacement (load) �u. Hence, the maximum expected
response is

umax = Gū = �1 + g 	 ū (31.16)

The gust factor is given as

G = 1 + g� �B + 	 (31.17)

where ζ = damping ratio and K = factor related to the surface roughness; this factor
is equal to 0.08 for open terrain (zone A), 0.10 for suburban, urban, or wooded ter-
rain (zone B), and 0.14 for concentrations of tall buildings (zone C). All the other
parameters appearing in Eq. (31.17) can be obtained from Fig. 31.12. Ce = exposure
factor based on the mean wind speed profile (coefficient α) and thus on surface
roughness. For the three zones, the exposure factor is obtained from Fig. 31.12A for
the height of the building H. Ce relates to wind pressure rather than speed. Hence,
the mean wind speed at the top of the building is given by

V̄H =V̄10 �C�e�

whereV̄10 = reference wind speed at the standard height of 10 m or 33 ft. V̄10 can be
obtained from meteorological stations. Velocity V̄H is needed for determination of
parameters s and F. Factors B, s, F, and g are given in Fig. 31.12C to f as a function of
parameters indicated; D = width of the frontal area, and fn = the first natural fre-
quency of the structure in cycles per second.The average fluctuation rate ν, on which
the peak factor g depends, is evaluated from the formula

ν = f0 � (31.18)

The peak factor g is plotted in Fig. 31.12F, assuming a period of observation T = 3600
sec; it can also be calculated from Eq. (31.10).

sF/ζ
�
B + sF/ζ

sF
�
ζ

K
�
Ce

σu�
ū
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FIGURE 31.12 Components of gust factor.



The parameters given also yield the design wind pressure p, which produces dis-
placement umax if applied as a static load. This design pressure

p = qCeGCp (31.19)

where q = 1⁄2ρV̄10
2 is the reference mean-velocity pressure, and Ce = exposure factor.

In this case, Ce varies continuously with the elevation according to Fig. 31.12A for
pressures acting on the windward face of the structure; for the leeward face, Ce is
constant and evaluated at one-half the height of the building.The quantity Cp = aver-
age pressure coefficient, which depends on the shape of the structure and the flow
pattern around it. For a typical building with a flat roof and a height greater than
twice the width, the coefficients are given for the windward and leeward faces in Fig.
31.12B together with the pressure distribution.

The peak acceleration A of a structure due to gusting wind is given by

A = umax �
where umax = maximum deflection under the design pressure p. The other parameters
are equal to those used in Eq. (31.17). When the acceleration exceeds about 1 per-
cent of gravity, the motion is usually perceptible. However, there are large differ-
ences in the perceptibility of motions having very low frequencies.16,17 Similar
approaches are given in Refs. 18 to 20.

EFFECT OF GUSTS ON CLADDING AND WINDOWS

Wind gusts produce local pressures on cladding and window panels of a building.
Because the natural frequency of such a panel is very high compared with the fre-
quency components of the wind-speed fluctuations, the panel displacement is essen-
tially static. Its design may be based on the static displacement resulting from
maximum expected pressure, which is the algebraic sum of the height and time-
dependent exterior pressure (or suction) and the constant interior pressure (or suc-
tion). If the fluctuating component of the pressure p(t) is considered to be a
stationary random process, the exterior expected maximum pressure is

pmax = p̄ �1 + g 	 = p̄G (31.20)

where p̄ = 1⁄2ρCp
¯̄V 2 = mean pressure
Cp = local pressure coefficient
σp = standard deviation of the fluctuating pressure component
g = peak factor given by Eq. (31.10)

G = gust factor

To account for the sensitivity of glass to both static and dynamic fatigue, it has been
suggested21,22 that g or G in Eq. (31.20) be multiplied by a wind-on-glass effect factor.

Factors g, σp/p̄, and Cp are most reliably determined from wind-tunnel experi-
ments. They strongly depend on location of the panel, wind direction, turbulence
intensity, and the local flow pattern determined by the shape of the building and its
immediate environment. In full-scale experiments, values of g in excess of 10 have
been observed in highly intermittent flow. Largest local pressure coefficients Cp

(actually suctions) appear with skew wind at the leading edge of the building where
a typical value is Cp = −1.5. In that part of the building exposed to free flow, a gust

σp
�
p̄

KsF
�
Ceζ

4π2f0
2g

�
G
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factor G ≈ 2.5 is a reasonable estimate.15,23 The interior pressure is not very high, but
its magnitude and sign depend on openings and leakage.

Damage to windows may result from local wind pressure, but it also depends on
material properties of glass and its fatigue. The fatigue limit of glass is only about 20
percent of the instantaneous strength.22

VIBRATION DUE TO VORTEX SHEDDING

Vortex shedding represents the second most important mechanism for wind-
induced oscillations. Unlike the gusts, vortex shedding produces forces which origi-
nate in the wake behind the structure, act mainly in the across-wind direction, and
are, in general, rather regular. The resultant oscillation is resonant in character, is
often almost periodic, and usually appears in the direction perpendicular to that of
the wind. Lightly damped structures such as chimneys and towers are particularly
susceptible to vortex shedding. Many failures attributed to vortex shedding have
been reported.

When a bluff body is exposed to wind, vortices shed from the sides of the body,
creating a pattern in its wake often called the Karman vortex street (Fig. 31.2). The
frequency of the shedding, nearly constant in many cases, depends on the shape and
size of the body, the velocity of the flow, and to a lesser degree on the surface rough-
ness and the turbulence of the flow. If the cross section of the body is noncircular, it
also depends on the wind direction. The dominant frequency of vortex shedding fs is
given by

fs = S
¯

Hz (31.21)

where S = dimensionless constant called the Strouhal number,V̄ = mean wind veloc-
ity, and D = width of the frontal area. The second dimensionless parameter is the
Reynolds number R = V̄D/ν, where ν = kinematic viscosity. For air under normal
conditions, ν = 1.5 × 10−5 m2/sec.

For a body having a rectangular or square cross section, the Strouhal number is
almost independent of the Reynolds number. For a body having a circular cross sec-
tion, the Strouhal number varies with the regime of the flow as characterized by the
Reynolds number. There are three major regions: the subcritical region for R �� 3 ×
105, the supercritical region for 3 × 105 �� R �� 3 × 106, and the transcritical region for
R �

� 3 × 106. Approximate values of the Strouhal number for typical cross sections
are given in Table 31.1. The numbers given in this table are based on Refs. 1, 24, 25,
and 26 and other measurements, and may be used for turbulent shear flow.

PREDICTION OF VORTEX-INDUCED OSCILLATION

Although the mechanism of vortex shedding and the character of the lift forces have
been the subject of a great number of studies,27 the available information does not
permit an accurate prediction of these oscillations. The motion is most often viewed
as forced oscillation due to the lift force, which, per unit length, may be written as

FL = ρDV̄ 2CL(t) (31.22)
1
�
2

V�
D
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where CL(t) is a lift coefficient fluctuating in a harmonic or random way. Some
authors28,29 consider vortex shedding to be self-excitation, which does not seem nec-
essary, however, for relatively small motions. Hence, the solution of the response
depends on the time history assumed for CL(t).

HARMONIC EXCITATION OF PRISMATIC CYLINDERS BY VORTICES

Harmonic excitation represents a traditional model for vortex excitation, but it is
really justified only for very low Reynolds numbers (�� 300) or possibly for large
vibration where the motion starts controlling both the wake and the lift forces in the
form of the “locking-in” phenomenon. Strongest oscillations arise at that wind
velocity for which the frequency of vortex shedding fs is equal to one of the natural
frequencies of the structure fj. This resonant wind velocity is, from Eq. (31.21),

Vc = fjD (31.23)

With free-standing towers and stacks, resonance in the first two modes is met most
often; resonance with higher modes has been observed as well with guyed towers
(Fig. 31.13).

At the resonant wind velocity, the lift force is given by Eq. (31.22) in which 
CL(t) = CL sin 2πfjt, and CL = amplitude of lift coefficient. Assuming a uniform wind
profile and a constant diameter D, the resonant amplitude of mode j at the critical
wind velocity Vc is, from Eq. (31.11),

uj(z) = φj(z) �H

0
φj(z) dz (31.24)

where Mj is given by Eq. (31.15) and ζ = structural damping ratio. The formula can
be further simplified if it is assumed that the lift force is distributed along the struc-
ture in proportion to the mode φj(z). This assumption reflects the loss of spanwise
correlation of the forces.Then, with constant mass per unit length m(z) = m, the res-
onant amplitude at the height where the modal displacement is maximum:

uj = (31.25)
D3

�
ζm

ρCL�
16π2S2

D3

�
ζMj

ρCL�
16π2S2

1
�
S
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TABLE 31.1 Aerodynamic Data for Prediction of Vortex-Induced Oscillations 
in Turbulent Flow

rms lift Correlation
Strouhal coefficient Bandwidth length L

Cross section number S σL B (diameters)

Circular:
Subcritical 0.2 0.5 0.1 2.5
Supercritical Not marked 0.14 Not marked 1.0
Transcritical 0.25 0.25 0.3 1.5

Square:
Wind normal to face 0.11 0.6 0.2 3



For the first mode of a free-standing structure, this occurs at the tip. In higher modes,
this amplitude appears at the height where local resonance takes place. For circular
cylinders, a design value of the lift coefficient CL is about �2�σL. This simple formula
can be used for the first estimate of the amplitudes that are likely to represent the
upper bound. It is also indicative of the role of the diameter, mass, and damping of
the structure. Approximate values of σL are given in Table 31.1.

RANDOM EXCITATION OF PRISMATIC CYLINDERS BY VORTICES

Even when vortex shedding appears very regular, the lift force and thus CL(t) are not
purely harmonic but random. The power spectrum of the lift force per unit length is
from Eq. (31.22).

WL( f) = � ρDV̄ 2σL	
2

WL′( f) (31.26)

where σL = �C�L�2�(�t�)� is the standard deviation of the lift coefficient and WL′( f) = nor-
malized power spectrum of CL(t) for which

1
�
2
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FIGURE 31.13 Vortex-induced oscillations in different modes measured on 1000 ft 
(305 m) guyed tower.30



�∞

0
WL′( f) df = 1 (31.27)

With circular cylinders, the lift force is narrowband random in the subcritical and
transcritical24,25 ranges where the energy is distributed about the dominant fre-
quency fs, given by Eq. (31.21) (Fig. 31.14A). Such spectra can be described by a
gaussian-type curve,
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FIGURE 31.14 Spectra of lift coefficient for circular cylinder.

A few design values of bandwidth B are given in Table 31.1. In the supercritical
range, the power spectrum is broad (Fig. 31.14B) and can be expressed as31

WL′( f) = 4.8 (31.29)

Because the vortices are three-dimensional, a realistic treatment also requires the
inclusion of the spanwise cross correlation of the lift forces. This can be done in
terms of the “correlation length” L given in number of diameters.

Approximate values of L are given in Table 31.1. The correlation length
decreases with turbulence32 and shear, and increases with aspect ratio 2H/D and the
amplitude of the motion as shown in Fig. 31.15.

Using the correlation length, the spectral density of the lift force, Eqs. (31.28) and
(31.29), and a few further approximations, the vibration can be evaluated from Eqs.
(31.12) to (31.14). The root-mean-square (rms) displacement at height z in mode j is
approximately

��u�j�2�(�z�,�t�)� = C
π1/4σLρD4φj(z/H)
��

�B�ζ� (4πS)2Mj

D
�̄
V

1 + 682.2(fD/ V̄)2

���
[1 + 227.4( fD/ V̄)2]2

(A) (B)

WL′ ( f ) = exp � − � 	
2

 (31.28)
1 − f/fs
�B

1
�
�π�Bfs



where

C2 = �1

0 � 	
3α

φj
2 � 	 d � 	

Here, α = wind profile exponent (Fig. 31.6), and parameters S, σL, B, and L are
given in Table 31.1. The mode φj(z/H) is dimensionless, and consequently Mj is in

slugs in this case. The peak response is g �u�j�2�(�z�,�t�)�, where the peak factor g is given by
Eq. (31.10). If it is larger than about 2 percent of diameter D, locking-in may develop
and the analysis should be repeated assuming harmonic excitation or at least random
excitation with a significantly increased correlation length, as Fig. 31.15 indicates.

RANDOM EXCITATION OF TAPERED CYLINDERS BY VORTICES

Tapered cylinders, such as stacks, also vibrate due to vortex shedding, but less is
known about the mechanism of excitation. It appears that the lift forces are nar-
rowband random with a rather small correlation length L and with the dominant
frequency fs given by Eq. (31.21). As the diameter is variable, local resonance
between fs and the natural frequency fj takes place at different heights zr. As the
wind speed increases, the resonance first appears at the tip and shifts downward.
The critical wind speed for each height follows from Eq. (31.23) with D = D(zr).
The rms displacements at height H due to local resonance at height zr can be
obtained from an approximate formula,33

� u�j�2�(�H�,�t�)�

= �� φj(H)

where

Ψ = +

or with a constant taper

Ψ = +

where t = D(0) − D(H) and α = the wind-
profile exponent. The other parameters
can be taken from Table 31.1. The val-
ues listed for the transcritical region
may be adequate, inasmuch as most
tapered stacks are large. The peak dis-
placement is again obtained by means
of the peak factor given by Eq. (31.10).

Maximum response of chimneys in
the first mode usually results from local
resonance at about 3⁄4 H. The height of
maximum excitation follows from the
condition d[D4(z)φj(z)]/dz = 0.

αD(zr)�
zr

t
�
H

αD(zr)�
zr

dD(zr)�
dz

σLρD4(zr)φj(zr)��
8S2Mj

L
�
2π3ζΨ

z
�
H

z
�
H

z
�
H

(H/D)2

��
1 + (H/2LD)
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FIGURE 31.15 Variation of correlation length
of vortex shedding with amplitude of motion and
turbulence (2a = double amplitude, turbulence
intensity 10 percent).



SUPPRESSION OF VORTEX-INDUCED VIBRATIONS

Vortex shedding may induce severe vibration of a cylindrical structure such as a
chimney, free-standing tower, guyed mast, bridge columns, etc. Very strong oscilla-
tions have been observed30,34 in all-welded structures where the damping ratio is
extremely low, sometimes less than 0.005.10,30 Welded structures are particularly
prone to fatigue failure, as the endurance limit may be only a fraction of the strength
if heavy notches, flaws, attachments, or other adverse details are present. In other
cases, the motion is intolerable because of its physiological effects or swaying of
antennas. For these reasons, suppression of vibration is often desirable.

In some cases, vibration can be reduced by increasing the structural damping.
This can be accomplished by additional dampers attached to an independent sup-
port30 or to a special mass suspended from the structure and suitably tuned or by
hanging chains35 (see Chap. 6). Columns of a few bridges were filled with gravel,
sand, or plastic balls partly filled with oil. The increase in mass may be unfavorable
but can increase the original structural damping.

Another successful method of vibration control is to break down the wake pat-
tern by providing the surface by helical “strakes” or “spoilers.”30,34,36 A suitable
height of the spoilers is about 0.1D or more with a pitch of about 5D. A significant
drawback of the spoilers is that they considerably increase the drag, sometimes by
100 percent or more.34,37

WAKE BUFFETING

If one structure is located in the wake of another, vortices shed from the upstream
structure may cause oscillation of the downstream structure.38,39 If the two structures
differ greatly in size or shape, this excitation is usually not significant. Strong vibra-
tion of the downstream structure may arise when two or more structures are identi-
cal and less than about 10 diameters apart. Then the structure in the wake is
efficiently excited by well-tuned wake buffeting and its own vortex shedding. Such
excitation has been observed with stacks and bridges, and to a certain degree with
hyperbolic cooling towers.38

GALLOPING OSCILLATIONS

Vibrations due to turbulence and vortices discussed above are induced by aerody-
namic forces which are, to a high degree, independent of the motion and act even on
stationary bodies. Quite a different kind of oscillation is induced by the aerodynamic
forces generated by the motion itself. Such forces may result from oscillatory
changes in pressure distribution brought about by the continuous change in the
angle under which the wind strikes the structure (“angle of attack”). This kind of
oscillation often has a tendency to diverge; it is called, summarily, aerodynamic insta-
bility, flutter, or self-excited oscillation. Sudden start and violent amplitudes are typi-
cal of such phenomena (Fig. 31.3C).

The mechanism of this oscillation is, in general, complex.The aerodynamic forces
may be a function of the displacements (translation and rotation), vibration velocity,
or both, and they may interact with turbulence and vortex shedding. The basic type
of the self-excited oscillations is the lateral (across-wind) oscillation induced by
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aerodynamic forces which are related to vibration velocity alone. Such oscillation is
referred to as galloping. Typical features of galloping oscillation are motion in the
direction perpendicular to that of the wind, sudden onset, large steady amplitudes
increasing with wind velocity, and a frequency equal to the natural frequency. Gal-
loping oscillation occurs in transmission lines and in a variety of structures having
square, rectangular, or other sharp-edged cross sections.

The origin of galloping oscillation depends on the relation between lift and drag.
If a body moves with a velocity u̇ in a flow having velocity V̄ perpendicular to its
direction (Fig. 31.16), the aerodynamic force acting on the body is produced by rela-
tive wind velocity V̄rel. The angle of attack of relative wind is

α = arctan (31.30)
u̇
�̄
V
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FIGURE 31.16 Cross section in flow.

The drag and lift components D and L of the aerodynamic force F are

D = CD ρhl V̄re1
2

L = CL ρhl V̄re1
2

where CD and CL are drag and lift coefficients at angle α (Fig. 31.17), h = depth of the
cross section, and l = length of the body.

The component of force F into the direction of axis Y, therefore, is

Fy = −(CD sin α + CL cos α) ρhl V̄2 sec2 α = CFy ρhl V̄2 (31.31)

where

CFy = −(CL + CD tan α) sec α (31.32)

The lateral force excites the vibration if the first derivative of CFy at α = 0 is >0, hence

A1 = 
α = 0
= −� + CD	 > 0 (31.33)

dCL�
dα

dCFy�
dα

1
�
2

1
�
2

1
�
2

1
�
2



TABLE 31.2 Coefficients A1 for Determination of Galloping Onset Wind Velocity 
(Infinite Prisms)

Cross section
(Side ratio)

Unstable in smooth flow Stable in smooth flow

Square Rect. Rect. Rect. Rect. D-section*

V →

Flow

Smooth 2.7 1.91 2.8 0 −0.03 −0.1
Turbulent ≈10

percent
intensity 2.6 1.83 −2.0 0.74 0.17 0

* Varies with Reynolds number.

This condition for aerodynamic instabil-
ity is known as Den Hartog’s criterion.40

Substitution of Eq. (31.30) into Eq.
(31.32) indicates that the aerodynamic
forces depend on vibration velocity and
thus actually represent the aerodynamic
damping. This damping is negative if A1

> 0. Because the system also has struc-
tural damping ζ, which is positive, the
vibration will start only if the total avail-
able damping becomes less than 0. This
condition yields the onset (minimum)
wind velocity for galloping from the
equilibrium (or zero displacement) posi-
tion as

V̄0 = ζ (31.34)

where fj = natural frequency, n = ρh2/(4m) = mass parameter, and m = mass of the
body per unit length. Some values of coefficient A1 are given in Table 31.2.

Galloping oscillations starting from zero initial displacement can occur only
when the cross section has A1 > 0. Cross sections having A1 ≤ 0 are generally consid-
ered stable even though galloping may sometimes arise if triggered by a large initial
amplitude.41

The response and the onset velocity are often very sensitive to turbulence. Some
cross sections, such as a flat rectangle or a D section, are stable in smooth flow 
but can become unstable in turbulent flow.41,42 With other cross sections, turbulence
may stabilize a shape that is unstable in smooth flow (see Table 31.2). From Eqs.
(31.31) and (31.32) the nonlinear, negative aerodynamic damping can be calcu-
lated43 for inclusion in the treatment of the across-wind response due to atmospheric
turbulence.

The prediction of oscillations for wind velocities greater than V0 depends on
the shape of the CFy coefficient and requires the application of nonlinear the-

2πfjh
�
nA1
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FIGURE 31.17 Lift and drag as function of
angle of attack.



ory.41–45 A few typical cases are shown in Fig. 31.18. The cases are typical of a
square cross section, a flat rectangular section, and a D section whose angle of
attack is allowed to change due to drag. Similar response can be expected with
other cross sections.

Torsion can also participate in galloping oscillations and play an important part
in the vibration.This is the case with angle cross sections46 and bundled conductors.47

The quasi-steady theory of pure torsional galloping can be found in Ref. 48. A solu-
tion of coupled galloping is presented in Ref. 49.

Galloping often appears in overhead conductors which also vibrate due to vortex
shedding. Vortex shedding produces resonant vibration in a high-vibration mode.
Galloping usually involves the fundamental mode and is known to occur when the
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FIGURE 31.18 Typical lateral force coefficients CFy and corresponding galloping
oscillations: (A) vibration from equilibrium position, (B) vibration triggered by initial
amplitudes, and (C) vibration with variable angle of attack.



conductor is ice-coated or free of ice. The vibration often leads to fatigue failures,
and various techniques are therefore used to reduce the amplitude. This can be
achieved by means of resonant dampers50 consisting of auxiliary masses suspended
on short lengths of cable which dissipate energy through the bending (see Chap. 6),
or aerodynamic dampers51 consisting of perforated shrouds. Vibrations of bundled
conductors can be eliminated by twisting the bundle45 and thereby changing the
aerodynamic characteristics in the spanwise direction.

VIBRATION OF 

SPECIAL STRUCTURES

The basic types of vibration discussed above are common in many structures. How-
ever, there are some special structures which would require individual treatment. A
few examples are cited below.

Guyed towers experience complicated vibration patterns because of the nonlin-
earity of the guys, the three-dimensional character of the response, the interaction
between the guys and the tower, and other factors.30,52–54

Hyperbolic cooling towers can suffer from some of the effects of wake buffeting38

and are susceptible to turbulence.55

Information on the vibration of a number of special structures can be found in
Refs. 4 to 7.
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CHAPTER 32
VIBRATION OF 

STRUCTURES INDUCED 
BY SOUND

John F. Wilby

INTRODUCTION

Vibration of structures due to interaction with a surrounding fluid can occur in 
a variety of ways. Chapters 30 and 31 are concerned with several fluid flow 
phenomena—waves, vortices, and wind—that induce vibration in an adjacent struc-
ture. The intent in Chap. 32 is to address the response of structures to acoustic and
aeroacoustic excitations, where the term aeroacoustic includes sources, such as tur-
bulent boundary layers, that have many characteristics similar to those of an acoustic
field.The excitations can be deterministic or random in nature, as defined in Chap. 1,
depending on the particular source.

Sound-induced vibration can result in sound radiation to other regions, acoustic
fatigue (also known as sonic or high-cycle fatigue) of the structure being excited, or
transmission of vibration to attached equipment causing malfunction or failure.
Interest is often centered on aerospace applications where structures are light-
weight and sound levels are high. In that case, there is the likelihood of damage to
the primary structure of an aerospace vehicle, payloads in a launch vehicle, or the
equipment mounted on the structure. However, structural vibration due to acoustic
excitation occurs in a wide range of other environments including building damage
and vibration of equipment in microelectronics manufacturing facilities.

Different acoustic and aeroacoustic sources will be described, followed by a dis-
cussion of methods for predicting linear and nonlinear response of structures to an
acoustic or aeroacoustic excitation. Then, the problem of acoustic fatigue will be
addressed. Finally, test methods for the measurement of structural response to
acoustic and aeroacoustic excitations will be identified.

SOUND SOURCES

Acoustic and aeroacoustic pressure fields may be deterministic or random, sta-
tionary or nonstationary, and homogeneous or inhomogeneous (see definitions in

32.1



Chap. 1). Deterministic pressures are periodic or almost-periodic (see Chap. 19)
and can be described by time-dependent functions, whereas random pressures can
be described only in statistical terms (see Chap. 19). Stationary pressure fields have
properties that, on the average, are invariant with time. That is not true of nonsta-
tionary pressure fields, which can include impulsive excitations such as blast waves
and sonic booms. Homogeneous pressure fields have properties that, on the aver-
age, are the same at any location on a structure, whereas inhomogeneous pressure
fields have properties that change with location.The term aeroacoustic is used here
in a general sense to include sound produced by fluid flow or by interaction of
flows with solid bodies, and fluctuating aerodynamic pressures such as those
beneath a turbulent boundary layer. For convenience, and without loss of general-
ity, both acoustic and aeroacoustic pressure fields will be referred to herein as
sound fields.

One important characteristic of a sound field is that the fluctuating pressures are
distributed over a large area, if not the entire surface, of the excited structure, and
usually consist of a wide range of frequencies that includes several modes of vibra-
tion of the structure.The response of the excited structure depends on several prop-
erties of the sound field—sound pressure, frequency content, spatial distribution of
pressure level and phase, and duration of exposure. The spatial characteristics of a
random pressure field are best described in terms of the pressure cross-spectrum
(see Chap. 19), although narrowband correlation functions have been used as equiv-
alent representations (see Chap. 24). Sound pressures encountered in everyday life
cover a range of many orders of magnitude.Thus, it is convenient to express them in
terms of a logarithmic quantity called the sound pressure level, Lp, which is
expressed in terms of decibels (dB) and is defined by

Lp = 10 log �  = 20 log �  dB (32.1)

where prms is the root-mean-square (rms) value of the sound pressure and pref is a ref-
erence pressure that has been established by international standard to be pref = 20
μPa in air. The common reference for underwater sound pressures is pref = 1 μPa.

The range of sound pressure levels encountered in practice is demonstrated by
the typical values listed in Table 32.1. The levels vary from 0 dB at the threshold of
human hearing to 170 dB or more on some surfaces of aerospace vehicles, well
above the threshold of pain for a human. Typical sound pressure levels near a busy
highway are on the order of 80 dB, and noisy machinery can generate sound pressure
levels of about 100 dB at the operator’s position.

Structural response to sound is of interest in a variety of situations but, as indi-
cated by Table 32.1, the most intense sound fields can be found in aerospace appli-
cations. Thus, aerospace vehicle sound sources are of special interest and provide a
wide range of characteristics. The sources include the exhaust of jet and rocket
engines, propellers and fans, powered lift devices, turbulent boundary layers, oscil-
lating shock waves, and sonic booms.1 In many cases, the pressure field is neither sta-
tionary nor homogeneous. However, it is often acceptable to assume stationarity and
homogeneity when predicting the response of a structure, if the variations in space
and time are gradual. There are exceptions to this assumption, for example, pro-
peller noise where the pressure field is strongly inhomogeneous with the sound
pressure levels being very high in the plane of rotation of the propeller and decreas-
ing rapidly in the forward and aft directions.A survey of near-field pressure fields on
flight vehicles can be found in Ref. 2.

prms�
pref

p2
rms�

p2
ref
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Although the following discussion on sound sources is directed toward aerospace
vehicles, it should be viewed more generally in terms of sound-generating mecha-
nisms that can be found in a wide range of situations. For example, the high-velocity
gas exhaust from a pressure relief valve has acoustical characteristics similar to
those of a jet engine exhaust. Axial fans in air-conditioning systems or gas-cooled
nuclear reactors have noise-generating mechanisms similar to those of a turbofan
engine. Also, regions of flow separation on an automobile can have characteristics
that are similar to those for separated flow on an airplane.

JET AND ROCKET EXHAUSTS

Jet and rocket noise is generated by interaction between the turbulent exhaust of the
jet or rocket engine and the surrounding air. At low exhaust velocities, below about
1000 ft/sec (300 m/sec), the acoustic power generated by the exhaust is proportional
to the eighth power of the exhaust velocity Vj. However, as the velocity increases, the
index decreases until, for rocket exhausts, where the exhaust velocity is of the order
of 9000 ft/sec (2750 m/sec), the acoustical power is proportional to the third power
of velocity. As the mechanical power of a rocket exhaust is also proportional to V j

3,
the acoustical power of a rocket exhaust is usually expressed in terms of an effi-
ciency factor η, which is the ratio of acoustical power Wa to mechanical power Wm.
That is,

Wa = ηWm = 0.5ηTVj (32.2)

where T is the thrust of the rocket engine. Typical values of η are 0.5 to 1.0 percent
for an undeflected exhaust, but can be lower for a deflected exhaust.3,4

Since jet noise levels are determined by the relative velocity between the exhaust
and the surrounding air, the noise levels will decrease as the vehicle accelerates at
takeoff or liftoff, the highest levels occurring when the vehicle is stationary.This vari-
ation of noise level with vehicle speed means that the noise levels are nonstationary,
although they can be considered as stationary over short time periods.
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TABLE 32.1 Typical Sound Pressure Levels for Different Environments

Sound pressure
level Lp

(dB re 20 μPa) Environment

170 Jet noise on aircraft surface
160 Immediate hearing damage
140 Threshold of pain
120 Jet airplane takeoff at 1500 ft (500 m)
100 Punch press and wood planers at 3 ft (1 m)

90 Power mower at 3 ft (1 m)
80 Truck at 60 ft (20 m)
70 Automobile at 60 ft (20 m)
50 Conversation level, A-weighted, in a free field, at 3 ft (1 m)
40 Quiet residential neighborhood
20 Recording studio, A-weighted

0 Threshold of hearing



Jet noise is strongly directional, with the highest sound pressure levels in the far
field occurring at angles of 30 to 50° to the jet axis, the angle being dependent on the
exhaust velocity. The situation is not so well defined in the near field, where the air-
craft structure is located. Representative near-field pressure contours can be found
in Refs. 4 to 7, and typical contours are shown in Fig. 32.1.7
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FIGURE 32.1 Jet noise near-field sound pressure levels. D = nozzle diameter, x = distance
downstream of nozzle, y = distance from jet axis. (Reproduced with permission of ESDU Inter-
national.7)

Jet noise spectra are broadband and peak at different frequencies for different
locations in the near field.5–7 The spectra can be normalized in terms of a nondimen-
sional frequency using jet nozzle diameter D and jet velocity Vj as the normalizing
parameters. Then, the frequency of the spectral peak lies in the range 0.1 < fD/V <
1.0, depending on location relative to the nozzle, as shown in Fig. 32.2.7

The spatial distribution of the pressure phase for a jet noise near field can be pre-
sented in terms of the band-limited (e.g., one-third-octave band) cross-correlation
function5,8,9 (see Chap. 24) or the normalized cross–spectral density function γp(ξ,f)
(see Chap. 19), since the two functions are equivalent. Typical measured values of
γp(ξ,f) for jet noise pressures close to a jet8,9 are shown in Fig. 32.3. Frequency f is
normalized with respect to separation distance ξ and the trace wavespeed of the inci-
dent sound, in order to permit scaling from one situation to another. Trace
wavespeed Vt is the wave speed of the incident sound when projected onto the sur-
face of the excited structure. Thus, for sound waves of speed c incident at an angle θ
to the normal to the surface, the trace wavespeed is c/sin θ. The value of Vt is often
frequency dependent and, in the case of the data in Fig. 32.3, has values of 1.43c,
1.25c, and 1.0c for frequencies 400, 500, and 800 Hz, respectively.These values of the



trace wavespeed correspond to angles of incidence of 44, 53, and 90°, respectively.
The different angles of incidence are associated with the different locations in the jet
exhaust of the effective noise sources for different frequencies. Figure 32.3 refers to
measurements made in a plane passing through the jet axis. Corresponding infor-
mation in a direction perpendicular to that plane are less well defined.

For convenient substitution into analytical models, the normalized cross-spectrum
is often represented as an exponentially decaying cosine, with the general form

γp(ξ,f) = e−ak|ξ| cos (kξ) (32.3)

where a is a decay parameter and k is the wave number of the pressure field, where
wave number is defined by

k = = (32.4)

Curves of γp(ξ,f) are shown in Fig. 32.3 for three values of the decay parameter a,
namely, 0.05, 0.07, and 0.10.

Supersonic jet exhausts that are under- or overexpanded contain shockwaves
that result in the generation of additional broadband noise and discrete frequency
screech.1 The screech consists of a fundamental component, whose frequency is a
function of nozzle pressure ratio or flow Mach number, and several harmonics. The
directivity of the screech noise is a function of harmonic order, with the fundamen-
tal having a maximum in the upstream direction and the second harmonic having a
multilobed directivity pattern with peaks in directions perpendicular to the flow
direction, as well as in the upstream direction.

2πf
�
Vt

ω
�
Vt
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FIGURE 32.2 Normalized sound pressure spectra for several locations in jet noise near
field. V = jet velocity; D, x, y, as defined in Fig. 32.1. (Reproduced with permission of ESDU
International.7)
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FIGURE 32.3 Example of normalized cross-spectral density function for jet noise near-field pres-
sures. Test data collapsed with trace velocity Vt = 1.43c (200, 400 Hz), 1.25c (500 Hz), and 1.0c (800
Hz). Continuous plots represent Eq. (32.3) with decay parameter a = 0.05, 0.07, and 0.10. (Data from
Richards and Mead.9)

ENGINE EXHAUST FLOWS

Powered lift aircraft utilize the exhaust from the engines to augment the lift gener-
ated by the wing and increase the effectiveness of the control surfaces, utilizing sys-
tems such as upper surface blowing and externally blown flaps.1 By so doing, the
surfaces of the aircraft are exposed to high sound pressure levels that are a combi-
nation of acoustic and aeroacoustic pressures. For example, sound pressure levels of
up to 165 dB were measured on an airplane with upper surface blowing.10 In addi-
tion, the structure was heated to a temperature of 500 to 700°F (260 to 370°C). A
similar situation exists on stealth aircraft where the engine exhaust flows over the
upper surface of the aft structure so that the gases are cooled before they can be
observed from below.10 Sound pressure levels greater than 180 dB are predicted in
the neighborhood of the exhaust flows on hypersonic aircraft.10–12

PROPELLERS AND FANS

Propeller or fan noise consists of both broadband and discrete frequency compo-
nents, but the pressure spectrum is dominated by discrete frequency components at
the blade passage frequency of the propeller or fan and harmonics thereof. The
blade passage frequency fb is given by

fb = (32.5)
ΩB
�
60



where Ω is the rotational speed (rpm) of the propeller or fan and B is the number of
blades. The spectra for counter-rotating propellers are more complex, with blade
passage frequency components for each of the propellers plus interaction tones,13 as
shown in Fig. 32.4. The spectrum in the figure also contains components for each
individual blade of the propeller, because the blades are not identical.
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FIGURE 32.4 Spectrum for near-field sound pressure levels of high-speed, counter-rotating propeller
with 8 and 10 blades. BPF(8) and BPF(10) denote blade passage frequencies for 8- and 10-blade pro-
peller stages, respectively. (Simpson, Druez, Kimbrough, Brock, Burge, Mathur, Cannon, and Tran.13)

Sound pressure levels on the fuselage of multiengined general aviation aircraft
are typically of the order of 130 dB at the blade passage frequency. High-speed pro-
pellers, with tip speeds that are supersonic under cruise conditions, have higher
sound pressure levels on the order of 150 dB.13

Cross-spectrum measurements of propeller noise on a general aviation airplane14

show that the pressure field in the plane of rotation is an aerodynamic potential field
that rotates with the propeller blades. Forward and aft of the plane of rotation the
pressure field is acoustic and has the characteristics of propagating acoustic waves gen-
erated by sources located near the tips of the propeller blades.The spatial distribution
of the cross-spectrum phase is more complicated for counter-rotating propellers.15

TURBULENT BOUNDARY LAYER

The dominant fluctuating pressures acting on launch vehicles, missiles, and aircraft
in high-speed flight are associated with the turbulent boundary layer on the external
surfaces of the vehicle. Similar fluctuating pressure fields are also encountered on
other moving vehicles including automobiles, particularly around the windshield,
and high-speed elevators. These pressure fields have many of the characteristics of
an acoustic pressure field, but the convection velocity of the pressure fluctuations



over the surface may be subsonic in contrast to an acoustic field where the trace
velocity is always equal to, or greater than, the speed of sound in the fluid.There are
also differences in the cross-spectra.

Measurements of turbulent boundary layer pressure fluctuations have been
made in wind tunnels, on aircraft in flight, and underwater.9,16–18 The measurements
have included both subsonic and supersonic flow conditions, but the emphasis has
been on subsonic conditions.A combination of analytical and empirical methods has
resulted in representations for the various characteristics of turbulent boundary
layer pressure fields for both attached and separated flow.

For an attached turbulent boundary layer, taking into account compressibility
effects, the rms pressure prms can be expressed as a function of Mach number, in rela-
tionships such as19

= (32.6)

where q is the dynamic pressure of the flow, given by q = 1⁄2ρV2 where V is velocity, ρ
is the density of the fluid, and M is the flow Mach number, defined at some location
such as free stream or the edge of the boundary layer. Corresponding relationships
can be developed for separated flow conditions.

The pressure spectrum Gp(ω) for an attached turbulent boundary layer is broad-
band and can be represented by a relationship of the form19

= (32.7)

where κ is a function of flow Mach number, V is the flow velocity, and δ* is the
boundary layer displacement thickness. The boundary layer displacement thickness
is the distance that the surface beneath the boundary layer would have to move out-
ward and normal to itself to account for the differences in the rate of mass flow with
the boundary layer present and, hypothetically, without the boundary layer. Sepa-
rated turbulent boundary layers in the neighborhood of steps, ramps, and other sur-
face discontinuities have higher pressure levels at low frequencies than is the case
for attached boundary layers, as shown in Fig. 32.5.18 Pressure spectrum and fre-
quency are normalized in Fig. 32.5 with respect to boundary layer thickness δ rather
than boundary layer displacement thickness δ*. Boundary layer thickness can be
defined as the distance from the surface at which the flow velocity reaches 99.5 per-
cent of the free stream velocity. Equation (32.7) can be modified to take into account
the low-frequency shifts seen in Fig. 32.5 by replacing κ with Cκ, where C > 1. The
presence of oscillating shockwaves further increases the low-frequency component
of the pressure spectrum,18 as can be seen in Fig. 32.5.

Normalized cross-spectra or band-limited cross-correlation functions have been
measured for attached turbulent boundary layers.16,17 The measured data indicate
that the normalized cross spectrum is dependent on the thickness of the boundary
layer δ as well as on the convection speed Vc of the pressure field and the separation
distance ξ between the measuring points. Empirical relationships such as20

γ(ξ,ω) = exp �−�� 	
2

+ � 	
2


0.5

|ξ|� cos � 	 (32.8)

have been proposed for attached turbulent boundary layers. There is little corre-
sponding information for separated boundary layers, where the flow is much more
complicated.

ωξ
�
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�
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�
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��
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FIGURE 32.5 Pressure spectra beneath different turbulent boundary
layers in supersonic flow. Gp(f) = 2πGp(ω), V = flow velocity, q = flow
dynamic pressure, δ = boundary layer thickness. (Coe, Chyu, and Dods.18)

IMPULSIVE SOUNDS

Impulsive sounds, such as sonic booms generated by airplanes in supersonic flight1,21

and blast waves from explosions, can cause transient vibration of a structure.

ANALYTICAL METHODS

It is often assumed in the analysis of structural response to acoustic excitation that
the structure responds in a linear manner, so that there is a linear relationship
between excitation force and structural response. However, this assumption may not
be valid when the acoustic excitation levels are high. In that case the response is non-
linear.



LINEAR ANALYSIS

Several different methods can be used to calculate the linear response of a structure
to acoustical excitation. They include classical normal mode analysis, statistical
energy analysis, and finite element analysis. Each method has its own advantages
and disadvantages.

Classical Normal Mode Analysis. In the classical modal formulation,9 the acceler-
ation autospectrum Ga(x,ω) for location x and angular frequency ω can be written as

Ga(x,ω) = ω4A2Gp(ω) �
r

�
s

ψr(x)ψs(x)Hr(ω)Hs*(ω)j2
rs(ω) (32.9)

where A is the area of the structure exposed to the excitation, Gp(ω) is the excitation
pressure spectrum, ψr(x) is the mode shape of mode of order r, Hr(ω) is the structural
mode response function, j2

rs(ω) is the cross acceptance that describes the spatial cou-
pling between the excitation pressure field and the structural mode shapes, and an
asterisk denotes a complex conjugate. The cross acceptance is defined by

j2
rs(ω) = �� Gp(x, x′ ,ω)ψr(x)ψs(x′ )dxdx′ (32.10)

where Gp(x,x′ ,ω) is the excitation pressure cross spectrum and the structural mode
response function is defined by

|Hr(ω)|2 = Mr
−2[(ωr

2 − ω2)2 + ηr
2ωr

4]−1 (32.11)

where ηr is the damping loss factor (ηr = 2ζ r, where ζ r is the damping ratio), Mr is the
modal mass, and ωr is the resonance frequency of mode r. The modal mass is defined
as

Mr = �
A

mψr
2(x)dx (32.12)

where m is the mass per unit area for a panel of area A. For a uniform panel with
simply supported boundaries, Mr = mA/4. Prediction methods for ωr can be found in
Chap. 7.

If the damping is small and the fluid loading is negligible (which is usually true in
air but not in water), the vibration is dominated by the response at the resonance
frequencies and contributions from the cross terms (r ≠ s) can be neglected. Then
Eq. (32.9) becomes

Ga(x,ω) = ω4A2Gp(ω) �
r

ψr
2(x)|Hr(ω)|2jr

2(ω) (32.13)

In Eq. (32.13), the cross acceptance of Eq. (32.10) is replaced by the joint acceptance

j r
2(ω) = �� Gp(x, x′ ,ω)ψr(x)ψr(x′ )dxdx′ (32.14)

Assuming that the structure has simply supported boundaries, and Gp(ω) and jr
2(ω)

vary slowly with ω in frequency band Δω, the space-average, mean square response
in frequency band Δω is

[a2]Δω ≈ Gp(ω) �
r

jr
2(ω) �

Δω
|Hr(ω)|2dω (32.15)

ω4A2

�
4

1
�
A2Gp(ω)

1
�
A2Gp(ω)
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For small damping

�
ω

|Hr(ω)|2dω ≈ (32.16)

and Eq. (32.15) reduces to

[a2]Δω ≈ Gp(ω) �
r � Δω

(32.17)

The notation r � Δω signifies that the summation is over all modes of order r whose
resonance frequency ωr lies in the frequency band Δω. From Eq. (32.17), the accel-
eration spectral density, averaged in space and frequency, is

〈Ga(ω)〉A,Δω = ≈ Gp(ω) �
r � Δω

(32.18)

where 〈 〉A,Δω denotes averaging over area A and frequency band Δω. It can be seen
in Eqs. (32.13), (32.17), and (32.18) that the two functions representing the excitation
pressure field are the pressure autospectrum, Gp(ω), and the joint acceptance, jr

2(ω).
The classical normal mode approach of Eq. (32.13) is an accurate way to predict

structural response to acoustic or aeroacoustic pressure fields, provided that the rel-
evant details of the structure and pressure field are known and represented cor-
rectly. However, that is often not the case. It is difficult to obtain the cross-spectrum
data for the pressure field, and approximations have to be made. Also, an accurate
description of the normal modes and resonance frequencies of the structure is not
always available, especially for complicated structures. Experimental procedures
(see Chap. 21) and analytical methods, such as finite element analysis (see Chap. 23),
might be used to obtain normal mode information, but both methods become
increasingly inaccurate as frequency increases. One solution is to resort to averaging
techniques such as Eq. (32.17) or (32.18), but that has the disadvantage of eliminat-
ing some of the details in the results. Statistical energy analysis (see Chap. 24) is a
further step in the averaging process.

Analysis of structural response to sound underwater is complicated by the fact
that fluid loading is no longer negligible and has to be included in the analytical
model.22,23 The effect of fluid loading depends on whether the frequency of interest
is below or above the critical frequency, which is defined as the frequency at which
the trace wavespeed of the sound field is equal to the wavespeed of the flexural or
bending waves in the structure. At frequencies below the critical frequency, fluid
loading essentially acts as an entrained mass that has to be included as a second mass
term in the equations of motion.23 At frequencies above the critical frequency, the
fluid loading influences the radiation resistance and the sound radiation into the
fluid.23

Joint Acceptance. The joint acceptance function describes the efficiency by
which a particular pressure field can excite a structure. For a given pressure spec-
trum Gp(ω), different types of excitation, with different joint acceptance functions,
will generate different vibration levels in the responding structure. For example, tur-
bulent boundary layer pressure fluctuations will produce different vibration levels
than will jet noise of the same pressure level.

Simplifying assumptions are usually introduced so that the joint acceptance can
be obtained in closed form. Specifically, it is commonly assumed that the pressure

jr
2(ω)

�ωr
3Mr

2ηr

ω4A2π
�
8Δω

[a2]Δω
�Δω

jr
2(ω)

�ωr
3Mr

2ηr

ω4A2π
�

8

π
�
2ωr

3ηrMr
2
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field is homogeneous, so that x and x′ can be replaced by ξ, where x′ − x = ξ.The vec-
tor ξ has components ξx and ξy in the x and y directions, respectively. Also, it is
assumed that the joint acceptance is separable in the x and y directions. Finally, it is
assumed that the structure is simply supported at the boundaries. Then, the compo-
nent of the joint acceptance in the x-direction is

j2
m(ω) = �

Lx
� γx(ξx,ω) cos (kxξx) sin � 	 sin � 	dxdx′ (32.19)

with

γx(ξx,ω) = (32.20)

and mode order r � (m,n). Similar relationships apply in the y-direction.
Closed-form joint acceptance functions for three different types of excitation,

namely, attached turbulent boundary layer, jet noise, and diffuse (reverberant)
sound field, are given in Ref. 20. Typical nondimensional joint acceptance curves
based on Eqs. (32.19), (32.20), and (32.3) are shown in Fig. 32.6, for the case where
the decay parameter a in Eq. (32.3) has a value of 0.1. The joint acceptance for the
first mode shape (n = 1) has a maximum value at zero wave number or frequency,

|Gp(ξx,0,ω)|
��

Gp(ω)

mπx′
�

Lx

mπx
�

Lx

1
�
A2
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FIGURE 32.6 Joint acceptance curves based on Eqs. (32.19), (32.20), and (32.3), with decay param-
eter a = 0.1. L = length of panel, m = mode order, k = excitation wave number [Eq. (32.4)].



but the joint acceptance for each of the other modes has a maximum value at a
nonzero value of frequency. Those maxima for the higher-order modes occur when
the wave number of the excitation is equal to the flexural wave number for the struc-
tural mode, a condition known as coincidence.

Statistical Energy Analysis. Statistical energy analysis (SEA) makes the general
assumption that it is not practical to represent all the details of a structure in a given
response prediction procedure (see Chap. 24). Thus, ensemble averaging is per-
formed over a series of similar, but slightly different, structures to obtain an average
response. In practice, ensemble averaging is time-consuming, so it is replaced by fre-
quency averaging.

Equation (32.18) leads to a typical SEA relationship for simply supported panels,
specifically,

〈Ga(ω)〉A,Δω = Gp(ω) (32.21)

where 〈 〉Δω denotes averaging over frequency, nr(ω) is the modal density of the struc-
ture, and m is the mass/unit area of the panel (assumed uniform). The frequency-
band-averaged joint acceptance is

〈jr
2(ω)〉Δω = �

N

r = 1
jr
2(ω) (32.22)

where N is the number of modes with resonance frequencies in frequency band Δω.
The modal density of the structure is defined by

nr(ω) = (32.23)

For a flat panel,

n(ω) = (32.24)

where h is the panel thickness and cL is the longitudinal wave speed in the structure
given by

cL = �� (32.25)

In Eq. (32.25), E is Young’s modulus of the structural material, ρ is the material den-
sity, and v is Poisson’s ratio.

The use of SEA techniques to simplify the analysis has the advantage that the
response can be calculated to high frequencies with minimum computing time, but
there is the disadvantage that the use of space- and frequency-averaging methods
means that structural response cannot be predicted for a specific point on the struc-
ture nor at a specific frequency. Additional methods have to be used to supplement
the SEA calculations.

SEA is of limited value at low frequencies where modes are sparse (N < 3, say).
The method can still be used but the variance of the results becomes large.24 Further
discussion on statistical energy analysis can be found in Chap. 24.

E
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Finite Element Analysis. In finite element analysis (FEA), a continuous struc-
ture is modeled as an array of grid points connected by appropriate elements (see
Chap. 23). This means that the continuously distributed sound pressure field has to
be represented as an array of discrete forces applied at the grid points. The forces
have to be given autospectral functions that take into account the frequency charac-
teristics and amplitudes of the excitation pressure field, and the structural area
attributed to each grid point. In addition, the forces at each pair of grid points have
to be assigned the appropriate cross-spectrum function based on the spatial separa-
tion between the grid points.

The response of the structure at location x can be calculated using relationships
of the form25

Ga(x,ω) = �
q

j = 1
�
q

k = 1
Hjx*T(ω) Gjk(ω) Hkx(ω) (32.26)

where Hjx(ω) is the frequency response function between the jth input and the
response location x, Gjk(ω) is the cross-spectrum between the jth and kth inputs, Aj is
the area associated with the jth input, and Ax is the area associated with the response
location.The frequency response function Hjx*T(ω) is the transpose of the complex con-
jugate of Hjx(ω). Basic details of the finite element method can be found in Chap. 23.

Successful application of FEA to the calculation of the response of a structure to
acoustic or aeroacoustic pressure fields requires that there be an adequate number
of degrees of freedom in the finite element model and an appropriate representa-
tion of the pressure field auto and cross spectra. In principle, finite element methods
can be applied over the entire frequency range of interest, but that is not necessarily
true in practice. As frequency and number of modes increase, it becomes more diffi-
cult to provide an accurate description of the structure including boundary condi-
tions. It also becomes more difficult to represent the details of the pressure field
cross spectrum. Finally, the time required to perform the necessary computations
can become excessive. Thus, the finite element method suffers from the same disad-
vantages as does the classical normal mode method.

Hybrid Finite Element-Statistical Energy Analysis. There is often a midfre-
quency range where neither statistical energy analysis nor finite element analysis is
particularly suitable for the prediction of structural vibration. A hybrid SEA-FEA
method or, more generally, a statistical-deterministic method, combines SEA and
FEA methods for application at these midfrequencies. Components of a structure,
such as panels, that have short wavelength response are represented by SEA sub-
systems, and components, such as stiff beams, having long wavelength response are
modeled using FEA. Then, the two representations can be coupled through the
dynamic stiffness matrix.26

Damping. It is obvious from Eqs. (32.17) and (32.18) that damping is an important
parameter in determining the magnitude of the structural response to acoustic or
aeroacoustic excitation, since the mean square acceleration is inversely proportional
to the damping loss factor ηr. The damping loss factor in Eq. (32.17) is composed of
three components, as follows:

ηr = ηr,struc + ηr,rad + ηr,aero (32.27)

The structural loss factor, ηr,struc, represents the damping due to material properties
of the structure and mechanisms such as gas pumping at riveted joints and slip

Ax�
Ak

Ax�
Aj
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damping (see Chap. 35). It also represents damping due to any applied treatments
(see Chap. 36). The radiation damping loss factor, ηr,rad, represents damping associ-
ated with the radiation of sound as a consequence of the vibration of the structure.
This can be a significant contribution for structures such as composite structures that
are very lightly damped. For structures in vacuo, ηr,rad = 0.The aerodynamic damping
loss factor, ηr,aero, represents the damping associated with the presence of nonzero
mean flow over the structure. Additional information on the damping of structures
can be found in Refs. 27 and 28.

NONLINEAR VIBRATION

When excitation sound levels become too high, the response of a structure becomes
nonlinear and linear analysis methods for the prediction of structural vibration are
inaccurate. There are several situations where nonlinear response can be important.
They include vibration where the displacement of the structure is no longer small
with respect to the panel thickness, rattle induced by impulsive or low-frequency
noise, and snap-through response of curved or buckled plates. Snap-through motion
occurs when the local curvature of a panel that is curved by design or by buckling,
jumps from one direction to another. Buckling can be caused, for example, by ther-
mal stresses induced by high temperatures. Nonlinear response can be in the form of
a hardening or softening spring (see Chap. 4), or instability conditions with snap-
through motion.

Response characteristics often associated with nonlinear vibration are (1) the
response amplitude no longer increasing in proportion to the amplitude of the exci-
tation, (2) the resonance frequencies of the response modes changing with excita-
tion amplitude, and (3) broadening of resonance peaks, which is attributed to
nonlinear damping. The first two phenomena are demonstrated in Fig. 32.7, which
shows the response of a panel to a sound field generated by a siren.29 The response
in the first mode, in terms of amplitude and resonance frequency, becomes nonlinear
when the sound pressure reaches a level of about 102 dB.

Various approaches have been developed for the prediction of nonlinear
response of a structure to acoustic excitation,30–33 but they often have very limited
application. Characteristics of nonlinear vibration and several approximate methods
for analyzing the vibration are reviewed in Chap. 4. Nonlinear analytical methods
that give closed-form quantitative results are usually limited to simple structures.
Approximate methods are usually required for complex structures such as those
found in aerospace applications. Other approaches include numerical methods, such
as the Monte Carlo approach, and finite element methods using nonlinear element
stiffness matrices. However, the methods are often restricted to simple acoustic
pressure fields such as (1) plane waves at normal incidence, with the pressure uni-
form in both amplitude and phase over the entire surface of the structure; (2) plane
acoustic waves at grazing incidence; or (3) uncorrelated pressure fields. Further-
more, structural response is often limited to a single mode.

The Monte Carlo method33 is based on the numerical generation of a large num-
ber of random, sample excitations and the calculation of the response to each sam-
ple. The method can be used for both linear and nonlinear responses to random
excitations, and it could be a feasible approach for nonlinear vibration where closed-
form or approximate solutions are not possible, although the method requires the
use of high-speed digital computers. One example of a second-order, nonlinear
equation of motion for a panel is

VIBRATION OF STRUCTURES INDUCED BY SOUND 32.15



FIGURE 32.7 Nonlinear stress response characteristics for flat panel exposed to siren excitation. Panel with
clamped edges, panel length = 12 in. (0.30 m). (Mei.29)
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d2Xij/dt2 + 2ζijωij(dXij/dt) + ω2
ijXij + N(Xij,dXij/dt) = Fij(t) (32.28)

where Xij are the components of generalized coordinates, ωij are the natural fre-
quencies of a linear system, ζij are the modal damping coefficients, N is the nonlinear
system operator, and Fij(t) are the generalized random forces.

The time-domain Monte Carlo method consists of three basic steps:33 (1) random
inputs for Fij(t) are generated using simulation procedures of random processes; (2)
the equations of motion, such as Eq. (32.28), are solved numerically for each random
value of Fij(t); and (3) statistical moments and other needed quantities of the ran-
dom response Xij(t) are computed for ensemble averages. If the system is ergodic
(see Chap. 1), the ensemble averaging can be replaced by time averaging, with a sav-
ing in computing time.

In many aerospace situations, the structure is exposed to high temperatures and
the structural vibration is strongly dependent on thermal stresses induced by a ther-
mal environment. The effect is taken into account in some procedures by applying
the acoustic and thermal loads in sequence. A more appropriate analysis of nonlin-
ear response of aerospace structures considers acoustic and thermal loads simulta-
neously.30

Structural damping is often represented as linear damping. However, nonlinear
damping can be represented, for example, by replacing linear damping in Duffing’s
equation (see Chap. 4) with a nonlinear damping term34 such as ωoη(1 + αq2)dq/dt.

ACOUSTIC FATIGUE

Acoustically induced structural vibration results in oscillating stresses. The stress
levels may be low but, because of the frequencies involved, typically 100 to 500 Hz,
the number of stress reversals can be large enough at stress concentration points to
create fatigue cracks. This phenomenon is called high-cycle fatigue, acoustic fatigue,
or sonic fatigue.35,36 Most examples of failures induced by sonic fatigue occur in air-
craft structures in the form of skin failures along rivet lines, skin debonding in sand-
wich panels, and failure in internal attachment structures.5,6

In many cases the stresses induced by acoustic pressure fields are dominated by
response in the first mode of vibration of a panel, and the acoustical wavelength is
large relative to the dimensions on the panel. Then, the sound pressures are essen-
tially in phase over the panel, and details of the pressure correlation are of minor
importance.The mean square stress σ2(t) can be estimated using the approximation6

σ2(t) ≈ K fnGp(fn)� 	
2

(32.29)

where fn is the frequency of the dominant mode of order n, Gp(fn) is the spectral den-
sity of the excitation pressure at frequency fn, η is the damping ratio, and σo is the
stress at the point of interest due to a uniform static pressure of magnitude Fo. Equa-
tion (32.29) is based on early work for a single-degree-of-freedom system. The fac-
tor K is included in Eq. (32.29) so that the equations can be modified to fit particular
structural configurations and materials. There are cases where acoustic fatigue is
caused by vibration of several modes, not just one. Thus, alternative prediction pro-
cedures are required that extend the approach in Eq. (32.29) to higher-order modes
and complex shapes, and estimate the influence of acoustical wavelength.12

It is apparent from Eq. (32.29) that increasing the damping of a structure would

σo�
Fo

π
�
4η
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decrease the stresses. Thus, the application of damping material will reduce the like-
lihood of acoustic fatigue. For example, damping treatment was applied to the fuselage
structure of a test airplane with high-speed propellers to minimize the likelihood of
acoustic fatigue in the plane of rotation of the propellers.13 Applied damping tech-
niques are described in Chap. 36 and the wider aspects of passive vibration control
are discussed in Ref. 37.

LABORATORY TESTING OF STRUCTURES 

AND EQUIPMENT

Laboratory tests are often required to supplement or validate analysis, evaluate new
structural designs, or develop a database of fatigue life for different environmental
conditions or for new materials, especially composites. Acoustical environments of
aircraft and space vehicles can reach overall sound pressure levels in the range
170–180 dB in local areas. Consequently, there is a need to develop similar levels in
the laboratory with the appropriate frequency distributions. Two test environments,
the progressive wave tube and the reverberant chamber, are used for many of the
laboratory tests. The purposes of the testing are to find weak points in the structural
design or in the manufacturing process, or to determine whether or not the structure
will have a satisfactory fatigue life (see Chap. 18). The progressive wave tube and
reverberant chamber play different roles in this process.

PROGRESSIVE WAVE TUBES

A progressive wave tube consists of duct with a sound source at one end and a sound-
absorbing termination at the other end. It is used to expose structural components,
such as a panel, to high-intensity sound pressure levels for long periods of time so as
to evaluate the susceptibility of the structure to acoustic fatigue.The test structure is
mounted in one wall of the tube and exposed to sound waves traveling along the
tube at grazing incidence.9,10,38,39 Relatively small test specimens are used because of
the difficulty of generating, in the laboratory, very high sound pressure levels over
large areas.

Due to concerns about the effect of high temperatures for some applications,
such as aircraft-powered lift devices, the structure beneath the engine exhaust of
stealth aircraft, and the vehicle structure of hypersonic vehicles, facilities have been
constructed that permit the heating of the test specimen at the same time that it is
being exposed to the high-intensity sound pressure levels. The acoustic excitation is
limited to the lower frequencies because of constraints on the source, which usually
consists of several electropneumatic modulators with broadband random acoustical
outputs. However, the lower frequencies are usually responsible for the highest
stresses that determine acoustical fatigue life.

A typical progressive wave tube is shown in Fig. 32.8. The number of electro-
pneumatic modulators is determined by the size of the duct, and the desired maxi-
mum sound pressure levels and frequency range. The number of modulators can
range from 2 to 12, generating maximum sound pressure levels from 170 to over 180
dB with frequency ranges varying from 30–500 Hz to 50–1500 Hz.9,10,38 Test panel
sizes range from 1 to 20 ft2 (0.1 to 2 m2).
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FIGURE 32.8 Typical progressive wave tube. (Shimovetz and Wentz.10)

REVERBERATION CHAMBERS

Reverberation chambers can be used to expose large structures to sound pressure
levels typical of those encountered in service. A reverberation chamber is an enclo-
sure with thick, rigid walls and smooth interior surfaces that strongly reflect sound
waves.40 Acoustic noise is introduced into the chamber at one or more locations, usu-
ally with air modulators mounted in one or more of the walls. Assuming that the
acoustic noise source is random in character, it produces a sound field within the
chamber that becomes increasingly homogeneous (a uniform sound pressure level
throughout the chamber) as the wavelength of the sound becomes small relative to
the minimum dimension of the chamber. Further, the sound field inside the chamber
approaches a diffuse noise field, where diffuse noise is defined as a sound field in
which the sound waves at any point arrive from all directions with equal intensity
and random phase. High-intensity reverberation chambers typically have an interior
volume of 7000 to 350,000 ft3 (200 to 10,000 m3), and are capable of producing sound
pressure levels in an empty chamber of 150 to 160 dB over a frequency range from
0.1 to 10 kHz.41

The vibration response of a test item to the acoustic excitation in a reverberation
chamber can be measured by suspending the test item near the middle of the cham-
ber, applying acoustic excitation with the desired level and spectrum, and measuring
the vibration response of the test item at all locations of interest. However, it must
be remembered that the spatial pressure cross spectrum for the sound field in a
reverberation chamber may be quite different from that for the sound field in the
actual service environment of the test item. Specifically, as mentioned earlier, the
sound field in a reverberation chamber with a random acoustic source will closely
approximate a diffuse noise field, which has a normalized spatial cross spectrum
between any two points given by14

γ(ξ,ω) = (32.30)
sin (kξ)
�

kξ



where k is the wave number of the pressure field defined in Eq. (32.4), and ξ is the
separation distance. The normalized pressure cross spectrum given by Eq. (32.30) is
different from that for the sound field produced by jet noise or a turbulent boundary
layer, as given by Eq. (32.3) or (32.8), respectively. The cross-acceptance function,
which describes the coupling between the sound field and a structure and is defined
by Eq. (32.10), also will be different for the different cases. It follows that the vibra-
tion response of a structure tested in a reverberant chamber can differ significantly
from that occurring in the service environment.

The maximum sound pressure levels achievable in a reverberation chamber are
not as high as those in a progressive wave tube, but reverberant chambers can
accommodate larger structures. Thus, the two environments are usually used for dif-
ferent types of tests.
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CHAPTER 33
ENGINEERING

PROPERTIES OF METALS

M. R. Mitchell

INTRODUCTION

In this chapter it is the intent to describe several of the material properties that
should be considered when designing components, structures, and equipment in
order to withstand shock and vibration. Due to space limitations, it is necessary to
merely introduce some of the material properties of concern. Several textbooks on
this subject contain far more detailed explanations.1–4

As with any engineering design, it is essential to determine the forces (stresses)
and/or displacements (strains) that a typical component may be required to resist in
actual application while in service, as is described in Chap. 40. In this chapter, we adapt
results for these analyses for the selection of metals based on properties such as mono-
tonic stress-strain and stress-based and strain-based cyclic fatigue behavior, as well as
catastrophic failure where fracture mechanics properties are most important.

Metals may deform slightly and spring back to their rest positions or physically
change in dimensions or shape sufficiently to result in their loss of functionality.
Conversely, metals may suddenly “crack” or fracture and separate into two distinct
pieces as the result of a catastrophic event. In the first instance, the deformation
may appear initially to be that of a common spring, where force (stress) and dis-
placement (strain) are proportional within the so-called elastic limit, and the mod-
ulus of elasticity (Young’s modulus) dictates the deformation response. Such metal
behavior is common in structures like television/radio/microwave towers and sky-
scrapers, where we can actually see visible sway caused by wind forces. In the sec-
ond instance, where an unrecoverable dimensional change takes place, the metal is
said to be plastically deforming or yielding in a ductile manner. Often such perma-
nent deformation is not acceptable, as with closely fitted components that might
interfere. In other cases, some ductile deformation may be acceptable, such as in a
bending or torsional component where the outer fibers of the metal may be pre-
strained a small percentage. In this latter case, the bulk of the core metal remains
elastic and will restore the component to its original shape. If deformation is con-
tinued beyond the yield point of a ductile metal, work hardening occurs and the
stress required to enforce continued plastic deformation will increase, as will the

33.1



metal’s hardness. Eventually, the metal will attain its ultimate strength, at which
point physical necking occurs, with the formation of small microvoids at the in-
terior of the metal due to resultant stress triaxiality. Some components may be
designed to rely on an incremental magnitude of plastic deformation between yield
and ultimate strength. As such, their functionality depends on the ability of that
component to accommodate such minor dimensional adjustments. If dimensional
stability is important, only small-percentage increments are permissible. In many
structural applications, significant deformation may be tolerable and can reach as
much as 50 percent! In such instances, the ultimate strength of the material is often
employed in the design.

In the design of structures and components subject to vibrational or repeated
forces/displacements (stresses/strains), a more detailed examination of the force/
displacement time histories is required.With such knowledge, coupled with a proper
mechanics analysis, we can evaluate the lifetime or durability of the device. For this,
there are three types of analyses in common usage today: stress-life fatigue, strain-life
fatigue, and fracture mechanics methodologies.Which type of analysis is employed in
design depends upon primarily the type of metal (and the thermal-mechanical pro-
cessing), the force or displacement time history the component or structure is re-
quired to resist, and the environment in which it must survive.A basic understanding
of each of the three analyses is important to engineers in order that a state-of-the-
art, educated assessment be made as to which of the three, or whether a combination
of them, is necessary for specific applications and designs.

STRESS-STRAIN PROPERTIES

MONOTONIC PROPERTIES

Often referred to as tensile properties of metals, the monotonic properties include
yield strength, ultimate strength, elongation (or engineering strain) at fracture, and
the reduction in area. ASTM Standard E85 or ISO 68926 is often employed for the
procedures in performing tension testing of metals. The rate of deformation (i.e.,
the crosshead rate), specimen design, and procedures for determination of these
properties are provided in the standards. As might be expected, the rate of defor-
mation does have a pronounced effect on the yield and ultimate strength, as well as
other mechanical properties, of metals. Such dynamic properties are not standard-
ized easily, and readers are referred to references7 for detailed descriptions of these
influences.

The standard tension test for common mild steel is exemplified by an engineer-
ing stress-strain diagram, as illustrated in Fig. 33.1.* Typically, a standard test speci-
men will have a cylindrical gage section with an initial or original gage length lo and
initial or original gage diameter do. As the test specimen is gripped in the test
machine and pulled in tension, it will begin to deform, as shown in Fig. 33.1. What is
shown in this figure is the engineering stress–engineering strain as well as what is

33.2 CHAPTER THIRTY-THREE

* Not all metals deform in this fashion and exhibit a Luder’s plateau—that portion of the stress-strain
curve in which strain increases but stress remains essentially constant, as for many mild steel alloys and
superelastic nitinol. Most aluminum and titanium alloys, for example, simply deviate from elastic response
by the immediate onset of plastic deformation or work hardening.



known as the true stress–true strain curve, along with several of the commonly
known tension properties.Within the elastic limit up to the point of initial yielding at
Sy, the metal will respond to the deformation elastically. Within this limit, we define
Young’s modulus or the commonly known modulus of elasticity E, where stress and
strain are directly proportional, as given by Eq. (33.1).

E = (33.1)

The engineering stress S is defined as

S = (33.2)

where P = force and Ao = the original area of the cross section, and the engineering
strain e is defined as

e = (33.3)

where l = the instantaneous gage length.
As illustrated in Fig. 33.1 for a mild steel, there is an upper yield strength (the peak

stress after elastic response) and a lower yield point (that portion on the curve just
after the upper yield strength—the Luder’s plateau stress). However, the more com-
monly reported engineering property is the 0.2 percent offset yield strength, or the
stress corresponding to a plastic strain of 0.2 percent, that is, that permanent strain of
0.002 produced on unloading.This stress point can be found by simply drawing a line
parallel to the modulus of elasticity and determining the intersection with the stress-
strain curve at 0.002 strain.

l − lo
�

lo

P
�
Ao

ΔS
�
Δe
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FIGURE 33.1 Engineering stress-strain and true stress-strain curve.



After yielding has occurred, larger degrees of plastic deformation take place at a
reduced modulus (i.e., tangents to the engineering stress–engineering strain curve),
often referred to as the strain-hardening modulus, that decreases as strain increases.
Because of the change in the cross-sectional area as the specimen extends beyond
the elastic limit and plastic deformation occurs up to and beyond necking, we can
define true stress and true strain to account for such a response. The true stress σ is
given as

σ = (33.4)

where A = the instantaneous area and the true strain ε is given as

ε = �l

lo
�  = ln (33.5)

The use of true stress and true strain merely changes the overall shape of the
stress-strain curve to a monotonically increasing functional relationship, shown as
the dashed curve in Fig. 33.1. Such a description permits a way to describe alge-
braically the entire curve and provide a constitutive relationship ε between stress
and total strain as

ε = εe + εp (33.6)

where εe = elastic strain = ε/E, and εp = plastic strain. We can also now describe the
plastic strain as

σ = K(εp)n (33.7)

where K = the monotonic strength coefficient and n = the monotonic strain harden-
ing exponent. Both n and K may be obtained from log-log linearization of the pre-
ceding power law equation and determining the slope (n) and intercept (K) at a
plastic strain of unity.

With the rearrangement of Eq. (33.7), we can now describe the entire stress-
strain curve as follows

ε = + � 	
1/n

(33.8)

There are several references listing all of these monotonic properties for a vari-
ety of engineering materials,8,9 including the values of n and K as well as the true
fracture strength* σf and true fracture ductility εf given as

σf = (33.9)

and

εf = ln � 	 = 2 ln � 	 = ln � 	 (33.10)
1

�
1 − RA
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�
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�
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* The formation of a neck in a test specimen creates a complex state of triaxial stress. In ductile metals, the
true fracture stress σf requires correction with a Bridgeman correction factor as a function of the true strain
at fracture.2



where Af = the area at fracture, df = the diameter at fracture, and RA is the reduction
of area given as

RA = (33.11)

The significance of the true stress and true strain will become more obvious later,
when we describe the stress-life and strain-life fatigue behavior of metals. For con-
venience, monotonic stress-strain properties of several steels and aluminum alloys
are listed in Tables 33.1 and 33.2, respectively.8 Also shown are cyclic properties that
will be explained subsequently. Additional information of this nature may be found
at http://fde.uwaterloo.ca/Fde/Materials/dindex.html. Although this is a website, it is

Ao − Af
�

Ao
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TABLE 33.1 Monotonic and Cyclic Properties of Several Steels

Monotonic

Ex103,
Ksi Sy, Ksi Su, Ksi K, Ksi σf, Ksi 

Alloy Condition (GPa) (MPa) (MPa) (MPa) n %RA (MPa) εf

A136 As rec’d. 30 46.5 30.6 144.0 0.21 67 143.6 1.06
(207) (321) (211) (990) (987)

A136 150 HB 30 46.0 31.9 — 0.21 60 145.0 1.19
(317) (220) (997)

SAE950X 137 HB 30 62.6 75.8 94.9 0.11 54 — —
(432) (523) (652)

SAE950X 146 HB 30 56.7 74.0 110.0 0.15 74 141.8 1.34
(391) (510) (756) (975)

SAE980X 225 HB 30 83.5 100.8 143.9 0.13 68 176.8 1.15
(576) (695) (989) (1216)

1006 Hot-rolled 27 36.0 46.1 60.0 0.14 73 — —
85HB (186) (248) (318) (413)

1020 Ann. 108 29 36.8 56.9 57.9 0.07 64 95.9 1.02
HB (200) (254) (392) (398) (659)

1045 225 HB 29 74.8 108.9 151.8 0.12 44 144.7 —
Q&T (516) (751) (1044) (995)

1045 390 HB 29 184.8 194.8 — 0.04 59 269.8 0.89
Q&T (1274) (1343) (1855)

1045 500 HB 29 250.6 283.7 341.0 0.04 38 334.4 —
Q&T (1728) (1956) (2344) (2300)

1045 705 HB 29 264.7 299.8 — 0.19 2 309.6 0.02
Q&T (1825) (2067) (2129)

10B21 320 HB 29 144.0 152.0 187.7 0.05 67 217.4 1.13
Q&T (993) (1048) (290) (1495)

1080 421 HB 30 141.8 195.6 323.0 0.15 32 338.6 —
Q&T (998) (1349) (2221) (2328)

4340 350 HB 29 170.8 179.8 229.2 0.07 57 239.7 0.84
Q&T (1178) (1240) (1576) (1648)

4340 410 HB 30 198.8 212.8 — — 38 225.8 0.48
Q&T (1371) (1467) (1552)

http://fde.uwaterloo.ca/Fde/Materials/dindex.html
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TABLE 33.1 Monotonic and Cyclic Properties of Several Steels (Continued)

Monotonic

Ex103,
Ksi Sy, Ksi Su, Ksi K, Ksi σf, Ksi 

Alloy Condition (GPa) (MPa) (MPa) (MPa) n %RA (MPa) εf

5160 440 HB 30 215.7 230.0 281.4 0.05 39 280.0 0.51
Q&T (1487) (1581) (1935) (1925)

8630 254 HB 30 102.8 118.9 158.9 0.08 16 121.8 0.17
Q&T (709) (817) (1092) (837)

Cyclic

Sy′, Ksi K, Ksi σf ′, Ksi 
Alloy Condition (MPa) (MPa) n (MPa) b εf ′ c

A136 As rec’d. 47.9 148.8 0.18 115.9 −0.09 0.22 −0.46
(329) (1023) (797)

A136 150 HB 48.0 167.0 0.20 122.7 −0.08 0.20 −0.42
(330) (1148) (844)

SAE950X 137 HB 51.2 138.8 0.16 112.0 −0.08 0.34 −0.52
(352) (954) (822)

SAE950X 146 HB 59.3 136.2 0.13 119.5 −0.08 0.42 −0.51
(408) (936) (822)

SAE980X 225 HB 82.5 385.5 0.25 171.8 −0.10 0.09 −0.48
(567) (2650) (1181)

1006 Hot-rolled 34.2 196.0 0.28 116.3 −0.12 0.48 −0.52
85 HB (235) (1348) (800)

1020 Ann. 33.8 174.0 0.26 123.3 −0.12 0.44 −0.51
108 HB (232) (1196) (848)

1045 225 HB 58.3 179.8 0.17 139.2 −0.08 0.50 −0.52
Q&T (401) (1236) (957)

1045 390 HB 122.1 216.4 0.09 204.2 −0.07 1.51 −0.85
Q&T (839) (1488) (1404)

1045 500 HB 189.0 672.1 0.20 418.9 −0.09 0.23 −0.56
Q&T (130) (4621) (2880)

1045 705 HB 327.0 613.2 0.10 350.4 −0.07 0.002 −0.47
Q&T (2248) (4216) (2409)

10B21 320 HB 100.2 143.6 0.06 150.3 −0.04 1.33 −0.85
Q&T (689) (987) (1033)

1080 421 HB 126.2 460.8 0.21 342.9 −0.10 0.51 −0.59
Q&T (868) (3168) (2357)

4340 350 HB 115.6 270.2 0.14 282.0 −0.10 1.22 −0.73
Q&T (795) (1858) (1939)

4340 410 HB 127.0 282.8 0.13 275.3 −0.09 0.67 −0.64
Q&T (873) (1944) (1893)

5160 440 HB 155.2 352.7 0.13 300.0 −0.08 0.56 −1.05
Q&T (1067) (2425) (2063)

8630 254 HB 87.5 139.4 0.08 152.1 −0.11 0.21 −0.86
Q&T (602) (958) (1046)

Courtesy of L. E. Tucker, Deere & Co, Moline, Ill
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TABLE 33.2 Monotonic and Cyclic Properties of Several Aluminum Alloys

Monotonic

Ex103,
Ksi Sy, Ksi Su, Ksi K, Ksi σf, Ksi 

Alloy Condition (GPa) (MPa) (MPa) (MPa) n %RA (MPa) εf

1100 As rec’d. 10.0 14 16 — — 88 — 2.1
(68.8) (386) (110)

2014 T6 10.6 67 74 — — 35 91 0.42
(72.9) (462) (510) (627)

2014 T6 10.8 70 78 — — — — —
(74.3) (483) (538)

2024 T351 10.2 44 69 117 0.20 35 92 0.38
(70.1) (303) (476) (807) (634)

2024 T4 10.6 T/C  68 T/C  T/C 25 81 0.43
(72.9) 55/44 (469) 66/92 0.32/0.17 (558)

(379/303) (455/634)

2219 T851 10.3 52 68 — — — — 0.28
(70.8) (359) (469)

5086 F 10.1 30 45 — — — — 0.36
(69.4) (207) (310)

5186 O 10.5 L/T L/T — — L/T 57 L/0.46
(72.2) 16/19 44/49 37/44 (393) T/0.58

(110/131) (303/338)

5454 O 10.0 20 36 — — 44 53 0.58
(68.8) (138) (248) (365)

5454 10%CR 10.0 — — — — — — —
(68.8)

5454 20%CR 10.0 — — — — — — —
(68.8)

5456 H311 10.0 34 58 — — 35 76 0.42
(68.8) (234) (400) (524)

6061 T651 10.0 42 45 53 0.042 58 68 0.86
(68.8) (290) (310) (365) (469)

7075 T6 10.3 68 84 120 0.113 33 108 0.41
(70.8) (469) (579) (827) (745)

7075 T73 10.4 60 70 86 0.054 23 84 0.26
(71.5) (414) (483) (593) (579)

Cyclic

Sy, Ksi K, Ksi σf ′, Ksi 
Alloy Condition (MPa) (MPa) n (MPa) b εf ′ c

1100 As rec’d. 8 23 0.17 28 −0.106 1.80 −0.69
(55) (159) (193)

2014 T6 65 102 0.073 114 −0.081 0.85 −0.86
(448) (703) (786)

2014 T6 73 107 0.062 129 −0.092 0.37 −0.74
(503) (738) (889)



used as a reference (as are several other sites in this section) because it is constantly
changing, with the addition of new data. It is updated by the University of Waterloo
on a regular basis.

Similar relationships and equations exist for the torsional deformation of met-
als.1,2 It is sufficient to point out here that monotonic properties may be employed as
an indicator of a metal’s fatigue and fracture mechanics behavior.

TEMPERATURE AND STRAIN RATE EFFECTS

As might be anticipated, the monotonic properties of metals are affected by 
temperature. In general, the greater the test temperature, the less the yield strength,
ultimate strength, and modulus of elasticity but the greater the ductility. Conversely,
the lower the temperature, the greater the opposite trends that occur. The yield
strength of a structural steel, for example, is approximately 90 percent of the ambi-
ent-temperature value when determined at 400°F (∼200°C), 60 percent at 800°F
(∼430°C), 50 percent at 1000°F (∼540°C), 20 percent at 1300°F (∼700°C), and 10 per-
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TABLE 33.2 Monotonic and Cyclic Properties of Several Aluminum Alloys (Continued)

Cyclic

Sy, Ksi K, Ksi σf ′, Ksi 
Alloy Condition (MPa) (MPa) n (MPa) b εf ′ c

2024 T351 65 114 0.090 147 −0.110 0.21 −0.52
(448) (786) (1014)

2024 T4 62 95 0.065 160 −0.124 0.22 −0.59
(427) (655) (1103)

2219 T851 48 115 0.140 121 −0.110 1.33 −0.08
(331) (793) (834)

5086 F 43 87 0.011 83 −0.092 0.69 −0.75
(296) (600) (572)

5186 O 43 68 0.075 122 −0.137 1.76 −0.92
(296) (469) (841)

5454 O 34 58 0.084 82 −0.116 1.78 −0.85
(234) (400) (565)

5454 10%CR 34 62 0.098 82 −0.108 0.48 −0.67
(234) (427) (565)

5454 20%CR 37 59 0.081 82 −0.103 1.75 −0.80
(255) (407) (565)

5456 H311 51 87 0.086 105 −0.110 0.46 −0.67
(352) (600) (724)

6061 T651 43 78 0.096 92 −0.099 0.92 −0.78
(296) (538) (634)

7075 T6 75 140 0.010 191 −0.126 0.19 −0.52
(517) (965) (1317)

7075 T73 58 74 0.032 116 −0.098 0.26 −0.73
(400) (510) (800)

Courtesy of Professor R. W. Landgraf, Virginia Polytechnic and State University, Blacksburg, Va.



cent at 1600°F (∼870°C). The ultimate strength at 400°F is 100 percent that at ambi-
ent temperature, 85 percent at 800°F, 50 percent at 1000°F, 15 percent at 1300°F, and
10 percent at 1600°F. Changes in the modulus of elasticity are 95 percent of the
ambient value when determined at 1600°F, 85 percent at 800°F, 80 percent at 1000°F,
70 percent at 1300°F, and 50 percent at 1600°F. Of course, the ductility is increased
significantly as these strength-related properties decrease.

If a metal is tested or used in an application at a temperature that is ∼0.3 to 0.5 of
its melting point, creep mechanisms become active and significant plastic/inelastic
deformations occur.This could be the case in oil refineries, chemical plants, and, cer-
tainly, many gas-turbine and rocket applications, where temperatures often exceed
1650°F (∼900°C). Of course, specialty nickel-, cobalt-, and titanium-based alloys 
are employed in many of these types of applications. What is also of importance in
creep is the time element of exposure to the elevated temperatures, since creep
mechanisms are both time and temperature dependent. A creep test measures the
dimensional change occurring with time from the elevated exposure, whereas a
creep-rupture test measures the effect of temperature on the extended-time force-
bearing characteristics of the metal. Even at ambient temperatures, creep strains can
become active and significant, such as with lead-based alloys as well as some lead-
free solders.

The influence of temperature on metal properties is perhaps most dramatically
recognized by the results of impact testing of steels that are body-centered cubic
structures* where there is a ductile-brittle transition with decreasing temperature.
At high strain rates or impact velocities, such as those employed in the ASTM E23
and ISO 83 (Charpy-type) and ASTM D256 and ISO 180 (Izod-type) pendulum
impact test, there is a significant decrease in the impact energy absorbed by ferrous-
based metals as the temperature is decreased. See, for example, Fig. 33.2, where

ENGINEERING PROPERTIES OF METALS 33.9

* Aluminum alloys are face-centered cubic structures and do not have brittle-to-ductile transitions with
decreasing temperatures.

FIGURE 33.2 Impact energy versus temperature.10



there is a relatively high impact energy absorbed by the steel at higher temperatures
(upper shelf), while as the temperature is decreased there is a transition to lower
energies (lower shelf).10

Even with tensile/compression testing done at ambient temperature, there is a
significant effect of strain rate on yield strength, as is well known, but there is also an
effect on the ultimate strength with increasing strain rates.As shown in Fig. 33.3,11 as
the strain rate is increased, there is an obvious increase in the ultimate strength, even
if the temperature is increased.
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FIGURE 33.3 Nadai and Manjoine’s classic experiment on the effect of
strain rate on the tensile strength of copper at several temperatures.11

The combined effect of both temperature and strain rate on steels is exemplified
in a fracture control approach for structural steel highway bridges. A correlation is
shown between the effect of strain rate on the ductile-brittle transition temperature
and the yield strength.12 Results indicate that there is a linear relationship between
ΔTdb and Δlσy, where ΔTdb is the transition temperature shift, σy is the yield strength,
and Δ is the change in yield strength as caused by the strain rate.

As might be anticipated, the fracture ductility of steels is also influenced by the
strain rate.As pointed out by Qiu, et al.,12 there is a definite decrease in fracture duc-
tility (and elongation) of structural steels as the strain rate is increased in conven-
tional tension testing.

In any case, ambient temperature and conventional strain rate data used in many
designs might be considered somewhat conservative—but not overly so!

TOUGHNESS AND DUCTILITY

The area under a monotonic true stress-strain is in the form of energy per unit vol-
ume or a measure of the toughness of the metal. By using the true stress and true
strain characteristics of a metal, the nonuniformity of strain resulting from the
reduction in area upon necking is taken into account.13 As a rough approximation of



the toughness, the product of the true fracture strength and true fracture ductility
(i.e., σfεf) is often used.As might be expected, cast metals, such as gray cast iron, pos-
sess a much reduced toughness compared with wrought metals—often 1⁄2 to 1⁄3 the
values. Typically, tougher metals, such as low- and medium-carbon wrought steels,
exhibit far more ductility in contrast to cast metals, which are often considered as
brittle. If only the elastic energy per unit volume is taken into account—that is, the
area under the stress-strain curve to the onset of plastic flow—a modulus of resilience
may be defined.

CRITICAL STRAIN VELOCITY

When a significant force is rapidly applied to a structure, fracture may occur with a
relatively small degree of ductile flow. Such a failure is often interpreted as a brittle
fracture, and the metal appears to lose its ductility. However, upon examination of
the fracture surface, a normal degree of necking occurs in the region near the appli-
cation of the force. Significant stresses are developed in this region due to the iner-
tial movement of the metal remote from the application of the force, and failure
occurs before the plastic stress wavefront is transmitted away from the point of force
application.This effect is of importance in applications such as the direct impact of a
projectile upon armor plate, where forces are suddenly applied.

FATIGUE

Fatigue, or the failure of a component or structure due to the repeated application of
force or displacement, is a critical mode of structural malfunction that must be con-
sidered in the design of equipment. There are methodologies that can be employed
in design to safeguard against premature failure of structures due to this mechanism.
Mechanics techniques are available for fatigue crack initiation that are stress based
and those that are strain based. Once a fatigue crack has initiated, there are other
mechanics techniques employed for fatigue crack propagation.

CYCLIC BEHAVIOR OF METALS

Tables 33.1 and 33.2 provide the monotonic properties of several commonly used
steel and aluminum alloys.There are other metal properties listed in these tables that
are called cyclic stress-strain properties. As you will notice, the cyclic properties are
different from the monotonic properties. The reason is that metals are metastable
under cyclic force or displacement conditions, and the metal’s deformation response
changes due to the repetition of such forces or displacements. Depending on the ini-
tial state of the metal—annealed, quenched and tempered, cold worked, and so on—
it may cyclically harden, cyclically soften, remain cyclically stable, or exhibit a mixed
softening and then hardening response, depending on strain level. But the monotonic
behavior may not be appropriate or adequate to employ in a design required to resist
cyclic force or displacements!

This section defines equations similar to those developed for monotonic response
that are more appropriate to cyclic application and are called fatigue properties.
Readers are referred to ASTM E606, Recommended Practice for Strain-Controlled
Fatigue Testing, and ISO 12106, Metallic Materials—Fatigue Testing—Axial-Strain-
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Controlled Method, for the test methodology involved in performing such evalua-
tions.

Determining the fatigue resistance of a metal was commonly accomplished using
a stress- or force-controlled test methodology of smooth (unnotched) specimens such
as ASTM E499, Standard Practice for Conducting Force Controlled Constant Ampli-
tude Axial Fatigue Tests of Metallic Materials, or ISO 1099, Metallic Materials—
Fatigue Testing—Axial Force-Controlled Method. The familiar σ-log Nf curve was
the result, as shown in Fig. 33.4
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FIGURE 33.4 σ-Log Nf curve for a typical steel and an aluminum alloy.

* The letter S is generally used in other texts as in S-N or S-log Nf. The use of σ here is to avoid confusion
in later sections.

STRESS-BASED APPROACH

The σ-log Nf or σ-N curves* shown in Fig. 33.4 depict a typical steel and an aluminum
alloy. The steel is shown exhibiting an endurance limit, while the aluminum alloy is
shown to continue to possess a finite life and no such limit, with decreasing stress
amplitudes. Research has demonstrated that metals generally do not exhibit an
endurance limit per se, that is, a stress below which the metal will endure an infinite
number of cycles. Typically, the plateau(s) in stress-life curves are referred to as the
conventional fatigue limit(s) or endurance limit(s), but failures below these levels do
occur14–16 due to a change in failure mechanism and certainly due to a periodic over-
stress17 that inevitably occur in service during actual operation of a component or
structure. The antiquated verbiage has given way to the preferred terminology of



fatigue strength or strain at a particular fatigue life that has been now included in
ASTM and ISO fatigue standards.

Often such σ-N curves are obtained by testing multiple, nominally identical, repli-
cate companion specimens subjected to a completely reversed stress amplitude σa;
that is, at a zero mean stress or an R-ratio = maximum stress/minimum stress = −1 as
a baseline. Additional tests are then conducted at various mean stresses σo to deter-
mine the influence of other-than-zero mean stress on fatigue life, since most compo-
nents and structures experience variable amplitudes of stress and mean stresses.

Additional parameters of interest in such testing are the stress range Δσ and the
average of the maximum and minimum stress in the stress range; the mean stress = σo.
One-half the stress range is the stress amplitude σa.The expressions for these terms are:

Δσ = σmax − σmin (33.12)

σo = (33.13)

σa = (33.14)

The number of cycles to failure generally reported in the literature depends upon
the definition of failure that is employed in that particular investigation. Failure can
be defined, for example, as the first appearance of a crack that may be observed with
an unaided eye or at a particular magnification, a crack of a specified length, or the
inability to resist the applied stress (force) without significant crack extension or
force relaxation in a constant-amplitude deformation test. There are many such cri-
teria, and caution is suggested when interpreting the literature.

Figure 33.5 is a schematic σ-N curve illustrating the division of the crack initiation
and crack propagation events in specimens. As indicated, in the short-life regime at
high stress, crack propagation is the dominant mechanism; whereas in the long-life
regime at lower stresses, the crack initiation event dominates.

Δσ
�
2

σmax + σmin
��

2
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FIGURE 33.5 Division of the total fatigue life into the crack initiation and crack
propagation events on a stress-life curve.18



As mentioned, the stress-life curve for unnotched specimens is the first proce-
dure often employed for design of structural components. If a notch is present in the
design, additional fatigue life results may be obtained on companion notched speci-
mens with a comparable theoretical stress concentration factor Kt. The quotient of the
fatigue strength of the unnotched specimen to the fatigue strength of the notched
specimen at a given life—say, 107 cycles—is the fatigue notch factor:

Kf = at a finite life (i.e., 107) (33.15)

Depending on the strength (hardness) of the metal, the full effectiveness of the
stress concentration factor in reducing the fatigue strength might not be realized.
For example, as shown in Fig. 33.6, for the same notch root radius r, the soft metal has
a lesser fatigue notch factor Kf than the hard metal.

σunnotched
�
σnotched
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FIGURE 33.6 Fatigue notch factor as a function of notch radius.

There are ways to analytically determine just what the fatigue notch factor may
be, depending on the strength of the metal and the geometry of the notch. One of the
more popular is attributed to R. E. Peterson19 and is expressed as

Kf = 1 + (33.16)

where a is a metal constant dependent on strength and ductility and determined
from long-life fatigue results for notched and unnotched specimens of known tip
radius and theoretical stress concentration factor, and r is the notch tip radius. How-
ever, a can be approximated for steels only by the following empirical relationship:

a � � 
1.8

× 10−3 in. (33.17)

Typically, a ≈ 0.01 for normalized or annealed steels; for highly hardened steels,
a ≈ 0.001, and for quenched and tempered steels, a ≈ 0.25 in.As indicated in Fig. 33.6,
when r > 10a, there is a full effectiveness of the notch, while if r < a/10, there is little
or no notch effect.

300
�
Sult.(Ksi)

Kt − 1
�
1 + �
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As might be anticipated, rotating bending–type fatigue tests subject only a small
volume of material at the outer periphery of the specimens to the greatest stress
(strain) because of the gradient from surface to neutral axis. Obviously, for larger
rotating bending specimens, there is a greater volume of material and the probabil-
ity of initiating a fatigue crack will be greater. This is a “weakest link” phenomenon,
and Ref. 20 is recommended to interested readers.

Additional influences such as surface finish are also important in that there is a
more pronounced detrimental influence in higher-strength (-hardness) metals than
with lower-strength metals. There is also a more pronounced effect of surface finish
at long lives, where strength is the dominant material property, than at shorter lives,
where ductility is more important.

Of perhaps more importance than volume effects and surface finish effects are
those due to mean stress. In general, compressive mean stresses are beneficial, while
tensile mean stresses are detrimental to fatigue life and durability. Mean stress and
residual stress are treated similarly in a mechanics sense, although their origins are
quite different. Mean stresses are induced by the duty cycle the component is
required to resist, while residual stresses are typically induced by surface treatment
of the component by such techniques as shot peening, bead blasting, or laser shock
hardening.

When dealing with mean stresses in fatigue, some definitions are convenient, as
depicted in Fig. 33.7:
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FIGURE 33.7 Depiction of nonzero mean stress cycling.

σa = alternating stress or stress amplitude
σo = mean stress

σmax = maximum algebraic stress in cycle
σmin = minimum algebraic stress in cycle

The influence of mean stress is often represented by a mean stress–versus–
alternating stress diagram, as shown in Fig. 33.8. Such a diagram is often referred to
as a constant-life diagram, since each tie line between the alternating and mean
stress axes is at a constant life, for example 107, 106, 105 cycles, and so on. Each tie line
then represents that combination of a mean stress and an alternating stress that
would result in the same fatigue life. If the mean stress is increased, there must be a
corresponding decrease in the alternating stress amplitude to achieve the same
fatigue lifetime and vice versa.



There are several tie lines illustrated on this constant-life diagram.The line inter-
cepting the ordinate at the yield strength Sy is called the Soderberg relationship
(rarely employed in modern designs), while that intercepting the ordinate at the ulti-
mate strength Su is called the Goodman relationship:

+ = 1 or σa = σcr �1 −  (Goodman) (33.18)

The curve intercepting the ordinate at the yield strength is called the Gerber rela-
tionship and is represented by

+ � 
2

= 1 or σa = σcr �1 − � 	
2

 (Gerber) (33.19)

The remaining line intercepting the ordinate at the true fracture strength will be used
in a later development. In the preceding equations σcr refers to the completely re-
versed stress amplitude at R = −1 for a specified constant fatigue life (e.g., 107, 106, 105,
104, etc.), σu is the ultimate strength of the material, σo is the mean stress, and σa is the
alternating stress amplitude. Note that a vertical line would be an R-ratio = −1 (i.e.,
completely reversed stress-type testing), while a line at 45° between the ordinate and
the abscissa would be for equal alternating and mean stresses, or an R-ratio = 0. Good-
man’s relationship is often used in fatigue analyses for brittle materials and is conser-
vative for ductile metals—it is also the most familiar. Gerber’s relationship is generally
employed for ductile metals.

STRAIN-BASED APPROACH

An alternate approach to fatigue is called the strain-life approach. It has received
significant application since its inception in the early 1950s, primarily due to the pio-
neering research of Lou Coffin,21 Stan Manson,22 and JoDean Morrow,23 who is
widely recognized for his work in low-cycle fatigue and for his pioneering leadership
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FIGURE 33.8 Depiction of alternating stress versus mean stress diagram or a
constant-life diagram.



in the development of useful design criteria for mechanical components subjected to
fatigue damage. Strain (as opposed to stress) cycling data for a wide variety of met-
als is readily available9 at http://fde.uwaterloo.ca/Fde/Materials/dindex.html,24,25 and
such an approach is considered state of the art in the ground vehicle, aerospace, and
medical industries.

Metals are unstable when subjected to cyclic loading environments—their stress-
strain response will change and will not be the same as their monotonic stress-strain
response. Further, fatigue is caused by the accrual of damage to the metal resulting
from cyclic plasticity. As such, there should be a means of accounting for plastic defor-
mation.The strain-life approach offers an advantage over the stress-life approach that
is based on simple elasticity assumptions and does not effectively include a means of
incorporating plastic deformations—the root cause of fatigue.

In the strain-based approach, as in the stress-based approach, a series of smooth
companion specimens is subjected to completely reversed, R = −1, axial strain-
controlled fatigue tests. A series of hysteresis loops is collected from each compan-
ion specimen, and the stable response is noted, that is, where the stress required to
enforce the strain remains reasonably constant. As illustrated in Fig. 33.9, the stabi-
lized stress response is then plotted against the controlled strain amplitude of each
companion specimen tested to obtain the cyclic stress-strain curve that describes the
metal’s cyclic behavior.

As with the monotonic stress-strain curve, constitutive equations can be employed
to describe the cyclic stress-strain response. Similar to Eq. (33.8), the cyclic stress-
strain curve can be described by the following:

ε = + � 	
1/n′

(33.20)
σ

�
K′

σ
�
E
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FIGURE 33.9 Generation of the cyclic stress-strain curve from stabilized strain-controlled
fatigue tests on companion specimens of a metal.

http://fde.uwaterloo.ca/Fde/Materials/dindex.html


where K′ is the cyclic strength coefficient and n′ is the cyclic strain hardening expo-
nent. Values of n′ vary between 0.10 and 0.20, with an average close to 0.15.

Along with the development of the cyclic stress-strain curve from each compan-
ion specimen test result, the stabilized hysteresis loops can also be employed to
determine the elastic and plastic strain components of the total strain (i.e., the con-
trolled variable in the fatigue tests). A typical hysteresis loop is illustrated in Fig.
33.10, with the elastic strain range Δεe and the plastic strain range Δεp, components of
the total strain range Δε, shown along with the stabilized stress range Δσ response.
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FIGURE 33.10 Defining the elastic, plastic, and total strains
from a stabilized hysteresis loop from a companion specimen
axial strain-controlled test.

Remembering that the range is twice the amplitude—that is, Δε/2 = ε—we now con-
struct the strain-life curve as shown in Fig. 33.11. Each total strain amplitude has a cor-
responding elastic and a corresponding plastic strain amplitude that is plotted on the
strain-life curve. Note that in many cases the elastic strain-life and the plastic strain-life
points can be connected on the log-log plot with straight lines, as shown.Also note that
the abscissa is “reversals to failure,” or twice the number of cycles to failure.The reason
for this is that in a typical strain-time component history commonly encountered in a
real-life application, it is quite simple to define a reversal as opposed to a cycle.A rever-
sal can be thought of as a change in the slope on a deformation (strain) time history.

Note on Fig. 33.11 that the elastic strain-life line can be defined by a slope b,



called Basquin’s exponent, and an intercept σf ′/E, where σf ′ is called the fatigue
strength coefficient. The plastic strain-life line is similarly defined with a slope c,
called Coffin’s exponent, and an intercept εf ′, called the fatigue ductility exponent. Of
course, we combine the two components to develop the strain-life equation:

= (2Nf)b + εf ′(2Nf)c (33.21)

where the first term represents the elastic strain and the second term represents the
plastic strain component of the total strain. This relationship commonly applies to
wrought metals.Where defects govern fatigue behavior, as with cast irons, such prin-
ciples are not directly applicable.26,27 Also note that there is no indication of a limit
to the long-life response as with the stress-based methodology.The elastic strain-life
line continued its downward slope, even at very long lives.

As mentioned previously, a mean stress can be simply included in this approach
by a modification of the elastic strain-life intercept by an amount equal to that of the
mean stress. That is:

= (2Nf)b + εf ′(2Nf)c (33.22)

where σo = mean stress with appropriate sign. Compressive mean stresses are nega-
tive and, therefore, additive, so that there would be an increased influence on long-
life fatigue and very little on short-life fatigue. In this context, long life is defined as
a life greater than the transition fatigue life 2Nt, or that point on the strain-life
fatigue curve where the elastic strain and plastic strain components of total strain
are equal. Short life is conversely that lifetime less than 2Nt.

It is necessary to understand that the sequence of events in a component history
is of importance in the fatigue lifetimes of components, as illustrated in Figs. 33.12A
and 33.12B. Note that a different mean stress results in each case. When the transfer
from high strain to low strain is from compression, the mean stress resulting is in ten-
sion and would shorten fatigue life.The opposite is seen when the transfer from high
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FIGURE 33.11 Construction of a typical strain-life curve (log-log).



strain to low strain is from tension that would produce an increase in fatigue life-
time, since the resulting mean stress is in compression.

The strain-based approach lends itself readily to fatigue lifetime predictions and
damage analysis in a pseudo-random loading spectrum (i.e., a repeated block-type,
random history).This is contingent upon a means of counting closed hysteresis loops
in a pseudo-random, repeated block-type, strain-time history. Such a strain-time his-
tory is commonly available simply due to the fact that prototype components are
often brittle, lacquer-coated, critical locations on the component determined from
the cracking pattern after the component is sent around a test route, strain gages are
attached orthogonal to the crack pattern, and a strain-time recording is collected.
Conversely, a dynamic finite element analysis (FEA) may also be performed, and
the component’s critical location(s) strain-time history can be simulated by a com-
puter. Nonetheless, the strain-time histories can be obtained.

Several algorithms are available to deconvolve such a history, as originally ex-
plained by Matsuishi and Endo.28 One of the more common is found in Refs. 29 and
30. Commercial software is also commonly available for analyses of this type.A sim-
plistic explanation follows: Consider the strain-time history illustrated in Fig. 33.13A
with the corresponding stress-time response. Plot the pseudo-random, block-type,
strain-time history so that the greatest absolute peak or valley is first and last. Initi-
ate “rainflow” so that it is allowed to drip down and continue—except if it initiates
at a maximum, such as A,B,D,G, it stops when it comes opposite a more positive peak
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FIGURE 33.12A Illustration of the sequence from high strain to low strain coming
from compression.



than the maximum from which it began. Rainflow dripping from B must terminate
opposite D because D is more positive. If the rainflow is initiated at a minimum, such
as A,C,E,F, the converse is true. Finally, rainflow must stop if it encounters rain from
the roof above, as in events from C to D.

Note that in Fig. 33.13B the events are paired into closed hysteresis loops, as in
events A-D and D-A, B-C and C-B, D-E and E-D, and F-G and G-F, as seen on the
accompanying stress-strain plot. Note that each event—with the exception of A-D-A,
which is at a zero mean stress and the largest event in this history, thus the greatest
damage—has a strain amplitude (i.e., half the range) and a mean stress associated
with the closed loop. The event B-C-B has a tensile mean stress, while F-G-F has a
compressive mean stress. Now, by appropriately modifying the strain-life plot in Fig.
33.11 for each associated mean stress, the corresponding fatigue life at that strain
amplitude and mean stress can be determined for each closed-loop event. Once
accomplished, Miner’s linear damage rule,31

D = �di = � (33.23)

where D = total damage
di = individual damage for each ith event

2ni = number of reversals of a specific event
2Nfi = number of reversals to failure for that specific event

is invoked and the damage for the block of strain-time history can be found.The recip-
rocal of the damage is then the number of blocks of a history to fracture or failure:

Bf = (33.24)
1

�
D

2ni
�
2Nfi
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FIGURE 33.12B Same illustration as Fig. 33.12A but coming from tension.



FIGURE 33.13 Rainflow counting technique for determining strain amplitudes and corresponding
mean stresses for each closed-loop event.

VARIABILITY IN FATIGUE PROPERTIES

Up to this point, we have assumed that there is no randomness in metal fatigue
properties and, for that matter, in the entire fatigue initiation process.This, of course,
is not the case, for there are many factors that contribute to material variability and
the randomness of the fatigue process that are far too numerous to but mention
here. These factors include such influencing parameters as a metal’s heat-to-heat
and within-heat variability, heat treatment time and temperature, test specimen
geometry, specimen preparation, residual surface stresses, test machine differences,
and operator differences—the list goes on! As with monotonic properties, there is
certainly variability or scatter in fatigue lifetimes (cycles) that by the very nature of
the curvature of the stress-life (semi-log) and strain-life (log-log) curves tends to
increase with increasing fatigue life—the steeper slope of these curves in the low
cycle regime tends to make inherent variability or scatter in fatigue life (cycles)
much less than in the long-life regime, where the shallowness of the slope results in
greater variability in life. It is interesting to note, however, that the variability in
stress or strain is relatively constant with fatigue lifetime. That is, a vertical scatter
band in stress or strain is essentially constant, whereas a horizontal scatter band in
fatigue lifetime increases with increasing cycles.

The ASTM Committee on Fatigue E09 (later, Committee E08 on Fatigue and
Fracture) has published several excellent references on this very subject.32,33,34 An
excellent treatise on fatigue data statistics for design purposes is presented by
Wirsching,35,36 and the latest standard on this subject appears as ISO 12107.37 Central
to all of these statistical procedures is an assumption that these data must fit an
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assumed parametric distribution function such as normal, log-normal, or Weibull.
There is a branch of statistics known as nonparametric or distribution-free statistics
that should be considered if robustness and accuracy, particularly in the tail ends of
distributions, are essential considerations. The use of these types of statistical inter-
pretations of ranked data are often employed when there is no obvious or clear
numerical interpretation because they rely on far fewer assumptions than the more
common methodologies. Conover38 provides an excellent treatise on nonparametric
statistics, and Mitchell, et al.,39 illustrated their use in fatigue lifetime predictive
methodologies employing a strain-based fatigue analysis.

The preceding explanation is a relatively brief review of the strain-life or local
strain approach to fatigue lifetime prediction and durability. It also is a simplistic
uniaxial philosophy. An online explanation and comprehensive program for strain-
based fatigue damage analysis may be found at www.fatiguecalculator.com, thanks
to the benevolent efforts of Professor (Emeritus) D. F. Socie, of the University of Illi-
nois, where these techniques found their origin through the late Professor (Emeri-
tus) JoDean Morrow and his many graduate students. More complex loading
situations may require a multiaxial or combined strain approach. Interested readers
should refer to ASM Volume 19, Fatigue and Fracture, and to the aforementioned
website, for a more thorough explanation of these techniques as applied to real
structures.

FRACTURE MECHANICS METHOD

The techniques just discussed are often referred to as initiation-based mechanics
techniques and are employed to determine the inception of a fatigue crack in a com-
ponent or structure. An adjunct mechanics technique is often used to determine the
propagation lifetime of an incipient crack. This is known as the fracture mechanics
approach. It would be rather unusual for a crack of critical size to exist initially in a
component or structure. It is more common for a small flaw or initiated crack to
grow until it reaches the critical size for catastrophic fracture. During cyclic loading
there will be a period of fatigue crack growth. If there is a corrosive environment
present, even under a steady force, there may be significant environmental crack
growth or stress-corrosion-type cracking.

In an engineering analysis involving fatigue crack growth normal to the applied
stress, the severity of the crack is described by

K = σ�πa� Y (33.25)

where K = stress intensity factor
σ = applied nominal stress
a = crack length
Y = dimensionless geometric factor dependent on the type of crack and

specimen

The fatigue crack growth rate is controlled by K, and, as might be anticipated, as the
crack grows, a will increase as will σ (since the remaining ligament size in the speci-
men’s cross section will be decreasing), and the growth rate will increase until a crit-
ical crack size acrit is reached and sudden fracture occurs. It should be noted that as
the yield strength of a metal increases, the critical crack size decreases.

For a relatively thin specimen, the value of K will be greater than for a thicker
specimen because there tends to be less constraint in a thin cross section as opposed
to a thick specimen that has increased constraint. Thus, as the specimen increases in
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section thickness B, there is a trend to a minimum value of fracture toughness where
K eventually becomes independent of thickness. This value is known as the plane
strain fracture toughness, designated by KIc. According to ASTM E399, Standard
Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic
Materials, such plane strain conditions will exist when

B ≥ 2.5�  (33.26)

where σy = the 0.002 offset yield strength of the metal.Values of the plane strain frac-
ture toughness for a variety of structural metals may be found in Ref. 40.

Equation (33.25) can be rearranged and integrated to result in a mathematical
relationship for fatigue crack propagation:

= A[ΔK]n (33.27)

where = fatigue crack propagation rate, mm/cycle

A, m = constants for a particular metal, dependent on environment,
stress ratio R, and frequency

ΔK = stress intensity factor range

Typical values of m for most metals range from approximately 1 to 8.The expression
for ΔK = Kmax − Kmin can be inserted into Eq. (33.27):

ΔK = YΔσ�πa� = Y[σmax − σmin]�πa� (33.28)

Because there is little or no crack growth in the compression-going portion of a
cycle, the assumption can be made that Kmin and σmin are essentially zero. So:

Kmax = Yσmax�πa� (33.29)

If we now again rearrange Eq. (33.27), we may write

dN = (33.30)

which, upon integration, becomes

Nf = �Nf

0
dN = �acrit

ao
(33.31)

where ao = initial crack length
acrit = critical crack length dependent on metal strength and 

microstructure and determined from fracture 
toughness tests

If you now substitute Eq. (33.28) into Eq. (33.31), you obtain

Nf = �acrit

a0

(33.32)

and the number of cycles to propagate a crack of starter length a0 to a critical crack
length for catastrophic fracture acrit can be determined.

da
�
Ymam/2

1
��
Aπm/2[Δσ]n

da
�
A[ΔK]n

da
�
A[ΔK]n

da
�
dN

da
�
dN

KIc
�
σy
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The preceding development is but a simplistic description of crack propagation
mechanics. There are many more contributing factors, such as overload and under-
load effects, corrosion, and duty cycle histories that are necessary inputs for appli-
cation of these techniques to prediction of real-life situations. Those interested in
the latest developments in this particular science are referred to the ASTM website
at http://www.astm.org/Standard/DOMnewpub.shtml, then search for “stp fatigue
and fracture mechanics.” There are, to date, 35 volumes dedicated to this important
topic.

Please note that fatigue crack growth life can be combined with the estimate for
the fatigue crack incubation or initiation fatigue life to obtain the total number of
cycles to failure of a component or structure in a real-life situation. Of course,
there is much more that could not be covered in this limited treatise. A more thor-
ough description of this fracture mechanics technique can also be found in Refs. 41
and 42.
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CHAPTER 34
ENGINEERING PROPERTIES

OF COMPOSITES

Keith T. Kedward

INTRODUCTION

Composite materials are simply a combination of two or more different materials
that may provide superior and unique mechanical and physical properties.The most
attractive composite systems effectively combine the most desirable properties of
their constituents and simultaneously suppress the least desirable properties. For
example, a glass-fiber reinforced plastic combines the high strength of thin glass
fibers with the ductility and environmental resistance of an epoxy resin; the inherent
damage susceptibility of the fiber surface is thereby suppressed whereas the low
stiffness and strength of the resin is enhanced.

The opportunity to develop superior products for aerospace, automotive, and
recreational applications has sustained the interest in advanced composites. Currently
composites are being considered on a broader basis, specifically, for applications that
include civil engineering structures such as bridges and freeway pillar reinforcement,
and for biomedical products such as prosthetic devices. The recent trend toward
affordable composite structures with a somewhat decreased emphasis on performance
will have a major impact on the wider exploitation of composites in engineering.

BASIC TYPES OF COMPOSITES

Composites typically comprise a high-strength synthetic fiber embedded within a
protective matrix.The most mature and widely used composite systems are polymer
matrix composites (PMCs), which will provide the major focus for this chapter. Con-
temporary PMCs typically use a ceramic type of reinforcing fiber such as carbon,
Kevlar™, or glass in a resin matrix wherein the fibers make up approximately 60 per-
cent of the PMC volume. Metal or ceramic matrices can be substituted for the resin
matrix to provide a higher-temperature capability. These specialized systems are
termed metal matrix composites (MMCs) and ceramic matrix composites (CMCs); a
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general qualitative comparison of the relative merits of all three categories is sum-
marized in Table 34.1.

SHORT FIBER/PARTICULATE COMPOSITES

The fibrous reinforcing constituent of composites may consist of thin continuous
fibers or relatively short fiber segments, or whiskers. However, reinforcing effective-
ness is realized by using segments of relatively high aspect ratio, which is defined as
the length-to-diameter ratio. Nevertheless, as a reinforcement for PMCs, these short
fiber or whisker systems are structurally less efficient and very susceptible to dam-
age from long-term and/or cyclic loading. On the other hand, the substantially lower
cost and reduced anisotropy on the macroscopic scale render these composite sys-
tems appropriate in structurally less demanding industrial applications.

Randomly oriented short fiber or particulate-reinforced composites tend to
exhibit a much higher dependence on polymer-based matrix properties, as com-
pared to typical continuous fiber reinforced PMCs. Elastic modulus, strength, creep,
and fatigue are most susceptible to the significant limitations of the polymer matrix
constituent and fiber-matrix interface properties.1

CONTINUOUS FIBER COMPOSITES

Continuous fiber reinforcements are generally required for structural or high-
performance applications. The specific strength (strength-to-density ratio) and spe-
cific stiffness (elastic modulus-to-density ratio) of continuous fiber reinforced PMCs,
for example, can be vastly superior to conventional metal alloys, as illustrated in Fig.
34.1.These types of composite can also be designed to provide other attractive prop-
erties, such as high thermal or electrical conductivity and low coefficient of thermal
expansion (CTE). In addition, depending on how the fibers are oriented or inter-
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TABLE 34.1 Composite Design Comparisons

PMC CMC MMC

Specific strength Generally excellent if Highest potential for Moderately high for 
and stiffness exclusively unidirectional high-temperature dominantly axial loads and

reinforcement is avoided applications intermediate temperatures
Fatigue Excellent for designs that Good for high- Potential concern for other

characteristics avoid out-of-plane loads temperature than dominantly axial
applications loads

Nonlinear Usually not important Significant effect after Can be significant,
effects for continuous fiber first matrix and particularly for 

reinforcements interface cracks have multidirectional 
developed and off-axis loads

Temperature Less than 600°F Potential for maximum Potential for maximum
capability values between 1000 values up to 1000°F

and 2000°F
Degree of Extreme, particularly Can develop signifi- Not usually a major issue

anisotropy considering out-of-plane cantly during loading, where interface effects
properties and conse- due to matrix and are negligible
quent coupling effects interface breakdown
in minimum-gage 
configurations



woven within the matrix, these composites can be tailored to provide the desired
structural properties for a specific structural component. Anisotropy is a term used
to define such a material that can exhibit properties varying with direction. Thus
designing for, and with, anisotropy is a unique aspect of contemporary composites in
that the design engineer must simultaneously design the structure and the material
of construction. Of course, anisotropy brings problems as well as unique opportuni-
ties, as is discussed in a later section. With reference to Fig. 34.1, it should be appre-
ciated that the vertical bars representing the conventional metals signify the
potential variation in specific strength that may be brought about by changes in alloy
constituents and heat treatment. The angled bars for the continuous fiber compos-
ites represent the range of specific properties from the unidirectional, all 0° fiber ori-
entation at the upper end to the pseudo-isotropic laminate with equal proportions of
fibers in the 0°, +45°, −45°, and 90° orientations at the lower end. In the case of the
composites, the variations between the upper or lower ends of the bars are achieved
by tailoring in the form of laminate design.

SPECIAL DESIGN ISSUES AND OPPORTUNITIES

Product design that involves the utilization of composites is most likely to be effective
when the aspects of materials, structures, and dynamics technologies are embraced in
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the process of the development of mechanical systems. One illustrative example was
cited in the introductory chapter of this handbook (see Chap. 1), which introduces the
technique of reducing the vibration response of a fan blade by alteration of the natu-
ral frequency. In the design of composite fan blades for aircraft, this approach has been
achieved by tailoring the frequency and the associated mode shape.2 Such a tailoring
capability can assist the designer in adjusting flexural and torsional vibration and
fatigue responses, as well as the damping characteristics explained later.

A more challenging issue that frequently arises in composite hardware design for
a majority of the more geometrically complex products is the potential impact of the
low secondary or matrix-influenced properties of these strongly nonisotropic mate-
rial forms.The transverse (in-plane) tensile strength of the unidirectional composite
laminate is merely a few percent of the longitudinal tensile strength (as observed
from Tables 34.2 and 34.3). Consequently, it is of no surprise that the through-
thickness or short-transverse tensile strength of a multidirectional laminate is of the
same order, but even lower than the transverse tensile strength of the individual lay-
ers. Thus, the importance of the designer’s awareness of such limitations cannot be
overemphasized. In fact, the large majority of the failures in composite hardware
development testing has arisen due to underestimated or unrecognized out-of-plane
loading effects and interrelated regions of structural joints and attachments. Due to
the many common adverse experiences with delaminations induced by out-of-plane
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TABLE 34.2 Properties of Typical Continuous, Fiber-Reinforced Composites and Structural Metals

Unidirectional composite
(60% fiber/40% resin, by volume) Metals

HS
E-glass/ Kevlar/ carbon/ UHM Gr./ 7075-T6 4130

Property resin resin epoxy epoxy aluminum steel

Elastic

Density, lb/in.3 0.070 (1.9) 0.047 (1.3) 0.058 (1.6) 0.060 (1.7) 0.100 (2.77) 0.284 (7.86)
(103 kg/m3)

EL, 106 lb/in.2

(103 MPa) 6.5 (45) 11.0 (75.8) 19.5 (134) 40.0 (276) 10.3 (71.0) 30.0 (207)
ET, 106 lb/in.2

(103 MPa) 1.8 (12) 1.0 (6.9) 1.5 (10) 1.2 (8.3) 10.3 (71.0) 30.0 (207)
GLT, 106 lb/in.2

(103 MPa) 0.7 (4.8) 0.4 (2.8) 0.9 (6.2) 0.65 (4.5) 4.0 (27.6) 12.0 (82.7)
νLT 0.32 0.33 0.30 0.28 0.30 0.28

Strength

FL
tu, 103 lb/in.2

(MPa) 180 (1240) 220 (1520) 200 (1380) 100 (689) 79 (545) 100 (689)
FT

tu, 103 lb/in.2

(MPa) 6 (41) 4.5 (31) 7 (48) 5 (34) 77 (531) 100 (689)
FL

cu, 103 lb/in.2

(MPa) 120 (827) 45 (310) 170 (1170) 90 (620) 70 (483) 130 (896)
FT

cu, 103 lb/in.2

(MPa) 20 (138) 20 (138) 20 (138) 20 (138) 70 (483) 130 (896)
Fsu

LT, 103 lb/in.2

(MPa) 8 (55) 4 (28) 10 (69) 9 (62) 47 (324) 60 (414)



load components, this section will be devoted to the identification of the numerous
sources of out-of-plane load development and the candidate approaches to elimi-
nate or minimize their influence.

First, a general overview of many of the common problems created for the engi-
neering designer that are consequences of low-matrix-dominated, elastic, and
strength properties are summarized in Table 34.4. Several of the most common
sources will now be discussed in more detail. Figure 34.2 illustrates these major
sources, which may be broadly categorized as follows:

Category A: Curved sections including curved segments, rings, hollow cylinders,
and spherical vessels that are representative of angle bracket design details,
curved frames, and internally or externally pressurized vessels.
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TABLE 34.3 Typical Unidirectional Properties for a Carbon/Epoxy System

Stiffness properties Strength properties Thermal properties

EL, 106 lb/in.2 20.0 F L
tu, 103 lb/in.2 240.0 αL, με/°F −0.3

(103 MPa) (138) (MPa) (1650) (με/K) (−0.54)

ET, 106 lb/in.2 1.4 FL
cu, 103 lb/in.2 200.0 αT, με/°F 17.0

(103 MPa) (9.6) (MPa) (1380) (με/K) (30.6)

GLT, 106 lb/in.2 0.8 FT
tu, 103 lb/in.2 7.0 KL, Btu in./h ft2 °F 40.0

(103 MPa) (5.5) (MPa) (48) (W/m K) (5.76)

νLT 0.28 FT
tu, 103 lb/in.2 20.0 KT, Btu in./h ft2 °F 4.5
(MPa) (138) (W/m K) (0.65)

Fisu
LT, 103 lb/in.2 10.0
(MPa) (69)

νLT/EL = νTL/ET Fisu, 103 lb/in.2 9.0
(MPa) (62)

TABLE 34.4 General Overview of Problems Created by the Low Secondary 
(Matrix-Dominated) Properties of Advanced Composites

Controlling
property Problem

Fisu Failure induced by shear in beams under flexural loading.
Premature torsional failures.
Premature crippling failure in compression.*
Failure of adherends in structural bonded joints.*
Failure of laminae due to free-edge effects, e.g., cutouts, ply drops.*

FT
tu Failure induced by transverse tensile fracture of curved beams in flexure.

Shock waves during normal impacts.
GLT Reduction in flexural and torsional stiffness.

Reduction in resonant frequencies of plate and beam members.
Reduction of elastic buckling capability.
Interpretation of experimental stress analysis data.

αT Distortion at fillets due to high expansion coefficient (through-thickness).
αTFT

tu Failure due to thermal stresses in thick-walled composite cylinders.

*For these problems, the controlling properties are both F isu and F tu
T .



Category B:Tapers and transitions including local changes of section that are rep-
resentative of laminate layer terminations, doublers, and stiffener terminations,
as well as the end details of bonded and bolted joints.

As mentioned earlier, commonplace structural details of both categories have
contributed to numerous unanticipated failures in composite hardware components.
In some cases, such failures can propagate catastrophically after initiation and may
therefore be a serious safety threat. Other instances have arisen where initial fail-
ures may self-arrest resulting in benign failures, but with some degree of local stiff-
ness degradation. Subsequent load distribution may, however, precipitate eventual
catastrophic failure depending on the load spectrum characteristics.

COMPOSITE PROPERTIES

The class of composites which forms the focus of this chapter is polymer matrix com-
posites (PMCs) with continuous fiber reinforcement. In this type of composite, the
properties of an arbitrary laminated composite architecture are derived from the
elastic and strength properties of a unidirectional layer. The unidirectional layer
properties can be derived from the constituent properties of the fiber and matrix
that typically range between 50 and 65 percent by volume of the fiber reinforcement
phase. Here a nominal value of 60 percent by volume of fiber will be adopted.

Fiber reinforcements most commonly encountered in contemporary composites
include carbon or graphite fibers, Kevlar fibers, and glass fibers, all of which can be
obtained in similar diameters, i.e., 0.0003–0.0005 in. Both the carbon/graphite and
Kevlar fibers are inherently anisotropic in themselves, although it is the axial (fiber
direction) properties that dominate the in-plane behavior of unidirectional and, gen-
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erally, multidirectional fiber arrays or laminates. Typical fiber properties are pre-
sented in Table 34.5, where the degree of individual fiber anisotropy is indicated.

GENERAL PROPERTIES

The properties of polymer matrices range over a much smaller spectrum in Table
34.6, and the relatively low stiffness and strength properties rarely dominate the com-
posite behavior, with certain exceptions. The most notable exceptions are the inter-
laminar shear strength and the thickness-direction interlaminar tensile strength, to be
discussed later, wherein the fiber-to-matrix interface may play an important role. For
these reasons, the greatest attention is placed on the macroscopic composite proper-
ties that are of most direct interest to the mechanical or structural engineer. Typical
values for such properties are provided in Table 34.2 for the three different, but all
widely used, composites. One well-established carbon fiber/epoxy composite system
is chosen to illustrate typical properties and degrees of anisotropy in elastic, strength,
and thermal properties in Table 34.3. Engineers responsible for design and structural
evaluation should take particular note of the degree of anisotropy in both the
strength and stiffness properties. Usually the matrix-dominated properties, such as
the shear and transverse tensile strengths, are very low and the avoidance of matrix-
dominated failure modes represents a major challenge for the structural designer. It
is also worthy of note that compression strength in the fiber direction, FL

cu, is signifi-
cantly lower than the equivalent tensile strength, FL

tu, due to a microfiber instability
mechanism. In fact, the ratio of these two strengths, FL

cu/FL
tu, may be much lower for

some other systems, e.g., Kevlar/epoxy and more recently developed high strain-to-
failure carbon fibers. The lower compression strength relative to the tensile strength
is also influenced by the fiber diameter and the matrix properties that are themselves
affected by moisture, temperature, interface integrity, and porosity.

IN SITU PROPERTIES

An important fundamental aspect of multidirectional composite laminates is the
manner in which the individual unidirectional layer or lamina properties translate
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TABLE 34.5 Typical Fiber Properties

Axial elastic Transverse elastic Tensile
Density, lb/in.3 modulus, 106 lb/in.2 modulus, 106 lb/in.2 strength, 103 lb/in.2

Fiber (103 kg/m3) (103 MPa) (103 MPa) (103 MPa)

E-glass 0.091 (2.5) 10.5 (72.4) 10.5 (72.4) 500 (3.4)
S-glass 0.090 (2.5) 12.4 (85.5) 12.4 (85.5) 600 (4.1)
Kevlar 49 0.052 (1.4) 18.0 (124) 1.3 (8.96) 400 (2.8)
AS4 carbon 0.064 (1.8) 35.0 (241) 2.0 (13.8) 350 (2.4)

TABLE 34.6 Typical Properties for Polymer Matrices

Density, Elastic modulus, Tensile strength,
lb/in.3 106 lb/in.2 103 lb/in.2 Poisson’s

Polymer (103 kg/m3) (103 MPa) (MPa) ratio

HERCULES 3501-6 epoxy 0.044 (1.2) 0.62 (4.3) 12.0 (82.7) 0.34
NARMCO 5208 epoxy 0.044 (1.2) 0.50 (3.4) 11.0 (75.8) 0.35
EPON 828 epoxy 0.044 (1.2) 0.47 (3.2) 13.0 (89.6) 0.35



into laminate properties. For all the thermoelastic properties, this translation is
accomplished by the usual rules for transformation of stress and strain. However, the
strength properties tend to be modified by the mutual constraint imposed by adjacent
layers, and therefore is a function of the individual layer thickness.The result is a need
to modify the basic unidirectional properties, one of the most significant being the
ultimate transverse strain to failure in tension of individual layers. Unidirectional
layer compressive strength and the associated ultimate strain to failure is also influ-
enced to a significant degree by the mutual support offered by adjacent transverse or
angled layers.As a consequence, correction factors are sometimes introduced to com-
pensate for these effects, but more routine tests are conducted on the actual laminate
configuration in an effort to establish reliable allowables for its use in design.

LAMINATED COMPOSITE DESIGN

For the simultaneous design of material and structure that is the basic philosophy for
composite structures development, laminated plate theory (LPT) and the associated
computer codes represent the fundamental tool for the composite designer. The
anatomy of a composite laminate indicating the translation from the constituent
fiber and matrix properties to those of a built-up laminate is illustrated in Fig. 34.3.
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Values contained in this figure compare with those presented in Table 34.3. Figure
34.3 also illustrates the use of an alternative form of material, a fabric laminate that
can provide similar, but slightly inferior, properties in a reduced thickness. The abil-
ity to produce a single layer comprised of equal proportions of fibers woven into 0°
and 90° orientations is offered by this approach. Such a textile system therefore rep-
resents a valuable composite form. A state of plane stress and, for bending, plane
sections remain plane, is assumed in most conventional theoretical treatments.

To remain within the scope and purpose of this chapter, the full treatment of con-
ventional LPT will not be repeated here since it appears in numerous established
texts on the subject (see Refs. 3 through 8). However, the essential information on
conventional notations, whereby laminates are specified together with the physical
behavioral insights concerning coupling phenomena, will be presented herein.

LAMINATE CONFIGURATION NOTATION

A method for specifying a given multidirectional laminate configuration has been
established and is now routinely used on engineering drawings and documents. The
following items essentially explain this laminate orientation notation:

1. Each layer or lamina is denoted by the angle representing the orientation (in
degrees) between its fiber orientation and the reference structural axis in the x
direction of the laminate.

2. Individual adjacent angles, if different, are separated by a slash (/).
3. Layers are listed in sequence starting with the first layer laid up, adjacent to the

tool surface.
4. Adjacent layers of the same angle are denoted by a numerical subscript.
5. The total laminate is contained between square brackets with a subscript indicat-

ing that it is the total laminate (subscript T) or one-half of a symmetric laminate
(subscript S).

6. Positive angles are assumed clockwise looking toward the lay-up tool surface, and
adjacent layers of equal and opposite signs are specified with + or − signs as
appropriate.

7. Symmetrical laminates with an odd number of layers are denoted as symmetric
laminates with an even number of plies, but with the center layer overlined.

The notations for some commonly used laminate configurations are illustrated in
Fig. 34.4.

In essence, lamination theory is involved in the transformation of the individual
stiffnesses of each layer in the principal directions to the direction of orientation in
the laminate, thereby providing the stiffness characterization for the specified lami-
nate configuration. Subsequently, application of a given system of loads is broken
down into individual layer contributions and referred back to the principal direc-
tions in each layer.A failure criterion is then used to assess the margin-of-safety aris-
ing in each layer. The complete process is illustrated in Fig. 34.5.

FAILURE CRITERIA

Although much debate and development has occurred with regard to the most
appropriate failure criteria for composite laminates, the most widely adopted
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FIGURE 34.4 Examples of laminates and conventional notations.



approach in composite applications is the maximum strain criterion. The application
of this relatively simple criterion requires an experimental database for the ultimate
strains for each of the three fundamental loading directions for the individual
orthotropic layer comprising the laminate.The three fundamental loading directions
refer to axial loading in the fiber direction, axial loading transverse to the fiber direc-
tion, and in-plane shear associated with the former directions. However, it should be
acknowledged that the ultimate strain values may be markedly different for tension
and compression both in the fiber direction and transverse to it. Thus, a total of the
following five ultimate strains are required to facilitate application of the maximum
strain criterion:

1. εL
tu is the ultimate tensile strain in the fiber direction.

2. εL
cu is the ultimate compressive strain in the fiber direction.

3. εT
tu is the ultimate tensile strain transverse to the fiber direction.

4. εT
cu is the ultimate compressive strain transverse to the fiber direction.

5. γsu
LT is the ultimate shear strain associated with directions parallel and normal to

the fiber direction.

In connection with the actual values used for (1) through (5), see the previous sec-
tion entitled “In Situ Properties,” which explains how the individual layer properties
must be adjusted to represent the strength or ultimate strain values of a given layer
that is contained within a multidirectional laminate. The prudent approach in engi-
neering development work is to identify special laminate configurations that may be
used to establish representative in situ properties for the range of potential candi-
date laminates for application to a specific design.
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COUPLING, BALANCE, AND SYMMETRY

The mathematical relationships obtained in laminated plate theory define all the
coupling relationships arising in the arbitrary laminate. However, a discussion of the
physical aspects of such coupling phenomena and the laminate designs that may be
invoked to suppress these responses is helpful to the structural engineer.

Extension-Shear Coupling. First, the in-plane coupling between extension and
shear or vice versa arises in the case of any off-axis layer, for example,

γxy = S16σx or εx = S16τxy (34.1)

or, for the inverse situation,

σx = Q16γxy or τxy = Q16εx (34.2)

where S16 and Q16 are, respectively, the compliance and stiffness terms defining the
coupling magnitudes.3 From a physical point of view, the shear deformation induced
by an axial tensile stress is caused by the tendency for the layer to contract along the
diagonals by unequal amounts due to differences in the Poisson’s ratio in these two
directions. Alternatively, considering the special case of a +45° layer, the axial stress
may be resolved into planes at +45° and −45° to the direction of applied stress. The
resulting strains due to equal resolved stress components along these directions are
obviously different.

Intuitively, it is easily rationalized that the use of a [±θ]T laminate will result in the
mutual suppression of the tension-induced shear deformation in each individual
layer. In the general case, equal numbers of layers in the off-axis, +θ and −θ, layers
will suppress this coupling; the resulting laminate is termed a balanced laminate.

Extension-Torsion Coupling. For this the previous balanced laminate [±θ]T is
considered. The spatial separation in the thickness direction results in equal and
opposite deformations in the shear deformation induced by an axial tensile stress.
This deformation situation therefore results in twisting of the laminate, a condition
that is illustrated in Fig. 34.6. From a simplistic viewpoint, the illustration presented
in Fig. 34.7 provides a type of designers’ guide to coupling evaluations, which facili-
tates rational judgments in laminate design.All the responses indicated in these two
figures can be confirmed by use of conventional lamination theory. Suppression of
the twisting deformation is achieved by use of a symmetric laminate in which the off-
axis layers below the central plane are mirrored by an identical off-axis layer at the
same distance above the central plane (see Fig. 34.7).

Extension-Bending Coupling (Related through B11 and B22 Matrix Compo-
nents). The simplest form of laminate, exhibiting a coupling between in-plane
extension (or compression) and bending deformation, is the [0°, 90°]T unsymmetri-
cal laminate. This response can be rationalized, on a physical basis, by recognizing
that the neutral plane for this two-layer laminate will be located within the stiffest 0°
layer, giving rise to a bending moment produced by the in-plane forces applied at the
midplane and the associated effect between the two planes. For this case, it is clearly
seen that the coupling would be suppressed by use of a four-layer symmetric lami-
nate, i.e., [0°, 90°]s, or a three-layer symmetric laminate such as [0°, 9�0�°]s, where the
bar over the 90° layers signifies that this layer orientation is not repeated.
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In-Plane Shear-Bending Coupling (Related through B16 and B26 Matrix Com-
ponents). To visualize the mechanism associated with this mode of coupling, con-
sider a [±45°]T unsymmetrical, two-layer laminate subjected to in-plane shear loads.
By recognizing that the in-plane shear is equivalent to a biaxial tension and com-
pression loading with the tensile direction in the lower layer aligned with the fiber
direction and, in the upper layer, transverse to the fiber direction, it will be realized
that the plate will assume a torsional deformation (see Fig. 34.6).

Bending-Torsion Coupling (Related through D16 and D26 Matrix Components).
For this mode of coupling, a four-layer balanced symmetric laminate, i.e., [±θ]s, is
considered.The application of a bending moment, and an associated strain gradient,
to this laminate will induce different degrees of shear coupling to the outer and
inner layers.As a consequence, the response of the outer layers will dominate due to
the higher strain levels in these layers, resulting in a net torsional deformation, as
illustrated in Fig. 34.6. For qualitative assessment of this mode of coupling, the mag-
nitude of the shear responses can be considered to exert an internal couple on the
laminated plate as illustrated in Fig. 34.7. A similar rationale can be used to design a
laminate that would not exhibit this coupling. For example, an eight-layer laminate
of the configuration

[(�θ)s/(�θs)]T or [�θ, �θ, �θ, �θ]T

will not exhibit bending-torsion coupling.
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FIGURE 34.6 Illustration of coupling phenomena in laminated composite plates.



GENERAL LAMINATE DESIGN PHILOSOPHY

The recommended approach for laminates that are required to support biaxial loads
is conveyed in the family of laminates represented by the shaded area in Fig. 34.8.
This figure merely provides guidelines for selecting suitable laminates that have
been shown to be durable and damage-tolerant. However, the form of presentation
is also adopted for a system of carpet plots that can be very useful in the design and
analysis of laminates for a specific composite system. These carpet plots facilitate
reasonable predictions of the elastic and strength properties, and the coefficients of
thermal expansion for a family of practicable laminates that comprise 0°, +45°, and
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90° fiber orientations of any proportions in an assumed balanced, symmetric lami-
nate arrangement. Examples of these carpet plots are presented in Ref. 3 and in
most of the texts referenced previously. Even for highly directional loading, a nomi-
nal (approx. 10 percent) amount of layers, in each of the 0°, 90°, +45°, and −45° direc-
tions, should be included for the following reasons:

1. Providing restraints that inhibit development of microcracks that typically form
in directions parallel to fibers.

2. Improved resistance to handling loads and enhanced damage tolerance (this is
especially relevant for relatively thin laminates, i.e., less than 0.200 in. thick).

3. More manageable values of the major Poisson’s ratio (vxy), particularly where
interfaces exist with other materials or laminates with values in the 0.30 range.

4. Compatibility between the thermal expansion coefficients with respect to adja-
cent structure.

Other commonly adopted and recommended practices include laminate designs that
minimize the subtended angle between adjacent layers and use of the minimum prac-
ticable number of layers of the same orientation in one group. To illustrate the for-
mer, a laminate configuration of [0°, +45°, 0°, −45°, 90°]s is preferred over a laminate
such as [0°, +45°, −45°, 0°, 90°]s even though the in-plane thermoelastic properties
would be identical for these two laminates. For the latter, the length of transverse
microcracks tends to be limited by the existence of the layer boundaries; hence, a [0°,
+45°, 0°, −45°, 0°, 9�0�°]s laminate is preferred over a [0°3, +45°, −45°, 9�0�°]s laminate.

FATIGUE PERFORMANCE

The treatment of fatigue and damage accumulation in composite design is greatly
complicated by the heterogeneity and anisotropy of the material in the laminated
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form. As a consequence, there is a multiplicity of mechanisms for the initiation and
propagation of damage and, understandably, the approaches, such as Miner’s cumu-
lative damage rule discussed in Chap. 33, are not recommended. For similar reasons
the test results obtained from small laboratory test coupons can rarely be used
directly in support of design for prediction of fatigue performance. Nevertheless,
such test coupon data can serve the purpose of obtaining preliminary indications of
the fatigue performance of specific laminate design configurations.

Basic failure mechanisms that occur in laminated composites, in general, include
the following:

1. Transverse cracking of individual layers in multidirectional laminates which will
typically arrest at the interlaminar boundaries.

2. Fiber-matrix debonding which often can contribute to premature transverse
cracking.

3. Delamination between layers due to interlaminar shear and/or tensile stress com-
ponents that can be initiated by the aforementioned transverse cracks. Out-of-
plane or bending loads on the structure will tend to give rise to such delamination.

4. Fiber breakage which will usually occur in the later stages of damage growth
under monotonic static loading or under cyclic loading. However, most reinforc-
ing fibers are not, in themselves, fatigue sensitive.

The first two initiating mechanisms motivate the above general laminate design phi-
losophy advocated in the previous section, as illustrated in Fig. 34.8. A common
sequence of failure events is illustrated for a quasi-isotropic, [±45°, 0°, 90°]s, car-
bon/epoxy laminate, also summarized in Fig. 34.9 (adapted from Ref. 9).

It may be stated, with some confidence, that the composites industry is able to
design polymer matrix composite laminates of uniform thickness in a reliable man-
ner. Extensive experience with PMCs has taught us to use fiber-dominated laminate
designs, which are most often specified in the [0°/±45°/90°]s or pseudo-isotropic form
with respect to the in-plane directions. In-plane compression failure is somewhat of
an exception since the matrix and the degradation thereof can develop delamina-
tions and influence premature failure mechanisms. However, by far the largest
number of development and in-service problems with composite hardware are asso-
ciated with matrix-dominated phenomena, that is, interlaminar shear and out-of-
plane tension forces. This is a major concern in that failure contributed by either
one or a combination of these matrix-dominated phenomena are susceptible to the
following:

1. High variability contributed by sensitivity to processing and environmental con-
ditions.

2. Brittle behavior, particularly for early, i.e., 1970s era, epoxy matrix systems.
3. Inspectability of local details where flaws or defects may exist.
4. Low reliability associated with the lack of acceptable or representative test meth-

ods and complex, highly localized, stress states (the use of the transverse tensile
strength of a unidirectional laminate for out-of-plane or thickness tensile
strength is generally unconservative).

5. Potential degradation of residual static strength after fatigue/cyclic load exposure.

The development of stress components that induce interlaminar shear/out-of-
plane tension failures was illustrated in Fig. 34.2, where commonplace generic fea-
tures of composite hardware designs that frequently experience delaminations are
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shown. It is at such details that PMC structures are particularly vulnerable under both
static and fatigue loading. The propensity for delamination and localized matrix-
dominated failures that represents a general characteristic of many PMCs is that
notch sensitivity may be reduced after fatigue load cycling for local through-thickness
penetrations. On the other hand, this demands that a fatigue life methodology should
be available to deal with composite structures that are subjected to out-of-plane load
components. Naturally, the capability of predicting the fatigue life is an essential ele-
ment in the process of qualifying, or certifying, composite products and systems.

The design requirements generally specified for qualifying and/or certifying a
composite product typically include (a) static strength, (b) fatigue/durability, and (c)
damage tolerance. All of these requirements rely on a comprehensive appreciation
of failure modes; the variability (or scatter); discontinuities caused by notches, holes,
and fasteners; and environmental factors, particularly damage caused by the impact
of foreign objects, machining, and assembly phenomena.
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FIGURE 34.9 A common sequence of fatigue failure
events for a [±45/0/90]s pseudo-isotropic carbon/epoxy
laminate: transverse cracking of 90° plies; edge de-
lamination at 0° → 90° interfaces; transverse cracking
of ±45° plies; delaminations at 45° → +45° then at
45° → 0° interfaces; fiber failures in 0° plies. (Adapted
from Ref. 9.)



In the case of fatigue, three potential design approaches are considered. The par-
ticular selection may be based on the nature of usage, economics, safety implications,
and the specific hardware configuration. Often some combination of approaches
may be adopted particularly during the developmental phase. These three general
categories of approach are the (a) Safe Life/Reliability Method, (b) Fail Safe/Dam-
age Tolerance Method, and (c) Wearout Model.

SAFE LIFE/RELIABILITY METHOD

Statistically based qualification methodologies9–11 provide a means for determining
the strength, life, and reliability of composite structures. Such methods rely on the
correct choice of population models and the generation of a sufficient behavioral
database. Of the available models, the most commonly accepted for both static and
fatigue testing is the two-parameter Weibull distribution. The Weibull distribution is
attractive for a number of reasons, including the following:

1. Its simple functional form is easily manipulated.
2. Censoring and pooling techniques are available.
3. Statistical significance tests have been verified.

The cumulative probability of the survival function is given by 

Ps(x) = exp [(−x/β)αs] (34.3)

where αs is the shape parameter and β is the scale parameter.
For composite materials, αs and β are typically determined using the maximum-

likelihood estimator.12 In addition, the availability of pooling techniques is especially
useful in composite structure test programs where tests conducted in different envi-
ronments may be combined. Statistical significance tests are used in these cases to
check data sets for similarity.

The following paragraphs present a review of the statistical method of Ref. 10.
The development tests required to generate the behavioral database are outlined,
followed by a discussion of the specific requirements for static strength and fatigue
life testing. Special attention is given to the effect that matrix- and fiber-dominated
failure modes have on test requirements.

A key to the successful application of any statistical methodology is the genera-
tion of a sufficiently complete database. The tests must range from the level of
coupons and elements to full-scale test articles in a building-block approach. Addi-
tionally, the test program must examine the effects of the operating environment
(temperature, moisture, etc.) on static and fatigue behavior. The coupon and subele-
ment tests are used to establish the variability of the material properties. Although
they typically focus on the in-plane behavior, it is also important to include the trans-
verse properties. This is especially important in the case of research and develop-
ment programs. The resulting data can be pooled as required and estimates of the
Weibull parameters made. Thus, the level and scatter of the possible failure modes
can be established. The transverse data are characterized by the highest degree of
scatter. Element and subcomponent tests can be used to identify the structural fail-
ure modes. They may also be used to detect the presence of competing failure
modes. Higher-level tests, such as tests of components, can be used to investigate the
variability of the structural response resulting from fabrication techniques. The
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resulting database should describe, to the desired level of confidence, the failure
mode, the data scatter, and the response variability of a composite structure. These
data along with full-scale test articles can be used in the argument to justify qualifi-
cation.

Out-of-plane failure modes can complicate the generation of the database. Well-
proven and reliable transverse test methods are few. The typically high data scatter
makes higher numbers of tests desirable. In addition, the increased environmental
sensitivity in the thickness direction can cause failure mode changes, negating the
ability to pool data and possibly resulting in competing failure modes.Thus, a design
whose structural capability is limited by transverse strength can lead to increased
testing requirements and qualification difficulties.

The static strength of a composite structure is typically demonstrated by a test to
the design ultimate load (DUL), which is 1.5 times the maximum operating load, that
is, the design limit load (DLL). Figure 34.10 shows the reliability achieved for a sin-
gle static ultimate test to 150 percent of the DLL for values of the static strength
shape parameter from 0 to 25. For fiber-dominated failure with αs values near 20,
such a test would demonstrate an A-basis value, which is defined as the value above
which at least 99 percent of the population is expected to fall, with a confidence of
95 percent (a statistical tolerance limit as detailed in Chap. 18). However, for matrix-
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dominated failure modes, with αs ranging from 5 to 10, a test to 150 percent of the
DLL would not demonstrate an A-basis value.Two options are available to increase
the demonstrated reliability, namely, (a) increasing the number of test specimens, or
(b) increasing the load level. The most effective choice is to increase the load level
beyond 150 percent of the DLL, whereas increasing the number of test specimens
yields little benefit and is expensive.

The two most applicable methods of statistical qualification approaches for
fatigue are the life factor (also known as the scatter factor) and the load enhancement
factor. The life factor approach relies on a knowledge of the fatigue life scatter fac-
tor from the development test program and full-scale test or tests. The factor gives
the number of lives that must be demonstrated in tests to yield a given level of reli-
ability at the end of one life. A plot of life factor NF against the fatigue life shape
parameter αL is given in Fig. 34.11 for a typical scenario. A single full-scale test to
demonstrate the reliability of the B-basis value, defined as that value above which at
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least 90 percent of the population is expected to fall, with a confidence of 95 percent
at the end of one life, is to be conducted. The curve shows that as the shape parame-
ter approaches 1.0, the number of lives rapidly becomes excessive. Such is the case
of an in-plane fatigue failure (αL = 1.25). Although few data for transverse fatigue
are available, other than perhaps for bonded parts, it is reasonable to assume that the
value of the shape parameter will be the same or less. Hence, it is apparent that the
life factor approach is not acceptable for the certification of composites, especially
where out-of-plane failure modes are dominant.

An alternative approach to life certification is the load enhancement factor,
wherein the loads are increased during the fatigue test to demonstrate the desired
level of reliability. Figure 34.12 illustrates the effect of the fatigue life shape param-
eter αL and the residual-strength shape parameter αR on the load enhancement fac-
tor F required to demonstrate B-basis reliability for one life using a single full-scale
fatigue test to one lifetime. It is obvious that the required factor does not change sig-
nificantly for fatigue life shape parameters in the range of 5 to 10. However, as the
shape parameter approaches 1.0, as is the case for composites, the required load
enhancement factor increases noticeably, especially for small values of the residual-
strength shape parameter. This curve illustrates well the potential problems that
may arise from dominant out-of-plane failure modes. Such failure modes tend to
have low values of αL (near 1.0) and also low values of αR (in the range from 5.0 to
10.0).These values would make the required load enhancement factors prohibitively
large. It is evident that for failure modes that exhibit a high degree of static and
fatigue scatter, the life factor and load enhancement factor approaches can result in
impossible test requirements. A combined approach can be achieved through the
manipulation of the functional expressions. The resulting method allows some lati-
tude in balancing the test duration and the load enhancement factor to demonstrate
a desired level of reliability.
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Figure 34.13 gives the curves of load enhancement factor against life factor for
the cases of fiber- and matrix-dominated failures. Typical values for the fatigue life
and residual-strength shape parameter were employed. The curves show the possi-
ble combinations of life factor (or test duration) and load enhancement factor to
demonstrate the B-basis reliability at the end of one lifetime using a single full-scale
fatigue test article. The curve for fiber-dominated failure modes exhibits quite rea-
sonable values of life factor and load enhancement factor. For test durations ranging
from 1 to 5 lifetimes, the load enhancement factor ranges from 1.18 down to 1.06.
However, the test requirements for matrix-dominated failure are more severe. Over
the range of life factor from 1 to 5, the load enhancement factor ranges from 1.4
down to 1.19. An environmental compensation factor would further complicate the
test of a matrix-dominated failure. Such a factor must be combined with the load
level. As is well known in composites, the adverse effects of environment on matrix
properties are much more severe than on fiber-dominated properties, and the result-
ing factor may be significant.

Further illustration of the problems induced by a matrix-dominated failure is
possible by assuming a limit exists on the load enhancement factor. Such limits may
exist because of failure mode transitions at higher load levels. For instance, assuming
a load enhancement factor of 1.2 is the maximum allowable value, it is obvious that
a successful one-lifetime test for a fiber-dominated failure will demonstrate the reli-
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ability better than a B-basis test. For matrix-dominated failure, the same reliability
would require a test duration of about 4.5 lives.

Two important aspects of the statistical qualification methodology are the gener-
ation of an adequate database and the proper execution of a full-scale demonstration
test. The development test program must be conducted in a “building block”
approach that produces confident knowledge of the material shape parameters, envi-
ronmental effects, failure modes, and response variability. Perhaps the most impor-
tant result should be the ability to predict the failure mode and know the scatter
associated with it. Structures that exhibit transverse failures, which can result in com-
peting modes and a high degree of scatter, may render the application of this fatigue
methodology impractical. This result has been illustrated by the effect of shape
parameters on both the static and fatigue test requirements.The requirements clearly
show that a well-designed structure that exhibits fiber-dominated failure modes will
be more easily qualified than one constrained by matrix-dominated effects.

FAIL SAFE/DAMAGE TOLERANCE METHOD

The damage tolerance philosophy assumes that the largest undetectable flaw exists
at the most critical location in the structure, and the structural integrity is main-
tained throughout the flaw growth until detected by periodic inspection.13 In this
approach, the damage tolerance capability covering both the flaw growth potential
and the residual strength is verified by both analysis and test. Analyses would
assume the presence of flaw damage placed at the most unfavorable location and
orientation with respect to applied loads and material properties. The assessment of
each component should include areas of high strain, strain concentration, a mini-
mum margin of safety, a major load path, damage-prone areas, and special inspec-
tion areas. The structure selected as critical by this review should be considered for
inclusion in the experimental and test validation of the damage tolerance proce-
dures. Those structural areas identified as critical after the analytical and experi-
mental screening should form the basis for the subcomponent and full-scale
component validation test program. Test data on the coupon, element, detail sub-
component, and full-scale component level, whichever is applicable, should be
developed or be available to (a) verify the capability of the analysis procedure to
predict damage growth/no growth and residual strength, (b) determine the effects of
environmental factors, and (c) determine the effects of repeated loads. Flaws and
damage will be assumed to exist initially in the structure as a result of the manufac-
turing process, or to occur at the most adverse time after entry into service.

A decision to employ proof testing must take the following factors into consider-
ation:

1. The loading that is applied must accurately simulate the peak stresses and stress
distributions in the area being evaluated.

2. The effect of the proof loading on other areas of the structure must be thoroughly
evaluated.

3. Local effects must be taken into account in determining both the maximum possi-
ble initial flaw/damage size after testing and the subsequent flaw/damage growth.

The most probable life-limiting failure experienced in composite structure, particu-
larly in nonplanar structures where interlaminar stresses are present, is delamina-
tion growth. Potential initiation sites are free edges, bolt-holes, and ply terminations
(see Fig. 34.2), in addition to existing manufacturing defects and subsequent impact
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damage. Hence, an analysis technique for the evaluation of growth/no growth of
delaminations is an essential tool for the evaluation of the damage tolerance of com-
posite structures. A numerical method is available through the use of finite element
analysis (see Chap. 23) and the crack closure integral technique from fracture
mechanics.14 Prerequisites for an evaluation are as follows:

1. A structural analysis made in sufficient detail to indicate the locations where the
critical interlaminar stresses exist.

2. Experimentally based critical interlaminar strain energy release rates Gic, GIic,
and a subcritical growth law, that is, da/dN, where da/dN is the rate of change of
the crack length or damage zone size a with the number of cycles N, against ΔG
for each mode (see Chap. 33).

3. A mixed mode I/mode II fracture criterion.

The test specimens used to generate the required mode I and mode II fracture
toughness parameters are described in detail in Ref. 15. The application of this
approach requires a significant analysis and test effort to evaluate hot spots within
the structure and to generate the necessary fracture toughness data. One limita-
tion is the absence of a reliable mixed-mode fracture criterion, and consequently
this method is not considered sufficiently mature to warrant a recommendation
for wide general application, particularly for developmental composite hardware
evaluations.

THE WEAROUT MODEL

Wearout is defined as the deterioration of a composite structure to the point where
it can no longer fulfill its intended purpose. The wearout methodology was devel-
oped in the early 1970s and is comprehensively summarized in Ref. 12.The essential
features are portrayed in Fig. 34.14. This methodology was previously used by the
military aircraft command for the certification of several composite aircraft compo-
nents. In essence, the wearout approach recognizes the probability of progressive
structural deterioration of a composite structure.The approach utilizes the develop-
ment test data on the static strength and the residual strength, after a specified
period of use, in conjunction with proof testing of all product hardware items to
characterize this deterioration and protect the structure against premature failures.
It has become evident that the residual stiffness is an indicator of the extent of the
structural deterioration and can be an important performance parameter with
regard to the natural frequencies of oscillation of the aerodynamic surfaces. Thus, in
some instances, it may be prudent to incorporate a residual-stiffness requirement in
an adopted methodology to evaluate the tolerance of the structure to component
stiffness degradation.

The difficulties in the implementation of the methodology include the determi-
nation of the critical load conditions to be applied for static and residual strength
and stiffness testing and for the proof load specification. Similar difficulties would
arise in the case of all candidate methodologies considered here, and indeed empha-
size the importance of a representative structural analysis. However, the advantage
of the wearout approach for advanced composite hardware development projects
resides in the ability to assign gates for safe flight testing as the flight envelope is
progressively expanded.

Since the era of the initial development and interest in the wearout approach,
there appears to have been minimal development or usage. Nevertheless, the poten-
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tial motivation for a methodology of this type calls for a brief review of the physical
and theoretical basis for the important concepts. Further detail can be found in Refs.
12 and 16.

By combining several basic assumptions regarding the behavior of a composite
structure under load with basic Weibull statistics, a kinetic fracture model can be
derived. This model serves to assist in predicting the fatigue wearout behavior of
composite structures. The first assumption concerns the growth rate of an inherent
or real material flaw, da/dt, which is deemed to be proportional to the strain energy
release rate G of the material system raised to some power r, where r is to be deter-
mined experimentally. Thus,

da/dt ∝ Gr (34.4)

where a is the flaw length. As the cyclic load, F(t), is applied to the flawed body, the
internally stored strain energy will occasionally exceed the critical level required to
overcome the local resistance of the material to flaw growth or damage accumula-
tion, and flaw or damage growth will occur. Impediments to further development
have been related to those cited in Chap. 33, as it pertained to the fracture mechan-
ics method for metals, i.e., the need for further data to define the growth rate and/or
threshold level below which the damage area does not grow. One important wearout
parameter r is defined as the slope of the da/dN curve, or may be derived from the
S-N curve for the failure/damage mode in question.

Various relationships have been proposed12 relating the initial Weibull static
shape parameter, α0, and the fatigue life shape parameter, αf, both of which tend to
be a function of the damage size exponent alone. Specifically, available relationships
are given by

α0 = 2r + 1 and αf = (34.5)
α0�

2(r − 1)
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FIGURE 34.14 Essential features of the “wearout model” relating static
failure, load history, and fatigue failure.



Postulating that the composite system will lose strength at a uniform rate with
respect to a logarithmic scale of cycles or time, then from the specific fatigue curve
expressed as

NF γ
b = BN or tF γ

b = Bt (34.6)

the slope of the fatigue curve is given by γ = −1/2. In Ref. 16, a compilation of data on
damage growth rate exponents from a broad range of literature items, including var-
ious types of polymer composite systems and composite bonded structures, were
found to range between 4.3 and 6.6.

DAMPING CHARACTERIZATION

The major sources of damping in polymer matrix composites are associated with the
viscoelastic or microplastic phenomena of the polymer matrix constituent and, to
some degree for some composite systems, with weak fiber-matrix interfaces to
microslip mechanisms. Other sources of damping, such as matrix microcracking and
delamination resulting from poor fabrication conditions or service damage, can also
create increased damping in certain cases.Very little or no damping is contributed by
the fiber-reinforcement constituent with the possible exception of aramid, i.e.,
Kevlar, fibers. Environmental factors, such as temperature, moisture, and frequency,
on the other hand, can have a significant effect on damping.

Two-phase materials therefore tend to derive any damping from the polymer
matrix phase in a large majority of composite systems. Consequently, matrix-
influenced deformations, such as the interlaminar shear and tension components,
are the significant contributors. For the basic unidirectional composite, some closed-
form predictive methods are available, but generally the micromechanics theories
have been found to be unreliable for damping determinations, although reasonable
for modulus predictions. Structural imperfections at the constituent level are con-
sidered to be the main contributors to this situation.

As mentioned earlier, micromechanics-based theories are available to give some
indication of the effects of fiber volume content on damping parameters for unidi-
rectional materials. One example based on conventional viscoelasticity assumption
was formulated in Ref. 11 for the case of longitudinal shear deformation. For this
case the specific damping capacity (SDC), ψ12, for longitudinal shear can be
expressed17 as

ψ12 = (34.7)

where ψm = the SDC for the matrix
G = the ratio of fiber shear modulus to that of the matrix
Vf = the fiber volume fraction

For the condition of flexural vibration of composite beams, the damping due to
transverse shear effects that are highly matrix-dominated exhibit up to two orders of
magnitude greater damping than pure axial, fiber-direction effects. Specific data,
adapted from Ref. 18, on the SDC for the flexural vibration of unidirectional beams,

ψm(1 − Vf)[(G + 1)2 + Vf(G − 1)2]
�����
[G(1 − Vf) + (1 − Vf)][G(1 − Vf) + (1 + Vf)]
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over a range of aspect ratios (length �/thickness h), are compared to theoretical pre-
dictions in Fig. 34.15. Here the steady increase in damping for progressively lower
beam aspect ratios is clearly due to the shear deformation which indicates a much
stronger effect on damping than on the flexural modulus. The discrepancies in the
theoretically predicted SDC in Fig. 34.15 is generally attributed again to imperfec-
tions in the composite at the constituent level.

The damping trends for the other matrix-influenced deformational mode of
transverse tension (at 90° to the fiber direction) in a unidirectional composite is
illustrated in Fig. 34.16 for an E-glass fiber-reinforced epoxy over a wide range of
fiber volume fractions Vf. Substantial damping can also occur in the deformation of
an off-axis, unbalanced lamina or laminate, due to shear-induced deformation cre-
ated by coupling under tension, compression, or flexural loading directed at an angle
to the fiber direction. In Ref. 19, good correlation between the theoretical prediction
and experimental measurements is demonstrated for a complete range of fiber ori-
entations from 0° to 90° (see Fig. 34.17). Based on the flexural vibration of a high-
modulus carbon-fiber/epoxy matrix system with Vf = 0.5, Fig. 34.17 compares both
the flexural modulus and SDC. The latter damping parameter was predicted using
the approximate relationship

ψθ = Ex� sin4 θ + sin2 θ cos2 θ (34.8)

where x = the axial direction of the beam
θ = the angle between the fiber direction and the axis of the beam

E2, ψ2 = the elastic modulus and SDC, respectively, in the transverse direc-
tion of the fiber

G12, ψ12 = the shear modulus and shear-induced SDC, respectively, referred
to directions parallel and perpendicular to the fibers

ψ12�
G12

ψ2�
E2
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In this relationship the modulus Ex is given by

= + − + (34.9)

With the above correlation as background, predictive methods for the damping of
laminated beam specimens based on the classical laminate analysis method refer-
enced above (see Ref. 3), the damping terms were incorporated and presented in
Ref. 20 and summarized in Ref. 18. The approach involved formulation of the over-
all SDC, ψov, to yield the total energy dissipated divided by the total energy stored as

ψov = = (34.10)

where ΔZ1 = ψ1 ⋅ Z1 is the energy dissipation in the 1-direction, the axial being paral-
lel to the fiber direction in a given layer.

Predicted values obtained by this approach are compared with measured values
for a balanced, angle-ply laminated beam of high-modulus carbon-fiber/epoxy in
flexural vibration in Fig. 34.18. In this figure, the SDC approaches 10 percent maxi-
mum at a fiber orientation of ±45°, where the dynamic flexural modulus, however, is

ψ1Z1 + ψ2Z2 + ψ21Z12���
Z1 + Z2 + Z12

ΣΔZ
�ΣZ

cos2 θ sin2 θ
��

G12

2v12 cos2 θ sin2 θ
��

E1

sin4 θ
�

E2

cos4 θ
�

E1

1
�
Ex
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FIGURE 34.17 Variation of flexural modulus and specific damping capacity with fiber orientation
for a carbon/epoxy, off-axis laminate in flexure.



very small. Damping predictions are again shown to be below measured values, but
the discrepancy is much smaller in this case and the general trend with respect to
fiber orientation is predicted extremely well.

The above theoretical treatment has subsequently been extended to laminated
composite plates, again with reasonable correlation. SDC values ranged from just
below 1 percent up to around 7 percent, with lower damping exhibited by the car-
bon/epoxy-laminated plates configured to provide essentially isotropic elastic modu-
lus in the plane of the plate. Reference 18 contains extensive comparisons, including
mode shapes, for both carbon/epoxy- and glass/epoxy-composite laminates.
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FIGURE 34.18 Variation of flexural modulus and specific damping capacity with fiber orientation
for a carbon/epoxy, angle-ply laminate [±θ]s in flexure.
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CHAPTER 35
MATERIAL AND SLIP

DAMPING

Peter J. Torvik

INTRODUCTION

As used in this chapter, the term damping refers to the dissipation of energy in a
material or structure under cyclic stress or strain. Not treated here are the dynamic
vibration absorbers and auxiliary mass dampers discussed in Chap. 6, nor the applied
damping treatments discussed in Chap. 36. Only the inherent propensity of materi-
als and joints to dissipate energy through the process of converting mechanical
energy (strain and kinetic) to heat is considered. When such dissipation occurs
locally within the material, the process is referred to as material damping, taken as
inclusive of the dissipative mechanisms sometimes referred to as mechanical hys-
teresis, anelasticity, or internal friction. Attention is restricted to those mechanisms
which provide significant dissipation at stresses of engineering interest. Mechanisms
primarily used in physical metallurgy and solid-state physics as guides to the inter-
nal structure of the material are not treated.

Although the assumption of a perfectly elastic material is very convenient for
use in the analysis of structures, and is adequate in most cases, no structural mate-
rials are truly elastic. A system given an initial perturbation will eventually come
to rest unless the energy dissipated is offset by the addition of energy. Cyclic
motion of a structure can be sustained at constant amplitude only if the energy lost
through dissipation is offset by work done on the system. Damping can be advan-
tageous to performance, governing as it does the maximum amplitude achieved at
resonance and the rate at which a perturbed system progresses to a satisfactorily
quiescent state. In addition to lowering the probability of failure due to fatigue,
reductions of amplitude can have many other benefits, such as reducing visible
vibrations, the sound emitted from a valve cover, or the acoustic signature of a sub-
marine propeller. Damping, however, can also be disadvantageous. It may produce
such unwanted phenomena as shaft whirl, instrument hysteresis, and temperature
increases due to self-heating.

When dissipation occurs as a consequence of relative motion between two bod-
ies, the result may be described as friction damping and may result from relative
rigid-body motions, or sliding, or from unequal deformations of the contacting sur-
faces, enabling slip. As typically used, internal friction is an inclusive term for all
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types of material damping, regardless of mechanism. However, there appear to be
cases in which the mechanism of material damping is truly coulomb friction.This will
be discussed as an example of slip damping.

The distinction between damping as a material property and as a system property
is emphasized and, as the determination of the damping properties of a material typ-
ically begins with a measurement of the damping of a system containing the test
sample, some methods of measuring system damping are reviewed. Several dissipa-
tive mechanisms are discussed, with dissipative properties of representative materi-
als given as examples.

MEASURES OF MATERIAL DAMPING

The most fundamental measure of the dissipative ability of a material is the specific
damping energy or unit damping, defined as the energy dissipated in a unit volume
of material at homogeneous strain and temperature, undergoing a fully reversed
cycle of cyclic stress or strain. The specific damping energy D has dimension of
energy per unit volume, per cycle, and is, in general, a function of the amplitude and
history of stress or strain, temperature, and frequency. For some materials, the unit
damping is also dependent on the mean (static) stress or is influenced by magnetic
fields. The unit damping is customarily given in terms of the amplitude of a uniaxial
stress or strain, tensile or shear, with multiaxial loadings characterized1 by an appro-
priate equivalent uniaxial stress or strain.

Material damping may be categorized as being linear or nonlinear. In the first
class, the energy dissipated per cycle is dependent on the square of the amplitude of
cyclic stress.As the strain energy density is also normally proportional to the square
of stress amplitude, the ratio of dissipated and stored energies, as well as other
dimensionless measures of damping, are then independent of amplitude. Materials
displaying these attributes may be said to display linear damping. In the second
class of materials, the energy dissipated per cycle varies as amplitude of cyclic
stress to some power other than 2. If the strain energy density varies as, or nearly
as, the square of amplitude, the ratio of dissipated to stored energy, as well as other
dimensionless measures of damping, are then also functions of the amplitude of
stress or strain. Such materials may be said to display nonlinear damping. The spe-
cific damping energy (SDE) is the most robust of all damping measures, being
applicable to nonlinear as well as linear materials.

While some important mechanisms of damping, such as viscoelastic and thermo-
elastic, are essentially linear, others are not. That this is true may be seen from the
values of the SDE as functions of uniaxial tensile stress for the variety of structural
materials shown in Fig. 35.1 as measured by Lazan1 and colleagues. For stresses
below a critical value (a cyclic stress sensitivity limit, usually about 70 percent of the
fatigue strength at 2 × 107 cycles), the damping energy is typically independent of his-
tory and increasing with a power n of the amplitude of fully reversed dynamic stress,
σd, somewhat greater than 2, that is,

D = Jσn
d (35.1)

At higher stress, the same functional form may be applied, but the damping typically
increases much more rapidly with stress. The parameter n is then typically much
greater than 2 and may increase or decrease with the number of cycles.

While rooted in the concept of a linear viscoelastic material, the concept of a
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FIGURE 35.1 Specific damping energy of various materials as a function of amplitude of reversed stress and number of fatigue cycles.
Number of cycles is 10 to power indicated on curves. For example, a curve marked 3 is at 1000 cycles.



complex modulus may be adopted to characterize the dissipation of other materi-
als undergoing cyclic loading. In the case of a nonlinear material, we may define 
amplitude-dependent effective values of a storage and loss modulus E1 and E2, as

E1(ω,T,ε0) � and E2(ω,T,ε0) � (35.2)

where U is the strain energy in the unit volume, stored and recovered during each
cycle of vibration; D is the SDE; and εd is the amplitude of cyclic strain. When for-
mulated in this manner, the amplitude-dependent components of a complex modu-
lus are quantities defined from fundamental considerations of energy, rather than as
a consequence of a particular representation of a stress-strain law. Once determined
for all applicable values of frequency, temperature, and strain, they may be used with
distributions of temperature and strain established a priori to find the total energy
stored and dissipated in all dissipative elements undergoing cyclic loading by sum-
ming over all volume elements of the structure

U0(ω) = �
M

m = 1
|εd|2m and D0(ω) = �

M

m = 1
πE2(ω,Tm,εdm)|εd|2m (35.3)

For structural materials, the values of storage and loss modulus are typically inde-
pendent of frequency, but are variable with amplitude and somewhat with tempera-
ture. In the case of viscoelastic materials, they are typically independent of amplitude,
but vary strongly with both frequency and temperature.

A material loss factor may also be defined as the ratio of energy dissipated in the
unit volume per radian of oscillation to the peak energy stored.

η = = = (35.4)

If either or both of the components of the modulus are dependent on amplitude, then
the material loss factor is also dependent on amplitude. Note that the use of the loss
factor, defined in terms of energy dissipated per cycle, is to be preferred over the some-
times-used specific damping capacity or damping index, computed from the energy
dissipated per cycle by ψ = D/U, as the unit of the radian is more truly a dimensionless
quantity than is the cycle.Values of a material loss factor have been added to Fig. 35.1,
normalized to the case of a material with an amplitude-independent storage modulus
of 102 GPa. The resulting values must then be adjusted to the actual value for the
material of interest by multiplying by the ratio of the actual modulus to the reference
modulus. Values for the high strength and mild steels, for example, are found to be
about 0.001 to 0.005 for stresses in the range 40 to 200 MPa.

The presence of dissipation implies that the induced displacement, or strain, must
be out of phase with the causative force, or stress, and that the response must lag the
input so as to give rise to a positive dissipation. The resulting phase angle is some-
times measured directly or indirectly and offered as a material property. As both
components of a complex modulus must be positive, the angle by which the strain
lags the stress is given by tan φ = E2(ω,T,εd)/E1(ω,T,εd), referred to as the loss tangent.
But even when such a phase angle can be measured, interpretation of the loss tan-
gent as the loss factor is not well justified in the case of an amplitude-dependent
material because the inherent presumption of harmonic stress and strain implies lin-
earity.

Other measures of damping, such as the logarithmic decrement, are often given
as material properties, but these are truly system properties and yield material prop-
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erties only when the system measured consists solely of a homogeneously strained
sample of the material of interest. Also, these other measures typically depend in
some manner on an assumption of linearity.

MATERIAL DAMPING: MECHANISMS 

AND MODELS

It is convenient to classify material damping as displaying static or dynamic hys-
teresis. In the case of the former, the stress-strain relationship does not depend on
time, as the state of stress is independent of the rate of stress or of strain. Upon
change in load, the change in deformation is essentially instantaneous, but may be
dependent on the prior load history. Removal of the load leaves a residual defor-
mation, not recovered over time. The instantaneous response gives rise to hystere-
sis loops with sharply pointed ends. In contrast, materials displaying dynamic
hysteresis require representation in terms of stress-strain relationships incorporat-
ing time, as the state of stress depends on the instantaneous rate of stress and/or
strain, as well as on the current values.While there may be some instantaneous defor-
mation resulting from the application of load, additional deformations (creep) occur
over time. The deformation remaining after removal of the loading changes with
time (relaxation) and, in some cases, may disappear entirely. Because the response
is not instantaneous, the hysteresis loops display finite curvatures at the extremal
values. The term anelasticity was used by Zener2 to describe materials such as these
that are linear and unload without permanent deformation, but for which the rela-
tionship between stress and strain is not single-valued.

Several mechanisms of damping have been found to produce sufficient dissipa-
tion to be of engineering interest in the mitigation of structural vibrations. Two such
mechanisms, plasticity and magnetoelasticity, for which the damping is essentially
independent of frequency (static hysteresis) but is inherently nonlinear, will be dis-
cussed. Additionally, two damping mechanisms for which the damping is strongly
dependent on frequency (dynamic hysteresis) will be considered. These are dissipa-
tions due to viscoelastic and thermoelastic effects. In contrast to the mechanisms of
the first category, these mechanisms are typically linear, with material loss factors
independent of amplitude.

DAMPING DUE TO PLASTICITY

The dominant dissipation in most structural materials at stress levels of engineering
interest is due to some mechanism of plastic deformation,1 variously referred to as
plastic slip, localized plastic deformation, crystal plasticity, cyclic plastic flow, or dis-
location motion. In a polycrystalline material, inhomogeneous stress distributions
within and stress concentrations at grain boundaries create localized stresses on the
microscopic scale even when the average (macroscopic) stress is well below yield.As
the density of such instances can be expected to increase with stress, and not neces-
sarily simply as the square, nonlinear damping may be expected.The higher levels of
damping are thought3 to be most typically due to stress-induced movements of dis-
locations or boundaries (grain boundaries, twin boundaries, domain boundaries, or
the boundaries between martensitic variants). Material processing can be expected
to influence damping, with annealing generally leading to lower values.

As the theoretical models for dislocation motions and other microscopic phe-
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nomena have not been proven to be fully satisfactory1 for the practical characteriza-
tion of material damping, empirical relationships based on the results from testing
have been used for the description of damping due to plastic behavior. One such
relationship is that of Eq. (35.1), which may also be written in terms of the amplitude
of cyclic strain, noting that the exponent may differ slightly from the representation
in terms of stress if the dynamic secant modulus varies with amplitude.

D = Jεεn
d (35.5)

An empirical stress-strain relationship attributed to Davidenkov, with parame-
ters chosen so that the stress-strain relationship is symmetric in tension and com-
pression,

σ(ε) = E0[(εd + ε) − b(εd + ε)M + 1] − σd for dσ/dt > 0 (35.6)

σ(ε) = σd − E0[(εd − ε) − b(εd − ε)M + 1] for dσ/dt < 0 (35.7)

leads to a closed hysteresis loop with the
pointed ends that are characteristic of a
material undergoing cyclic plastic defor-
mation.The example shown in Fig 35.2 is
for parameters E0 = 1, b = 0.3, M = 0.8,
and εd = 1. The energy dissipated may be
computed4 from the area enclosed by
the hysteresis loop and is

D = b� E0(2εd)M + 2 (35.8)

Equation (35.8) is identical in form to
Eq. (35.5) and captures the power-law
dependence of dissipation on amplitude
that is characteristic of the dissipation 
of structural materials in the region of
lower stresses, as seen in Fig. 35.1. The
same form is applicable at high levels 
of stress using different parameters, al-
lowed to vary with stress history. Gener-
ally similar hysteresis loops result from

modeling an elastoplastic material by an infinity of sliding elements, with the yield
(sliding) strain of each prescribed by an arbitrary distribution.5 This model, however,
does not lend itself readily to the generation of hysteresis loops for which the area
(dissipation) is proportional to the fractional power of the strain amplitude, as
required for agreement with observations.

While the damping stress relationship of Eq. (35.1) and hysteresis loops such as
Fig. 35.2 are adequate for the characterization of material damping due to plasticity
in most metals, the hysteresis loops for one class of materials are notably different
and require a different representation. Shape memory alloys (SMAs) are materials
that reversibly change crystallographic structure, depending on temperature and the
state of stress. For certain combinations of maximum stress and temperature, there
is no residual displacement (strain) after unloading from well into the nonlinear
region. This phenomenon is known as superelasticity or pseudoelasticity.

M
�
M + 2
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The process may be modeled6 with two rate equations governing the evolution of
the volume fraction in the martensitic phase, ξM, but since the process is actually
independent of time, the rates may be replaced by increments.The first describes the
conversion from the austenitic to the martensitic phase, occurring when (1) the mag-
nitude of stress is in the range σMs < |σ| < σMf , and (2) increasing. Then

ξ̇M = −(1 − ξM) (35.9)

The second describes the reverse transformation of martensite to austenite, occurring
when (1) the magnitude of the stress is in the range σAs > |σ| > σAf , and (2) decreasing.

ξ̇M = ξM (35.10)

For combinations of the magnitude and rate of change outside these ranges, the vol-
ume fraction ξM remains constant.As the moduli of the two phases are different, the
effective modulus of the material is that of a composite, dependent on the volume
fractions of each phase. An effective modulus Eeff can be formed in a number of dif-
ferent ways, but is bounded above by the modulus found from a rule of mixtures
using the moduli and below by using a rule of mixtures for the reciprocals (suscepti-
bilities). Additional strain results from the change in shape associated with the
martensitic transformation. This is assumed to be in proportion to the amount of
martensite, but of maximum value εL. With sgn(σ) taking values 1, 0, −1 as the stress
is positive, zero, or negative, the total strain is

ε = σ/Eeff + ξMεLsgn(σ) (35.11)

The use of these relationships with material parameters given6 for a nickel-
titanium (Ni-Ti) alloy in a simulation of the response of a superelastic material ini-
tially in the austenitic state leads to the response shown in Fig 35.3 for the first half
of a fully reversed cycle of loading of amplitude σd. Initially, the material responds

elastically, with the modulus of the
austenitic state. At point B, the transi-
tion to martensite begins and the result-
ing austenite-martensite composite has
a lower effective modulus. Plastic strain
also begins to form, giving the total
strains of Eq. (35.11). For σd < σMF, the
austenite-martensite transformation is
not yet complete at the reversal of the
loading direction at point C. If the stress
is then reduced to below point D, rever-
sion to the austenitic state begins and is
completed at point A.The additional de-
formations associated with the marten-
sitic transformation have now been fully
recovered, and the material unloads
elastically. If the unloading continues to
a negative stress of σ = −σd , the lower
half of the loop is a reflection of the
upper half about both axes. With return
to the origin, a complete hysteresis loop

d|σ|/dt
�
|σ| − σAf

d|σ|/dt
�
|σ| − σMf
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is formed, but has area only due to the contributions from the two regions for which
the material was partially martensitic.

The total energy dissipated ΔW in the first half-cycle is the area of the parallelo-
gram (ABCDA of Fig. 35.3), with the same value for the second half-cycle. The
appropriate computation of a loss factor, however, is somewhat problematical. In
the customary evaluation of the peak stored energy, one uses one-half the product of
the secant modulus at maximum strain and the square of the maximum strain, or the
area OCO′. But in this case, the total work done in loading is the integral under the
load deflection curve, or the area OABCO′, of which the stippled area is not recov-
ered.The recovered energy is less than the triangle OCO′ by the area of the triangle
EDC. For this example, using the second value for the recovered energy increases
the loss factor by only about 9 percent, but the difference would be more significant
with a lower value of the parameter σAF.

MAGNETOELASTIC DAMPING

While the material damping of structural components is largely attributable to plastic
deformations, such damping in high-strength alloys may be significant only at stress
levels beyond the range of useful application. However, the magnetoelastic damping
of ferromagnetic materials can be substantial at lower levels of stress.The terms mag-
netomechanical and magnetoelastic damping are somewhat interchangable. While the
former is more frequently found in the literature, one might make a distinction and use
the latter when the deformations are elastic and the former when nonlinear material
behavior due to plasticity is also considered.

The crystal structure of ferromagnetic materials is divided into regions of uni-
form magnetic polarization, known as domains. Upon application of a magnetic
field, the boundaries between domains shift and the domains rotate, bringing about
a change in shape and in material dimenson (strain). An applied stress changes the
field by inverse magnetostriction (Villari effect).The magnetostrictive effect is quan-
tifed by the fractional change in length λS that occurs as the magnetization changes
from zero to the saturation value, defined as the point at which an increase in mag-
netic field produces no further increase in magnetic flux. Energy is dissipated during
a stress-strain cycle as the magnetic domains, nominally of random orientation in an
unmagnetized material, are reoriented by the change in field caused by the applica-
tion of external stress.The reorientation is accompanied by an irreversible change in
dimension, leading to an additional longitudinal strain, the magnetostrictive strain,
superposed on the elastic, or possibly plastic, strains resulting from the application 
of the external stress field. Cochardt7 found that the magnetostrictive strains in a 
50 percent cobalt–50 percent iron alloy loaded to 10,000 lb/in2 were more than 
10 percent of the elastic strain. For values of applied stress above a critical coercive
stress σC , no further reorientation can occur, and there is no additional magneto-
strictive strain. As the process is nearly instantaneous, no frequency effect is to be
expected. With increasing temperatures, thermal fluctuations destroy the alignment
of magnetic domains until a critical (Curie) temperature, characteristic of the mate-
rial, is reached, at which the net magnetization becomes zero.

Among the pure elements generally used as constituents in structural materials,
the largest magnetostriction has been found to be that of cobalt. Iron and certain of
its alloys also have a significant magnetostrictive effect. Some other alloys, such as
manganese-bismuth (MnBi) and cobalt ferrites, display a magnetostrictive effect an
order of magnitude greater, and certain rare-earth elements, such as dysprosium and
terbium, display magnetostriction an order of magnitude beyond that.
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A hypothetical hysteresis loop for the
cyclic loading of a magnetoelastic mate-
rial is shown in Fig. 35.4. For increasing
stress below the critical value σC, some
path between f and a is followed and the
saturation strain λS is accumulated. For
stresses greater than σC, the additional
strain is elastic, Δσ/E. After unloading to
zero stress, the magnetostrictive strain
remains. If the material were symmetric
in tension and compression about the
locus of elastic states (the light dashed
line of Fig. 35.4) and the unloading con-
tinued into compressive stresses, the mag-
netostrictive strain would again appear,
leading to a trajectory for the complete
cycle of c-d-e-d-f-a-b-a-c. The area en-

closed by the hysteresis loop (dissipation) would be the parallelogram f-a-c-d,
enclosing an area 2λS σC.

In the seminal treatment of magnetoelastic damping, Cochardt7 provided for
uncertainty in the trajectory from f to a, such as f-a′-a, or possibly the heavy dashed
line of Fig. 35.4, by introducing a parameter K to account for the shape of the hys-
teresis loop. Thus, for a unit volume of material subjected to a cyclic external stress
(fully reversed) of amplitude σ uniform over the volume, the energy dissipated per
cycle becomes

ΔUC = KλS for σ < σC and ΔUC � KλSσC for σ > σC (35.12)

where λS is the maximum (saturation) value of the magnetoelastic strain. As the
peak energy stored in the unit volume during the cycle is U = σ2/2E, the material loss
factor is

η = = for σ < σC and η � for σ > σC (35.13)

From these, it is seen that the loss factor for magnetoelastic damping is strongly
amplitude dependent, increasing linearly with stress at low strains and diminishing
as the inverse square for high values. Cochardt7 measured the logarithmic decre-
ments of a hollow, thin-walled specimen of 12 percent chrome steel in torsion, with
and without a strong magnetic field, and attributed the observed difference to mag-
netoelastic damping.A comparison of the observed maximum loss factors (η > 0.01)
with values shown in Fig. 35.1 confirms that the magnetoelastic damping can be 
significant.

Smith and Birchak8 offered modifications to Cochardt’s theory of magnetoelas-
tic damping.They noted that magnetoelastic strain occurring during the compressive
half of a fully reversed cycle would be only 50 percent of that occurring during the
tensile half, and that the internal stress at which magnetoelastic saturation occurred
would not be uniform throughout the material but better described by a distribu-
tion. As a first approximation, they considered a square-wave distribution, of width
governed by a parameter Z, such that the Cochardt formulation corresponded to the
value Z = 0.With this, they computed the magnetoelastic dissipation and determined
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material loss factors. Later,9 they posited a distribution of local barrier stresses σbar,
that, when exceeded, would produce dissipation.A comparison of loss factors found
with this second formulation (S&B II), with loss factors found with the first formu-
lation using Z = 0.3 and 0.7 and with the results from the Cochardt formulation (C),
is given in Fig. 35.5. In each case, the ordinate is scaled by KλSE/(πσ′), and the
abscissa in each case is the value of σ/σ′, where σ is the amplitude of cyclic stress.
Because the definition of the scaling stress σ′ differs for each formulation, compar-
isons should be made with caution.
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FIGURE 35.5 Theories of magnetoelastic damping.

What is common to the results from all of these formulations is that magnetoelas-
tic damping is strongly amplitude dependent. Further, as the application of a magnetic
field also causes a reorientation of the magnetic domains, the governing critical stress
parameter and the dissipation due to cyclic stress will be influenced by such fields.
And, as it is the total stress that leads to the magnetoelastic saturation, the presence of
a mean stress can affect the dissipation. While high damping can be achieved with
materials having large magnetostriction, the propensity toward a reduction in loss fac-
tor for applied stresses above a critical value cannot be regarded as advantageous in
the control of structural vibrations.

Current interests in magnetostrictive damping include the influence of addi-
tional alloy constituents, annealing, and microstructure, with the iron-chromium
(Fe-Cr)–based alloys receiving particular attention,10 the use of materials of high
magnetostriction as relatively thin coatings applied to the surface of structural
components,11 and the use of alloys of iron with the rare-earth elements terbium
and dysprosium (Terfenol-D). Embedding particulate Terfenol-D in a resin matrix
has been found12 to produce composites with peak loss factors as high as 0.04.

VISCOELASTIC DAMPING

It has long been recognized that many materials display simultaneously the essential
feature of an elastic material (the storage of strain energy) and the essential features
of a viscous fluid (energy dissipation and rate effects). In consequence, simple models



for the response of materials and structural components have been used, such as the
Maxwell material (strain rate proportional to both stress and stress rate), the Kelvin or
Voigt material (stress proportional to both strain and strain rate), and the Maxwell-
Kelvin or Zener materials that incorporate both. Force-displacement relationships for
each of these can be modeled by various combinations of linear springs and linear vis-
cous dashpots appropriately arranged in parallel and series combinations. More com-
plex arrangements have also been proposed to capture the behavior of particular
materials.All of these, however, are special cases of a viscoelastic material with a stress-
strain relationship expressed with linear operators. For the uniaxial case,

�
N

0
σ(t) + b1 + b2 +  = �

N

0
a0ε(t) + a1 + a2 +  (35.14)

If only the first term on the left and the first two on the right of Eq. (35.14) are
retained, the Voigt or Kelvin model results. If only the first two terms on the left and
the second on the right are retained, the Maxwell model results. Retaining the first
two on each side leads to the standard linear (Zener) model.

Since Eq. (35.14) is linear, the stress and strain may be taken as sinusoidal, with
representation [σ(t), ε(t)] = ℜe{[σ*, ε*]exp{ jωt}. The complex-valued amplitudes are
related by a complex modulus as in Eq. (36.1). This may be interpreted in terms of a
storage modulus (real part—E1) and a loss modulus (imaginary part—E2) or, equiv-
alently, by the storage modulus and a loss factor η(ω) � E2(ω)/E1(ω), all of which are
real-valued quantities. The work done in one fully reversed cycle must be

D = �οσ(t)ε̇(t)dt = �2π/ω

0
ℜe{σ*(ω)eiωt}ℜe{ jωε*(ω)eiωt}dt = πE2(ω) |εd|2 (35.15)

where εd is the amplitude of the fully reversed dynamic strain.The energy dissipated
is proportional to the loss modulus, and the maximum value of the recoverable
(strain) energy is proportional to the storage modulus U = E1(ω) |εd|2/2. These were
used in the motivations for the energy-based definitions of loss and storage modulus
given in Eq. (35.2).

Materials for which the modulus shows strong rate (frequency) dependence are
also found to show a strong dependence on temperature. Normally, these are closely
related, as a material that is “stiff” at low temperature is found to be stiff at high fre-
quency, and conversely. For the class of viscoelastic materials known as thermorheo-
logically simple, such simple relationships as the Arrhenius or Williams-Landel-Ferry
can be used13 to represent the frequency shift factors required to reduce a property
(storage modulus, loss modulus, or loss factor) at all temperatures and frequencies to
a function of reduced frequency alone, such as Fig. 36.1. This process is discussed fur-
ther in Chap. 36 and more extensively elsewhere,13,14 where reduced frequency nomo-
grams are given for many materials useful in damping treatments. The viscoelastic
model is particularly appropriate for polymers, as the interactions between long, inter-
twined, and cross-linked molecular chains give rise to both elastic and dissipative
properties. However, the same characteristics are seen in other materials displaying 
a transition from “rubbery” to “glassy” behavior, such as enamels. While not all vis-
coelastic materials are truly linear, many remain so, even for strains approaching unity.

In principle, the retention of sufficient terms in the stress-strain relationship of Eq.
(35.14) enables an adequate representation of the properties of any material. How-
ever, the determination from experimental data of the large number of coefficients an

and bn, necessary to capture such dramatic changes in properties with frequency as
are seen in Fig. 36.1, is very difficult. It has been found15 that the replacement of the
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integer order derivatives of Eq. (35.14) with fractional order derivatives enables an
adequate description with only four or five real-valued material parameters, and that
such models may be used in computing the response of structures. The fractional
orders are typically about 0.5. The result takes the form

E* = (35.16)

While a frequency-independent glassy modulus at high frequencies (a1/b1) necessi-
tates choosing α = β, material descriptions at intermediate frequencies are some-
times improved by allowing slightly different values. The low-frequency rubbery
modulus is a0, and ωR = ωαT is the reduced frequency of Chap. 36. A best fit13 of Eq.
(35.16) to data taken for the shear modulus and loss factor of 3M-467 viscoelastic
adhesive with a0 = 0.0425 MPa, a1 = 0.214 MPa, b1 = 0.00125, α = β = 0.505 leads to
the results shown in Fig. 35.6 and demonstrates that a four-parameter fractional

derivative model gives a good repre-
sentation of two frequency-dependent
material properties over more than
eight orders of magnitude of frequency.
Data points shown are test data after
reducing from a range of test tempera-
tures to a common reference tempera-
ture. Values shown for the imaginary
part were computed from the product
of the real part of the modulus and the
loss factor.

Although the energy dissipation in
viscoelastic materials can be very high,
they normally are not suitable for use 
as load-bearing components for other
reasons, such as strength-to-weight and
strength-to-volume ratios, creep, and
aging. Rather, they are used as additions
for the increase of total damping, as dis-
cussed in Chap. 36.

THERMOELASTIC DAMPING

Among the classic works of the damping literature is the application by Zener2 of
the coupled equations of thermoelasticity to the damping of the vibrations of thin
beams. As a positive rate of increase in volume leads to a decrease in temperature
and a negative rate to an increase, heat flows across the neutral axis of a beam in
bending. As the temperature differential reverses sign for successive half-cycles, the
direction of the heat flux also reverses. But as the thermal energy, which is conducted
from one side of the beam to the other, is drawn from the mechanical energy of
vibration, the result is a reduction in vibratory amplitude and mechanical energy, or
dissipation. Frequency dependence is to be expected. At low frequencies, the period
of oscillation is much greater than the characteristic diffusion time, the process
remains essentially isothermal, and there is negligible heat transfer by conduction.
At high frequencies, the short period does not enable a significant flow of heat dur-
ing each half-cycle, and the process remains essentially adiabatic. At a critical inter-

a0 + a1( jωR)β

��
1 + b1( jωR)α
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FIGURE 35.6 Frequency dependence for 3M-
467 adhesive (Jones data).



mediate frequency and period (the relaxation time), however, the energy transferred
is maximized and, under the right conditions, can give rise to a significant damping
of the oscillation.

The variations of stress, strain, and temperature through the thickness of a nar-
row beam of thickness h, much less than the length L, must satisfy the stress-strain-
temperature relationship and the coupled equation of heat conduction. Expansion
of both strain and temperature in a double series of products of the beam eigen-
functions and orthonormal functions through the thickness enables two sets of coef-
ficients to be related and then determined by satisfaction of a beam-bending
equation. A complex-valued natural frequency results, from which an amplitude-
independent loss factor may be extracted as

η = � 	 �
n = ODD

(35.17)

The maximum achievable loss factor is governed by a certain combination of
mechanical and thermal properties that is proportional to the difference between
the ratio of specific heats at constant pressure and at constant volume. Using only
the lead term of the series, the frequency for maximum damping is related to the
beam thickness and thermal diffusivity by ωmax � κπ 2/h2. Zener2 quoted experiments
that showed the peak value for a transversely vibrating aluminum wire to be about
0.0025, occurring at the frequency predicted by the theory. Using tabulated values
for pure aluminum, the maximum peak loss factor predicted for a beam of rect-
angular section is about 0.0023, independent of thickness and mode, and slightly
lower if the properties of 2024 aluminum alloy are used. The maximum occurs at a
predicted frequency of 24 Hz for a beam 0.1 in. (2.54 mm) in thickness, and about 
1 Hz for a beam 0.5 in. (12.7 mm) in thickness. Note that these can be natural fre-
quencies only for specific combinations of length and mode number. A comparison
of these loss factors with the values of loss factors shown in Fig. 35.1 suggests that the
thermoelastic damping can be of significance at low levels of stress, but only if the
maximum damping occurs at a combination of thickness and frequency of interest.
This mechanism is of some interest for the damping of large-space structures, for
which the thin, flexible elements in bending tend to have very low resonant fre-
quencies. Because the frequency for maximum damping is proportional to the
inverse square of thickness, the possibility of useful loss factors in laminates with
alternating thin laminae of differing properties has also been considered.16,17

HIGH DAMPING METALS (HIDAMETS)

High intrinsic material damping alone does not qualify a material for use in a
machine part or structural member. Along with other considerations, a manufac-
tured component must have adequate resistance to repeated loading. For this rea-
son, a plot of the specific damping energy as a function of the ratio of the applied
cyclic stress to the fatigue strength of the material is useful. Such a plot is shown as
Fig. 35.7.When this is done, the damping of typical structural materials (those shown
in Fig. 35.1 and many more) fall into the relatively narrow band depicted as the
shaded area. Details of the damping-stress dependence for the 22 materials included
are given in Lazan.1 When compared on this basis, the damping of a typical vis-
coelastic material is very high because of the ability to withstand repeated cyclic
strains of order unity. But, as noted previously, these materials are not generally well
suited for use as primary load-bearing components.
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A metal with unusually high damping is typically a member of one of four classes.
These, with examples, are natural composites, for which plastic flow occurs at phase
boundaries, such as in gray cast iron and aluminum-zinc (Al-Zn) alloys; dislocation
damping alloys, with damping due to movement of dislocation loops breaking away
from pinning points, such as in magnesium and its alloys; ferromagnetic alloys, with
damping due to the motion of ferromagnetic domain walls as in iron, nickel, cobalt,
and their alloys; and movable boundary alloys, with twin or martensite boundaries,
such as manganese-copper (Mn-Cu), titanium-nickel (Ti-Ni), copper-zinc-aluminum
(Cu-Zn-Al), and commercial alloys such as Sonoston™, Incramute™, and NiTinol.
A more extensive discussion of HIDAMETS and their operative dissipative mecha-
nisms is available.3

Examples from the first two categories (cast iron and a magnesium alloy) were
seen from Fig. 35.1 to have rather high damping. However, both of these materials
have rather low fatigue strengths. In consequence, when considered as in Fig. 35.7,
these materials no longer have exceptionally high damping and fall into the band gen-
erally characteristic of other materials. For example, the magnesium-silicon (Mg-Si)
alloy and quenched Sandvik steel become nearly identical. However, materials of the
third category, (1) type 403 alloy (steel with 12 percent chromium, 5 percent nickel)
and (2) NIVCO 10 (about 72 percent cobalt and 23 percent nickel), do show excep-
tional combinations of damping and fatigue resistance. Also shown on the same basis
is (3) an 80 percent Mn–20 percent Cu alloy. The SDE shown in Fig. 35.7 was mea-
sured18 with the rotating-beam equipment described in a later section.Values obtained
suggest material loss factors (with E = 135 GPa) ranging from 0.032 at a strain of 255
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ppm to 0.058 at 1020 ppm, much higher than values inferred from Fig. 35.1 for typical
structural materials.

The high damping of such manganese-rich binary Mn-Cu alloys was long
thought2 to be due to the presence of twin boundaries, a consequence of the re-
versible transformation between face-centered cubic and face-centered tetragonal
states. The temperature at which this transformation occurs increases with the man-
ganese content and is at room temperature for alloys of about 80 percent Mn. By
aging, however, alloys with less manganese can be conditioned to undergo the trans-
formation at a higher temperature, as in the case of the Sonoston alloys. Upon find-
ing dispersed microscopic particles in a highly microtwinned matrix after an aging
cycle at temperature, Bowie et al.19 inferred the presence of antiferromagnetically
ordered manganese cations and suggested that the definition of magnetoelasticity
should be extended to include antiferromagnetic as well as ferromagnetic materials.
For the composition 58Cu-40Mn-2Al, loss factors for a cantilever beam vibrating at
1 Ksi (0.69MPa) were found to be about 0.014, and about 0.071 at 10 Ksi (6.9MPa).
It has since been confirmed20 that the magnetic transition and the martensitic trans-
formation are intimately connected, as the twin planes act as domain boundaries.
Thus, the mechanism for strain amplitude–dependent damping in Cu-Mn is similar
to that observed in ferromagnetic materials. As the strain produced by the stress-
induced reorientation of the antiferromagnetic alignment of the manganese atoms is
similar in nature to the magnetostrictive strain in a ferromagnetic material, the
amplitude dependence should be similar to that for magnetoelastic damping. For an
Incramute alloy (nominal 53Cu-45Mn-2Al, wt %), a peak loss factor of about 0.06
was found20 at a strain of 1000 ppm, with the values at lower strains being well pre-
dicted by the second Smith-Birchak model for magnetoelasticity.

While capable of producing high values of dissipation, the damping of alloys of
manganese and copper (whether copper or manganese rich) are highly dependent on
composition and thermomechanical history. Measurements for Sonoston (nominally
55 percent Mn) showed14 a loss factor over 0.02 at 0°C and a strain of 1000 ppm, but
falling by 50 percent at 80°C, with the damping essentially disappearing at 95°C.

RELATIONSHIPS BETWEEN COMPONENT AND

MATERIAL DAMPING

In the determination of material properties by testing, it is frequently necessary to
include the test sample as a component in a test system and then deduce the damping
due to the sample (component property) from a determination of the total damping
(system property). Having found the dissipation attributable to the test sample, it is
then necessary to deduce the specific or unit damping (material property). The inte-
gration of damping into a design analysis is the inverse of this process. Given the
material properties of the dissipative component(s), it is necessary to use the stress
distributions to find the total dissipation due to each.These may then be summed and
used with the maximum stored energy of the total system to obtain a measure of sys-
tem damping, such as the system loss factor. The concept is implemented in design
calculations through the method of modal strain energy.21 For a system of M compo-
nents or elements, each having a total damping DT − m and stored energy Um,

ηS = (35.18)�DT − m
�
�Um

1
�
2π
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To find the total damping of a test specimen (component) from measurements on a
test system, we may rearrange this same equation with D0 and U0 being the energies
dissipated and stored in the specimen.

D0 = 2πηS �U0 + �
M

m = 1
Um − �

M

m = 1
DT − m (35.19)

The observed system loss factor is ηS, and the summations are of all other energies
dissipated and stored in the system. Some of the components may be taken as
nondissipative, having stored energy only. Some losses, such as air damping22 and
friction at grips, may be accounted for as having dissipation without storing energy.
The result of this process is the extraction of a measure D0 of the total energy dissi-
pated by the test sample.

There remains the task of extracting the unit damping or specific damping energy
as a material property. The total energy dissipated in the specimen is the integral of
the unit damping over the entire specimen volume. Even when the sample material
is homogeneous, this is complicated by the fact that the unit damping is a function of
the local stress and that, in most cases, varies with position. It is therefore advanta-
geous to make a change in variable:

D0 = �V0

0
DdV = �σd

0
D(σ) dσ (35.20)

where σd is the greatest amplitude of alternating stress anywhere within the entire vol-
ume V0, and V is the volume for which the greatest alternating stress is less than some
value σ.The total energy dissipated in the specimen D0 is then related to specific damp-
ing energy Dd at the greatest stress σd and the total volume V0, by D0 = DdV0α, where

α = �1

0 � 	 d � 	 (35.21)

The quantity V/V0, as a function of σ/σd , is the volume-stress function,1 dependent on
the stress distribution alone, and independent of the elastic or dissipative properties
of the material. Note that the average dissipation per unit volume D0 /V0 is less than
the unit value at the greatest stress amplitude σd by the factor α.

The extraction of material properties from component responses also requires
knowledge of the energy stored in the dissipative material. If the material is nomi-
nally linear with uniform modulus E, the strain energy stored in a specimen with
greatest value of local stress amplitude σd is

W0 = �V0

0
dV = V0 �σd

0 � 	
2

d � 	 (35.22)

The average strain energy density is less than that at the greatest amplitude by a
factor

β = �σd

0 � 	
2

d � 	 (35.23)

Thus, if the total energy stored and dissipated (U0 and D0) by a test sample (compo-
nent) of material at some amplitude of alternating stress σd can be extracted from
system measurements, and if the stress distribution can be determined, the material
loss factor can be found from the average loss factor for the dissipative material by

σ
�
σ0

d(V/V0)
�
d(σ/σ0)

σ
�
σd

σ
�
σ0

d(V/V0)
�
d(σ/σ0)

σ
�
σd

σ2
d

�
2E

σ2

�
2E

σ
�
σd

d(V/V0)
�
d(σ/σd)

D(σ)
�

Dd

dV
�
dσ
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ηave = = � 	 = � 	 η (35.24)

The material loss factor is greater than the volume-averaged loss factor for the spec-
imen by the factor β/α. A comparison of Eqs. (35.21) and (35.23) shows that β = α
only when the stress distribution is uniform or when the energy dissipated is pro-
portional to the square of stress. As may be seen from Fig. 35.1, this is normally not
the case for structural materials. In consequence, the extraction of material proper-
ties from component data requires evaluation of the functions α and β from the
stress distribution. Conversely, when the material damping properties are known,
prediction of the total dissipation in a component requires use of the volume-stress
function, except in the special case where the SDE is proportional to the square of
stress, that is, linear damping. In that case, the values of specific and average damp-
ing coincide and the loss factor is independent of amplitude. More typically, the rela-
tionship between stress amplitude and specific damping is found to be of the form of
Eq. (35.1) with n > 2. While any functional form for the damping-stress relationship
D(σ) may be used, that of Eq. (35.1) is particularly convenient, in which case β takes
the value of α evaluated at n = 2.

VOLUME-STRESS FUNCTIONS

If the stress distribution is sufficiently simple, the volume-stress functions may be
evaluated analytically. These calculations have been performed for several cases,
with results as shown in Fig. 35.8 for a solid member in torsion, and for beams with
uniform and linearly varying moments.The results shown for an actual turbine blade
were obtained by numerical evaluation.1 As it is the slopes of these curves that
determine the influence of the stress distribution, the differences are quite signifi-
cant. If the damping-stress relationship of Eq. (35.1) is used in the computation of α
by Eq. (35.21), the slope is weighted by a power of the stress ratio. In the case of the
torsion member, for example, the slopes are low in the low-stress region and high 
in the high-stress region, so the value of α remains relatively high, even at higher 

values of n. In contrast, for beams with
variable moment, the slope is high at low
stress, and low at high, so the value of α
is low, especially at high applied stress
σd , where n may be quite large, as seen
in Fig 35.1. As the function β is the func-
tion α evaluated at n = 2, the ratio α/β is
always less than unity. The consequence
of this for design is that inclusion of a
component with a high damping capac-
ity in order to increase system damping
has greatest benefit if the added mate-
rial is in a region of a high, and relatively
uniform, stress.

For some materials, the most expedi-
tious means of testing is the coating of a
substrate beam with a layer of the mate-
rial of interest. If the material loss factor
is amplitude independent, the true value
can be found from the Öberst equa-

α
�
β

Dd
��
2πσ2

d/(2E)
α
�
β

Do
�
W0

1
�
2π
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tions.14 However, if the material loss fac-
tor is amplitude dependent, the distri-
bution of stress in the sample must be
considered. The distribution of strain
along the coating length is essentially the
surface strain of a Bernoulli-Euler beam,
and for a thin coating on a thick sub-
strate, the volume fraction is essentially
the same as the area fraction. Examples
of the fractions of surface area at strains
below various fractions of maximum
strain are shown in Fig. 35.9.Any mode of
the simply supported (pinned) beam is
denoted SS; C1 and C2 are the first two
modes of the cantilever beam. Results for
the higher modes are very similar to
those for the second. The first symmetric
mode of a free-free beam is denoted FF1.

Virtually all methods in common use
for the determination of material damp-

ing properties—for example, vibrating or rotating beams, wires, or cylinders in torsion
and dynamic mechanical analyzers using three- or four-point bending jigs—involve
the use of specimens which are not subjected to uniform states of stress. In conse-
quence, only a volume-averaged dissipation per unit volume is obtained.As this aver-
age is over the entire range of stress present in the specimen, the extraction of the
true material properties for an amplitude-dependent material requires consideration
of the stress distribution through the use of the volume-stress function.

FRICTION DAMPING

At some level, coulomb friction is present in any structural system. It may arise from
the use of fasteners, which allow for relative displacement, as do pins, bolts, and riv-
ets. It may occur by design, as in wire rope or leaf springs, or from platform dampers
in a gas turbine, or it may occur through damage, as in a partially closed crack. Fric-
tion may also occur on a microscopic scale, as in grain contacts or in materials con-
structed from unbonded aggregates. In some cases, the contribution to the energy
dissipation of the system through the frictional losses may be significant. In a review
of the work on friction damping, it was noted23 that damping at joints and connec-
tions is the most important source of dissipation in most real structures. The model-
ing of friction in devices used for the reduction of resonant amplitudes has received
considerable attention.24

A distinction should be made between two classes of damping due to friction. In
the first, the contacting bodies are taken to be rigid and the same relative displace-
ment is assumed over the entire contact surface. This is referred to as sliding or
macroslip damping. In the second class, the relative displacement varies over the
contact region as, for example, in the contact of an axially loaded ball bearing on a
race, where the hertzian stress distribution would give rise to interfacial shear
stresses that would be greater than the product of normal pressure and a coefficient
of friction if slip did not occur. This type of dissipation due to friction is referred to
as partial slip, microslip, or slip damping. While it is often possible to dissipate rather
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FIGURE 35.9 Area-strain functions for vibrat-
ing beams.



large amounts of energy by either type of damping, both are subject to limitations
such as the dependence on an interfacial contact pressure that may be difficult to
regulate or control.

While the assumption of coulomb damping enables the analysis of some simple
configurations, caution has been given25 that the gradual surface deterioration and
the presence of small amounts of lubricants may invalidate the assumptions of
coulomb friction as are typically made for the purpose of analysis.

MACROSLIP OR SLIDING DAMPING

In the simplest form of friction damping, the relative displacement across the
interface is either zero or the same for all locations in the contact region between
two rigid bodies. For a vibrating system modeled as a spring-mass system, with the
driven mass resting on a surface with contact pressure P and friction coefficient μ,
the frictional force Ff ≤ μP is always in opposition to the motion, and the energy
dissipated per cycle is proportional to the first power of amplitude 4μPA. As the
energy stored increases as the second power, system loss factors diminish with
increasing amplitude—when damping is most needed. A rudimentary analysis of
the forced response near resonance may be obtained by replacing the frictional
force by a viscous force, chosen so that the energy dissipated per cycle by the “equiv-
alent” viscous damper is the same as the frictional damping at the same amplitude.
Using the resulting equivalent fraction of critical damping in the response function
amplitude of a damped linear oscillator [Eq. (2.41)] shows unbounded amplitude at
resonance unless the contact pressure is so great as to preclude all motion. An exact
solution26 by Den Hartog confirmed that this is true. In free vibration, the logarith-
mic decrement of a system with damping due to gross slip increases with decreasing
amplitude.

SLIP DAMPING

In slip or microslip, deformations parallel to the interface of the contacting bodies
enable relative displacements between the corresponding points on the mating sur-
faces. These vary with position and may occur on some, or all, of the contact region.
The response of contacting spheres to a tangential force, as considered by Mindlin,27

is of this class, as is the slip damping generated between a beam and a spar cap28 and
in a lap joint in tension.29 A general characteristic of all of these systems with slip
modeled by local coulomb friction is that the energy dissipated per cycle of a fully
reversed load varies as the third power of the load amplitude and inversely as the
interfacial shear stress, with the constant of proportionality being dependent on the
particular system. This dependence also appeared in an analysis16 of the dissipation
due to partial debonding of a laminate. The strong dependence on load results from
the evident cause: the area undergoing slip increases with the level of load. Microslip
has also been incorporated30 into the modeling of friction in devices used for the
reduction of vibratory amplitudes of turbine blades.

A characteristic force-displacement relationship for a system with slip is shown in
Fig. 35.10. The initial response may be linear or nonlinear, depending on whether slip
begins immediately or at some critical load. A nonlinearity is not indicative of plastic
behavior, but rather that the specimen is changing in stiffness as slip progresses. The
onset of gross slip is at A′. If the loading direction is reversed at A < A′, the unloading
then proceeds along A-O′-B. If the load is then reversed when the force is the negative
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of the maximum and reloaded through
B-O″-A, a closed hysteresis loop is
formed, the area of which represents the
net work done over the cycle.The energy
dissipated may be evaluated by integra-
tion over a complete period of the prod-
uct of force and velocity at the point of
application. Alternatively, the dissipation
may be evaluated by integrating over the
contact region the work done on each
element of area by the interfacial shear
force acting through the relative dis-
placement (slip) of the contacting sur-
faces.The latter is particularly convenient
if the shear force is uniform over the
area. A thorough discussion of the me-
chanics of slip damping is included in all
earlier editions of this handbook.31

SIMPLIFIED EXAMPLE OF SLIP DAMPING

The analysis of the energy dissipated in slip damping can be quite cumbersome even
in the case of highly idealized geometries, as may be seen in the cited examples.16,27–29

However, an adaptation of the analysis of the slip damping to be expected from a
broken lamina in a layered composite16 enables a relatively simple demonstration of
principles.A laminated material of two constituents is shown in Fig. 35.11A, with one
element of Constituent 1 interrupted.

It is assumed that the pressure necessary to generate a uniform coulomb fric-
tional force τ = μp during slip is present. Constituent 1 has stiffness E1t1W; that of
constituent 2 is E2t2W = B. Some portion F of the total load f is then carried by the
unit cell located at the stippled region of Fig 35.13A and shown in detail in Fig
35.11B. Upon application of load, slip occurs over 0 < x < δ, and the axial stress in the
slipped portion of the interrupted layer varies linearly as the frictional force per unit
length q = τW. Over the slipped region, a fraction R (the fraction of stiffness due to
layer 1) of the total load is transferred to the interrupted layer, sufficient to induce
the same displacement in both constituents for x < 0.Thus, the slipped region at final
load Fmax > 0 is of length δF = RFmax/(τW). If the loading is reversed at load F = Fmax,
slip in the opposite direction begins at the free end of the interrupted layer, pene-
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FIGURE 35.10 Hysteresis loop for microslip
damping.

FIGURE 35.11 Unit cell of a laminated material: (A) location of unit cell; (B) detail of
unit cell.
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trating a distance δF − δ = R (Fmax − F)/(2qW), leaving shear stress in the original
direction on 0 < x < δ.The factor of 2 arises as the positive shear stress is first reduced
to zero, and then loaded in the opposite sense. If the load is again reversed at 
F = αFmax when the region of negative slip is of length δ1 = RFmax(1 + α)/(2q), a re-
gion of positive slip begins at the end of the interrupted layer, extending to a depth
δF − δ = R(F − αFmax)/(2q). In each stage of loading, the slip length is determined
from the force that must be transferred by shear from layer 2 to layer 1 to ensure the
same strain (and no slip) for x < 0.

The dissipation may be evaluated from the displacements at the end x = δF of
layer 2 with respect to the plane of symmetry at x = −λ. Such displacements may be
evaluated by using an established29 process. For loading phase a, 0 < F < Fmax, for
unloading phase b, Fmax < F < αFmax, and for reloading phase c, αFmax < F < Fmax, the
displacements are, respectively,

ua = �2 + � 	
2

 (35.25)

ub = ��1 + � + �1 − � 	
2

� (35.26)

uc = � + − α � 	 + � 	
2

 (35.27)

Plots of these functions lead to hysteresis loops of the form of that in Fig. 35.10.
The energy dissipated in the complete cycle from F = Fmax through α Fmax and

returning to Fmax may be found from the area enclosed by AO′BO″A in Fig. 35.10.
Subtracting the reloading displacement, Eq. (35.27), from that for unloading, Eq.
(35.26), at each value of F, and integrating over F, leads to

ΔW = �Fmax

αFmax
(ub − uc)dF = Fmax �1

α
(ub − uc)d � 	 = [Fmax − αFmax]3 (35.28)

It is of considerable interest, and significance, that the dissipation depends only on
the total load range and is independent of the mean value.And, as noted in previous
investigations of slip damping, the dissipation is dependent on the third power of the
load range and inversely as the interface shear. While this might suggest that a low
coefficient of friction and a low contact pressure are desirable for high damping, this
is not the case, as the length over which slip occurs is a function of load, and there
will always will be some geometric limit λ to the available length of the slipped
region. Thus, the shear stress must be at least τmin = RFmax/(λW), and the greatest
achievable damping for a given value of λ and α = −1 is

ΔWmax = [Fmax]2 = F 2
max (35.29)

However, maintaining this level of damping requires adjustment of normal pressure
p with changes in force amplitude.

SLIP DAMPING AS A MECHANISM OF MATERIAL DAMPING

Thin coatings of such plasma-sprayed ceramics as alumina, magnesium-aluminate
spinel, or yttria-stabilized zirconia appear to have potential as a means of reducing
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the vibratory amplitudes of blades in turbine engines. Several studies32 have sug-
gested that the material loss factor increases approximately linearly with the ampli-
tude of alternating tensile strain up to a critical value (typically 100 to 200 ppm) and
then remains constant or diminishes. It has been suggested33 that the damping is pro-
vided by friction arising from defects within and between the “splats” that result
from the plasma-spraying process. A computer simulation employing springs and
coulomb sliders was found to predict an amplitude-dependent loss factor having the
same characteristics as experimental data. Experiments simulating a coated beam by
a vibrating beam with segmented and overlapping cover plates also showed a simi-
lar dependence of damping on amplitude.

If the geometry of Fig. 35.11 is taken as representative of a segment of a plasma-
sprayed ceramic, the analysis given previously can be used to estimate the damping to
be expected from each unit cell in which slip occurs along a microcrack within a splat,
parallel to the loading direction. If the length λ is taken as the half-length of a typical
splat and t1 as the half-distance between slipping layers, for E1 = E2 = E and t1 < < t2,
the dissipation for a fully reversed load cycle α = −1 with stress amplitude σd becomes

Do = Fmax
3 = � 

2
Wt2

2 = Wt 2
1 (35.30)

where σd is the average stress amplitude Fmax/Wt2. The stored energy will be pre-
dominately that of component 2, having the same modulus, but of a thickness t2 char-
acteristic of the half-distance between one pair of slipping planes and another. The
loss factor for the unit cell is

ηc = = (35.31)

The loss factor of a larger sample of the material may then be estimated by multi-
plying by the fraction of the volume occupied by such slipping cells. As long as the
slip length is less than half the splat length, the loss factor rises linearly with average
stress. But at higher levels of stress, gross slip begins and dissipation occurs as the
first power of amplitude over some of the cycle, leading to a constant or diminishing
loss factor, as seen in experiments. As not all microcracks have the same dimension,
loading, or orientation, a transition, rather than an abrupt change, is to be expected.
This approach has been implemented34 in a complete theory for the dissipation of
such materials at both low and high stresses. Because the Iwan model5 for elasto-
plastic deformation is based on frictional elements, it might also be applied with an
empirically determined distribution to the description of such materials.

MEASUREMENTS OF DAMPING

As noted in a previous section, the determination of damping as a material property
usually requires including a sample of the material in a test system, determining the
total damping of the system, extracting the total damping of the sample and, from
that, the material damping properties. Even in the case where the system consists
only of the material of interest and all extraneous losses are avoided, the measure of
system damping coincides with the measure of material damping only if the entire
material sample is simultaneously at the same level of stress. Several methods for
evaluating the total system damping will be described briefly, with emphasis given to
the influence of nonlinearities in the material being tested.
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LOAD-DEFLECTION HYSTERESIS LOOP

In the case of a system, the dissipation is the net work done over a complete cycle by
the applied force acting through increments of displacement at the point of load
application. If the system contains a dissipative material with stress-strain relation-
ship such as that of Figs. 35.2 through 35.4 or 35.10, the load-deflection relationship
for the system will have similar characteristics, but the ratio of loop width to height
will be much smaller due to the presence of nondissipative components. In conse-
quence, there can be considerable difficulty in obtaining measurements of sufficient
precision as to enable a meaningful measurement of the area of the hysteresis loop.
Measurements are normally made with a quasi-static cyclic loading, and it is essen-
tial that the load and displacement be measured at the same point.

The commercially available testing devices generally known as dynamic mechan-
ical analyzers may be used to obtain hysteresis loops of test samples, from which the
specific damping energy may be evaluated if the details of the strain distribution—
typically, torsion or three- or four-point bending—are taken into account. In some
applications, the material is assumed to be linear, and a phase angle (tan δ = η) is
extracted by comparing load and displacement signals.

MEASUREMENT OF WORK DONE

Since dissipation in the system necessitates the addition of energy so as to sustain
motion at constant amplitude, a direct measurement of net work done on the system
per cycle of oscillation has been suggested as a convenient measure of the total dis-
sipation. While of interest for many years, advances in measurement instrumenta-
tion and computational capabilities now make this technique, known as the power
input method, more feasible. The method has been applied with both impact-
excited35 and shaker-driven36 specimens. As the system loss factor is proportional to
the ratio of dissipated and stored energy, Eq. (35.18), it becomes, after replacing the
strain energy by the kinetic energy and using time-averaged quantities

ηs = = (35.32)

where Yff is the mobility (velocity/force) of the driving point, Yif is the mobility
between the driving point f and the point i, and the system has been discretized into
N segments of mass mi. Three essential assumptions are involved35: the replacement
of strain energy by kinetic energy; the linearity of the system, so that the mobilities
are independent of amplitude; and that the structure can be suitably discretized so
that the kinetic energy can be adequately determined with a modest number of
observation points, each accurately representing the velocity of a discretized mass.
Comparisons of results with analytical solutions and with traditional measurements
are encouraging.36

LATERAL DEFLECTION OF ROTATING BEAM

When a cantilever beam is mounted horizontally, it deflects vertically due to gravity,
and the extremal values of stress are experienced by the fibers on the top and the
bottom. If the beam is then rotated about its longitudinal axis, the extremal stresses
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are experienced by successive fibers as they pass through the top and bottom posi-
tions. But if the beam material is dissipative, the induced strain will lag the stress,
and the extremal values of strain in each fiber will occur just after passing through
the top and bottom positions. As viewed from the free end of the beam, the total
deflection is then seen to have two components: a vertical component that is in
phase with the gravity load and a horizontal component that is out of phase. If these
components are measured, and the ratio taken, the result is a direct measurement of
the tangent of the angle by which deflection lags force.

A specimen S is mounted coaxially with an arm A, shaft B, and weight W, as
shown in Fig. 35.12. A target T is placed on the centerline and observed with a trav-
eling microscope or other suitable instrumentation. In the absence of gravity load-
ing, the target is at location 1; with the gravity loading, it is deflected downward to
location 2, if the beam is not rotating. But if the beam is rotating in a clockwise man-
ner as viewed from the end, deflection lags load, and the target is shifted horizontally
by a distance H/2. If the direction of rotation is reversed, the target moves to loca-
tion 4. The total deflection H can be observed and used to determine the system
damping. As the center of gravity of the combined weight of specimen, arm, and
weight is at some fixed fraction κ of the distance from the support to the target, the
horizontal deflection induces a torque W0κH/2 that in each complete rotation must
do work equal to the energy dissipated. Thus, the total energy dissipated by the sys-
tem, per cycle, is the product of the torque and the rotational angle of 2π radians.

DT = πκW0H (35.33)
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FIGURE 35.12 Principle of rotating cantilever beam method for measuring damping.

This methodology has been implemented37 in an apparatus (rotating beam) for the
simultaneous determination of damping, dynamic modulus, and fatigue properties
of materials. The material damping properties shown in Fig. 35.1 were extracted
from such measurements of system damping. Dividing the dissipated energy by 2π
and the stored energy (work done by the gravitational force) gives a system loss fac-
tor ηs = H/2V, seen from Fig. 35.12 to be the tangent of the phase angle by which dis-
placement lags stress. This, however, is not the material loss factor for a nonlinear
material. In that case, each fiber along a radius is at a different strain and, conse-
quently, has different loss angle. The measured value is some weighted average, and
the volume-stress function must be used to extract material properties.

A variation of this technique has been developed38 for the testing of low-modulus
materials such as plastic and viscoelastic materials in which the target end of the
beam is subjected to a controlled displacement and a force transducer used to
determine the necessary restraining force. This method also enables the determina-
tion of damping and modulus over a wider range of test frequencies.



TIME-DOMAIN METHODS (FREE VIBRATION)

Measuring the decay (Fig. 21.2) of the free response of a vibrating beam appears
to be the oldest means of quantifying damping. Such measurements are typically
made with an inverted torsional pendulum or with a free or cantilevered beam,
with or without added mass. The response of the linear, one-degree-of-freedom 
(1-DOF) spring-mass system with viscous damping to an initial disturbance is dis-
cussed in Chap. 2. It is shown that the fraction of critical damping, ζ, is related to
the logarithmic decrement Δ, defined as the natural logarithm of the ratio of ampli-
tudes of two successive cycles. For linear and viscous damping, the logarithmic
decrement is independent of amplitude. As the ratio of successive amplitudes is
typically very close to unity, and as the signal measured will usually have some cor-
ruption due to noise, practical determinations of the logarithmic decrement are
made over an interval of several cycles. If the system is assumed to be described by
a complex modulus or structural damping model k* = k1 (1 + jη), the logarithmic
decrement is Δ = πη and an amplitude-dependent decrement implies an ampli-
tude-dependent loss factor.

Although the concept of the logarithmic decrement is based on the response 
of the linear and viscous system, it is regularly used to represent the damping of sys-
tems for which the damping is neither linear nor viscous. Many of the challenges to
time-domain measurement due to amplitude-dependent damping, changes in natu-
ral frequency with amplitude, signal noise, and the presence of other modes can be
mitigated by the use of filtered signals and the Hilbert transform. The response is
taken to be the real part of an analytic function of complex-valued amplitude A(t)
and instantaneous phase φ(t), that is,

x(t) = Re{Z(t)} = Re{A(t)exp( jϕ(t)} (35.34)

The Hilbert transform39 of a function u(t) is computed by taking the Cauchy princi-
pal value of the integral

H{u(t)} = PV �∞

−∞
dτ (35.35)

and has the property that if u(t) is the real part of an analytic function, then 
v(t) = H{u(t)} is the imaginary part. Thus, if the observed signal x(t) is taken as the
real part of equation Z(t), the imaginary part can be constructed from the Hilbert
transform. But to do this, it is necessary to prepare the signal x(t) by filtering to
ensure the presence of a single frequency, to extrapolate the observed x(t) to t = ∞,
and to supply values for negative argument by taking x(−t) = x(t).The instantaneous
phase is then the value of ϕ(t) = tan−1 {y(t)/x(t)}, and the instantaneous frequency
results from differentiation

ω(t) = = (35.36)

A stiffness nonlinearity, if present, will appear as a change in frequency as the ampli-
tude decays.An average loss factor is then found from the change in amplitude over
a time interval τ corresponding to a small number of cycles at the average frequency
ωave (radians/sec), over that time interval

η(Aave) ≈ 2 (35.37)
ln{A(t0)/A(t0 + τ)}
���

τωave

d tan−1{H{x(t)}/x(t)}
���

dt
dϕ(t)
�

dt

u(τ)
�
t − τ
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FREQUENCY-DOMAIN METHODS (FORCED VIBRATION)

As noted, the maximum amplitude of a system vibrating at a resonant frequency is
governed by the amount of damping in the system. In consequence, measurements
of the resonant response of a system are a popular means of evaluating the damping.
The response of the linear one-degree-of-freedom system with viscous damping is
discussed in Chap. 2, and a frequency response function is shown as Fig. 2.17.When a
structural damping representation is used, the stiffness k is replaced with the com-
plex stiffness k* = k1(1 + jη), and the complex-valued response amplitude for a sinu-
soidal force of amplitude F0 becomes

= (35.38)

At resonance ω = ω1, the magnitude of the dimensionless response is the system qual-
ity factor Q = 1/η. A comparison of this response with that for a system with viscous
damping, Eq. (2.33), suggests that an equivalent viscous damping might be defined as
ζeq � ηωn/2ω and used as the fraction of critical damping in any solution for a viscously
damped system. However, this may be done safely only at the particular frequency
used to determine the equivalent viscous damping. It has been shown40 that using such
a frequency-dependent value in the equation of motion for a viscously damped sys-
tem, Eq. (2.89), leads to a noncausal response to an impulse; that is, the response
begins before the impulse is applied.

The width of the frequency response function (Fig. 2.22) is also determined by 
the system damping. The ratio of the amplitude at some fraction r of the maximum
value to the maximum value may be found from Eq. (35.38) and used to find the two
values of frequency, one above and one below resonance, at which the amplitude has
that value. As the mean value of the two frequencies must be very nearly ω1, the
bandwidth method for determining the loss factor gives

η � (35.39)

and the damping may be evaluated from three points on the response function. For
viscous damping, the right-hand side gives the value of 2ζ. The ratio r is most fre-
quently taken as 1/�2�, or 3 dB below the peak response. Since the kinetic and strain
energies for a nominally linear system vary as the square of the response, these
amplitudes correspond to the half-power points.

This measure of damping was developed for a linear system.The presence of non-
linearity in stiffness gives rise to asymmetric response functions that, for a sufficiently
strong nonlinearity, can preclude the observation of a valid frequency at one of the
desired amplitudes. See Fig. 4.16. Further, it is assumed in the development of 
Eq. (35.39) that the damping is independent of amplitude. An amplitude-dependent
damping can lead to significant error. For example, if the loss factor is proportional to
the mth power of amplitude, the use of the bandwidth method with amplitude ratio r
leads to an apparent bandwidth greater than the true value, as41

ηtrue /ηapparent = �1/r2 −�1�/�1/r2 −�r2m� (35.40)

If the loss factor decreases with amplitude, the bandwidth method leads to underes-
timates of the true value of the loss factor.

Other uses of frequency response functions (Bode and Nyquist plots) in the identi-
fication of system parameters for nonlinear systems are discussed in the literature.42,43

ωU − ωL
��
ω1�1/r2 −�1�

1
��
1 − ω2/ω2

1 + jη
x0

�
F0/k1
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HIGH-FREQUENCY PULSE TECHNIQUES

If a transducer is used to generate a series of elastic pulses on one face of a specimen,
the return signal from reflection at the rear face can be compared with the initial signal
and used to deduce the properties of the material, with the wave speed used to deter-
mine the elastic modulus and the dissipation deduced from the spatial attenuation of
amplitude of a traveling wave of wavelength λ.The absorption coefficient α is a spatial
logarithmic decrement, assumed to be constant with amplitude, and is found from

α = ln � 	 (35.41)

It follows that the loss factor is η = λα/π. If the loss factor is independent of fre-
quency, the attenuation will be proportionate to the frequency. The method is most
applicable to the determination of the properties of linear, rate-independent mate-
rials, such as crystals. As the excitation frequencies are typically in the megacycle
range, properties of a rate-dependent material cannot be obtained in the range of
frequencies of structural interest. Moreover, the strain levels achievable are typically
below the range of engineering concern. And finally, observed values of attenuation
are not only inclusive of the dissipation in the material but are influenced by scat-
tering due to imperfections and grain boundaries, a significant contributor to the
attenuation of waves in polycrystalline materials.
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CHAPTER 36
APPLIED DAMPING

TREATMENTS

David I. G. Jones

INTRODUCTION TO THE ROLE 

OF DAMPING MATERIALS

The damping of an element of a structural system is a measure of the rate of energy
dissipation which takes place during cyclic deformation. In general, the greater the
energy dissipation, the less the likelihood of high vibration amplitudes or of high
noise radiation, other things being equal. Damping treatments are configurations of
mechanical or material elements designed to dissipate sufficient vibrational energy
to control vibrations or noise.

Proper design of damping treatments requires the selection of appropriate
damping materials, location(s) of the treatment, and choice of configurations which
ensure the transfer of deformations from the structure to the damping elements.
These aspects of damping treatments are discussed in this chapter, along with rele-
vant background information including:

● Internal mechanisms of damping
● External mechanisms of damping
● Polymeric and elastomeric materials
● Analytical modeling of complex modulus behavior
● Benefits of applied damping treatments
● Free-layer damping treatments
● Constrained-layer damping treatments
● Integral damping treatments
● Tuned dampers and damping links
● Measures or criteria of damping
● Methods for measuring complex modulus properties
● Commercial test systems 
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MECHANISMS AND SOURCES OF DAMPING

INTERNAL MECHANISMS OF DAMPING

There are many mechanisms that dissipate vibrational energy in the form of heat
within the volume of a material element as it is deformed.1 Each such mechanism is
associated with internal atomic or molecular reconstructions of the microstructure or
with thermal effects. Only one or two mechanisms may be dominant for specific
materials (metals, alloys, intermetallic compounds, etc.) under specific conditions, i.e.,
frequency and temperature ranges, and it is necessary to determine the precise mech-
anisms involved and the specific behavior on a phenomenological, experimental basis
for each material specimen. Most structural metals and alloys have relatively little
damping under most conditions, as demonstrated by the ringing of sheets of such
materials after being struck. Some alloy systems, however, have crystal structures
specifically selected for their relatively high damping capability; this is often demon-
strated by their relative deadness under impact excitation. The damping behavior of
metallic alloys is generally nonlinear and increases as cyclic stress amplitudes increase.
Such behavior is difficult to predict because of the need to integrate effects of damp-
ing increments which vary with the cyclic stress amplitude distribution throughout
the volume of the structure as it vibrates in a particular mode of deformation at a par-
ticular frequency. The prediction processes are complicated even further by the pos-
sible presence of external sources of damping at joints and interfaces within the
structure and at connections and supports. For this reason, it is usually not possible,
and certainly not simple, to predict or control the initial levels of damping in complex
built-up structures and machines. Most of the current techniques of increasing damp-
ing involve the application of polymeric or elastomeric materials which are capable
(under certain conditions) of dissipating far larger amounts of energy per cycle than
the natural damping of the structure or machine without added damping.

EXTERNAL MECHANISMS OF DAMPING

Structures and machines can be damped by mechanisms which are essentially exter-
nal to the system or structure itself. Such mechanisms, which can be very useful for
vibration control in engineering practice (discussed in other chapters), include:

1. Acoustic radiation damping, whereby the vibrational response couples with the
surrounding fluid medium, leading to sound radiation from the structure

2. Fluid pumping, in which the vibration of structure surfaces forces the fluid
medium within which the structure is immersed to pass cyclically through narrow
paths or leaks between different zones of the system or between the system and
the exterior, thereby dissipating energy

3. Coulomb friction damping, in which adjacent touching parts of the machine or
structure slide cyclically relative to one another, on a macroscopic or a micro-
scopic scale, dissipating energy

4. Impacts between imperfectly elastic parts of the system

POLYMERIC AND ELASTOMERIC MATERIALS

A mechanism commonly known as viscoelastic damping is strongly displayed in
many polymeric, elastomeric, and amorphous glassy materials. The damping arises
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from the relaxation and recovery of the molecular chains after deformation. A
strong dependence exists between frequency and temperature effects in polymer
behavior because of the direct relationship between temperature and molecular
vibrations. A wide variety of commercial polymeric damping material compositions
exists, most of which fit one of the main categories listed in Table 36.1.

TABLE 36.1 Typical Damping Material Types

Acrylic rubber Natural rubber Polysulfone
Butadiene rubber Nitrile rubber (NBR) Polyvinyl chloride (PVC)
Butyl rubber Nylon Silicone
Chloroprene (e.g., Neoprene) Polyisoprene Styrene-butadiene (SBR)
Fluorocarbon Polymethyl methacrylate Urethane
Fluorosilicone (Plexiglas) Vinyl

Polysulfide

Polymeric damping materials are available commercially in the following cate-
gories:

1. Mastic treatment materials
2. Cured polymers
3. Pressure sensitive adhesives
4. Damping tapes
5. Laminates

Some manufacturers of damping material are given as a footnote.* Data related
to the damping performance is provided in many formats. The current internation-
ally recognized format, used in many databases, is the temperature-frequency
nomogram, which provides modulus and loss factor as a function of both frequency
and temperature in a single graph, such as that illustrated in Fig. 36.1.2,3 The user
requiring complex modulus data at, say, a frequency of 100 Hz and a temperature of
50°F (10°C) simply follows a horizontal line from the 100-Hz mark on the right ver-
tical axis until it intersects the sloping 50°F (10°C) isotherm, and then projects verti-
cally to read off the values of the Young’s modulus E and loss factor η.
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* Manufacturers of damping materials and systems, from whom information on specific materials and
damping tapes may be obtained, include:

Antiphon Inc. (U.S.A.) Imperial Chemical Industries (U.K.)
Arco Chemical Company (U.S.A.; www.arco.com) Leyland & Birmingham Rubber Company (U.K.)
Avery International (U.S.A.; www.avery.com) MSC Laminates (U.S.A.)
CDF Chimie (France) Morgan Adhesives (U.S.A.; www.mactac.com)
Daubert Chemical Co. (USA): Mystic Tapes (U.S.A.)

www.daubertchemical.com Shell Chemicals (U.S.A.; www.shellchemicals.com)
Dow Corning (U.S.A.; www.dowcorning.com) SNPE (France; www.snpe.com)
EAR Corporation (U.S.A.) Sorbothane Inc. (U.S.A.; www.sorbothane.com)
El duPont deNemours (U.S.A.; www.DuPont.com) Soundcoat Inc. (U.S.A.; www.soundcoat.com)
Farbwercke-Hoechst (Germany) United McGill Corporation (U.S.A.;
Flexcon (U.S.A.; www.flexcon.com) www.unitedmcgillcorp.com) 
Goodyear (U.S.A.; www.goodyear.com) Uniroyal (U.S.A.; www.uniroyalchem.com)
Goodfellow (U.K.; www.goodfellow.com) Vibrachoc (France; www.vibrachoc.com)

www.arco.com
www.avery.com
www.daubertchemical.com
www.dowcorning.com
www.DuPont.com
www.flexcon.com
www.goodyear.com
www.goodfellow.com
www.mactac.com
www.shellchemicals.com
www.snpe.com
www.sorbothane.com
www.soundcoat.com
www.uniroyalchem.com
www.vibrachoc.com
www.unitedmcgillcorp.com


ANALYTICAL MODELING OF COMPLEX MODULUS BEHAVIOR

It is very convenient to be able to mathematically describe the complex modulus
properties of damping polymers, not only in the form of a nomogram as just
described, but also by algebraic equations which can be folded into finite element
and other computer codes for predicting dynamic response to external excitation
(see Chap. 24). Such models include the standard model, comprising a distribution of
springs and viscous dashpots in series and parallel configurations2–4 for which the
complex Young’s modulus E* (and equally the shear modulus G*) can be described
in the frequency domain by a series such as

E* = �
N

n = 1
(36.1)

or a fractional derivative model5 for which the series becomes

E* = �
N

n = 1
(36.2)

where an, bn, and cn are numerical parameters, which may be real or complex, the βn

are fractions of the order of 0.5, and αT is a shift factor which depends on tempera-
ture. Both models work, but Eq. (36.1) will usually require many terms, often 10 or
more, to properly model actual material behavior, whereas Eq. (36.2) usually
requires only one term for a good fit to the data.The shift factor αT is determined as
a function of temperature for each material from the test data, and is usually mod-
eled by a Williams-Landel-Ferry (WLF) relationship1–5 of the form

an + bn(i f αT)βn

��
1 + cn(i f αT)βn

an + bn(i f αT)
��
1 + cn(i f αT)
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log [αT] = (36.3)

or by an Arrhenius relationship1,5 of the form

log [αT] = TA � −  	 (36.4)

where C1 and B1 are numerical parameters, the temperatures T and T0 (the reference
temperature) are in degrees absolute, and TA is a numerical parameter related to the
activation energy.The behavior of each specific polymer composition dictates which
expression is most appropriate, and simple statistical methods may be applied for
determining “best estimates” of each parameter in these equations.2,5

BENEFITS OF APPLIED DAMPING TREATMENTS

When the natural damping in a system is inadequate for its intended function, then
an applied damping treatment may provide the following benefits:

Control of vibration amplitude at resonance. Damping can be used to control
excessive resonance vibrations which may cause high stresses, leading to prema-
ture failure. It should be used in conjunction with other appropriate measures to
achieve the most satisfactory approach. For random excitation it is not possible to
detune a system and design to keep random stresses within acceptable limits
without ensuring that the damping in each mode at least exceeds a minimum
specified value. This is the case for sonic fatigue of aircraft fuselage, wing, and
control surface panels when they are excited by jet noise or boundary layer 
turbulence-induced excitation. In these cases, structural designs have evolved
toward semiempirical procedures, but damping levels are a controlling factor and
must be increased if too low.
Noise control. Damping is very useful for the control of noise radiation from
vibrating surfaces, or the control of noise transmission through a vibrating sur-
face. The noise is not reduced by sound absorption, as in the case of an applied
acoustical material, but by decreasing the amplitudes of the vibrating surface. For
example, in a diesel engine, many parts of the surface contribute to the overall
noise level, and the contribution of each part can be measured by the use of the
acoustic intensity technique or by blanketing off, in turn, all parts except that of
interest. If many parts of an engine contribute more or less equally to the noise,
significant amplitude reductions of only one or two parts (whether by damping or
other means) leads to only very small reductions of the overall noise, typically 1
or 2 dB.
Product acceptance. Damping can often contribute to product acceptance, not
only by reducing the incidence of excessive noise, vibration, or resonance-
induced failure but also by changing the “feel” of the product. The use of mastic
damping treatments in car doors is a case in point. While the treatment may
achieve some noise reduction, it may be the subjective evaluation by the cus-
tomer of the solidity of the door which carries the greater weight.
Simplified maintenance. A useful by-product from reduction of resonance-
induced fatigue by increased damping, or by other means, can be the reduction of
maintenance costs.

1
�
T0

1
�
T

−C1(T − T0)
��
B1 + T − T0
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TYPES OF DAMPING TREATMENTS

FREE-LAYER DAMPING TREATMENTS

The mechanism of energy dissipation in a free-, or unconstrained-, layer treatment is
the cyclic extensional deformation of the imaginary fibers of the damping layer dur-
ing each cycle of flexural vibration of the base structure, as illustrated in Fig. 36.2.
The presence of the free layer changes the apparent flexural rigidity of the base
structure in a manner which depends on the dimensions of the two layers involved
and the elastic moduli of the two layers. The treatment depends for its effectiveness
on the assumption, usually well-founded, that plane sections remain plane.The treat-
ment fiber labeled yy is extended or compressed during each half of a cycle of flex-
ural deformation of the base structure surface, in a manner which depends on the
position of the fiber in the treatment and the radius of curvature of the element of
length Δl, and can be calculated on the basis of purely geometric considerations. One
fiber in particular does not change length during each cycle of deformation and is
referred to as the neutral axis. For the uncoated plate or beam, the neutral axis is the
center plane, but when the treatment is added, it moves in the direction of the treat-
ment and its new position is calculated by the requirement that the net in-plane load
across any section remain unchanged during deformation. The basic equations for
predicting the modal loss factor η for the given damping layer loss factor η2 and for
predicting the direct flexural rigidity (EI)D as a function of the flexural rigidity E1I1

of the base beam are well known.2–6

The simplest expression relating the damping of a structure, in a particular mode,
to the properties of the structure and the damping material layer is7

= (36.5)

where η is the damped structure modal loss factor, η2 is the loss factor of the damp-
ing material, E2 is the Young’s modulus of the damping material and E1 is that of the
structure (e = E2/E1), and h2 and h1 are the thicknesses of damping layer and struc-
ture, respectively (h = h2/h1).

To calculate η, the user estimates η2 and E2 at the frequency and temperature of
interest (from a nomogram), then calculates h and e, and then inserts these values
into Eq. (36.5). Change thickness (h) or material (e) if the calculated value of η is not

eh(3 + 6h + 4h2 + 2eh3 + e2h4)
����
(1 + eh)(1 + 4eh + 6eh2 + 4eh3 + e2h4)

η
�
η2

36.6 CHAPTER THIRTY-SIX

FIGURE 36.2 Free-layer treatment. (A) Undeformed. (B) Deformed.



adequate, and continue the process until satisfied. Figure 36.3 illustrates how η/η2

varies with E2/E1 and with h2/h1, as calculated using the Oberst equations.

Limitations of Free-Layer Treatment Equations. The classical equations for
free-layer treatment behavior are approximate.The main limitation is that the equa-
tions are applicable to beams or plates of uniform thickness and uniform stiff
isotropic elastic characteristics with boundary conditions which do not dissipate or
store energy during vibration. These boundary conditions include the classical
pinned, free, and clamped conditions. Another limitation is that the deformation of
the damping material layer is purely extensional with no in-plane shear, which
would allow the “plane sections remain plane” criterion to be violated. This restric-
tion is not very important unless the damping layer is very thick and very soft (h2/h1

> 10 and E2/E1 < 0.001). A third limitation is that the treatment must be uniformly
applied to the full surface of the beam or plate, and especially that it be anchored
well at the boundaries so that plane sections remain plane in the boundary areas
where bending stresses can be very high and the effects of any cuts in the treatment
can be very important. Other forms of the equations can be derived for partial cov-
erage or for nonclassical boundary conditions.

Effect of Bonding Layer. Free-layer damping treatments are usually applied to
the substrate surface through a thin adhesive or surface treatment coating. This
adhesive layer should be very thin and stiff in comparison with the damping treat-
ment layer in order to minimize shear strains in the adhesive layer which would alter
the behavior of the damping treatment. The effect of a stiff thin adhesive layer is
minimal, but a thick softer layer alters the treatment behavior significantly.

Amount of Material Required. Local panel weight increases up to 30 percent
may often be needed to increase the damping of the structure in several modes of
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FIGURE 36.3 Graphs of η/η2 vs. h2/h1, for a free-layer treatment.



vibration to an acceptable level. Greater weight increases usually lead to diminish-
ing returns. This weight increase can be offset to some degree if the damping is
added early in the design, by judicious weight reductions achieved by proper sizing
of the structure to take advantage of the damping.

CONSTRAINED-LAYER DAMPING TREATMENTS

The mechanism of energy dissipation in a constrained-layer damping treatment is
quite different from the free-layer treatment, since the constraining layer helps
induce relatively large shear deformations in the viscoelastic layer during each cycle
of flexural deformation of the base structure, as illustrated in Fig. 36.4. The presence
of the constraining viscoelastic layer-pair changes the apparent flexural rigidity of the
base structure in a manner which depends on the dimensions of the three layers
involved and the elastic moduli of the three layers, as for the free-layer treatment, but
also in a manner which depends on the deformation pattern of the system, in contrast
to the free-layer treatment. A useful set of equations which may be used to predict
the flexural rigidity and modal damping of a beam or plate damped by a full-coverage
constrained-layer treatment is given in Refs. 2 and 6. These equations give the direct
(in-phase) component (EI )D of the flexural rigidity of the three-layer beam, and the
quadrature (out-of-phase) component (EI)Q as a function of the various physical
parameters of the system, including the thicknesses h1, h2, and h3, the moduli E1 (1 +
jη1), E2 (1 + jη2), E3 (1 + jη3), and the shear modulus of the damping layer G2 (1 + jη2).

Shear Parameter. The behavior of the damped system depends most strongly on
the shear parameter

g = (36.6)

which combines the effect of the damping layer modulus with the semiwavelength
(λ /2) of the mode of vibration, the modulus of the constraining layer, and the thick-
nesses of the damping and constraining layers. The other two parameters are the
thickness ratios h2/h1 and h3/h1. Figure 36.5 illustrates the typical variation of η/η2

G2(λ/2)2

�
E3h3h2π2
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FIGURE 36.4 Additive layered damping treatments. (A) Constrained-
layer treatment. (B) Multiple constrained-layer treatment.



with the shear parameter g for particular values of h2/h1 and h3/h1. These plots may
be used for design of constrained-layer treatments. Note that ηn will be small for
both large and small values of g. For g approaching zero, G2 or λ/2 may be very small
or E3, h3, and h2 may be very large. This could mean that while G2 might appear at
first sight to be sufficiently large, the dimensions h2 and h3 are nevertheless too large
to achieve the needed value of g. This could happen for very large structures, espe-
cially for high-order modes. On the other hand, for g approaching infinity, G2 or λ/2
may be large, or E3, h2, or h3 may be very small.

Effects of Treatment Thickness. In general, increasing h2 and h3 will lead to
increased damping of a beam or plate with a constrained-layer treatment, but the
effect of the shear parameter will modify the specific values.The influence of h3/h1 is
stronger than that of h2/h1, and as h2/h1 approaches zero, η/η2 does not approach zero
but a finite value. This behavior seems to occur in practice and accounts for the very
thin damping layers, 0.002 in. (0.051 mm) or less, used in damping tapes. A practical
limit of 0.001 in. (0.025 mm) is usually adopted to avoid handling problems.

Effect of Initial Damping. If the base beam is itself damped, with η1 not equal to
zero, then the damping from the constrained-layer treatment will be added to η1 for
small values of η1. The general effect is readily visualized, but specific behavior
depends on treatment dimensions and the value of the shear parameter.

Integral Damping Treatments. Some damping treatments are applied or added
not after a structure has been partly or fully assembled but during the manufactur-
ing process itself. Some examples are illustrated in Fig. 36.6. They include laminated
sheets which are used for construction assembly, or for deep drawing of structural
components in a manner similar to that for solid sheets, and also for faying surface
damping which is introduced into the joints during assembly of built-up, bolted, riv-
eted, or spot-welded structures. The conditions at the bolt, rivet, or weld areas criti-
cally influence the behavior of the damping configurations and make analysis
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FIGURE 36.5 Typical plots of η/η2 versus shear parameter g(h2/h1 = 0.10, η2 = 0.1).



particularly difficult because of the limited control of conditions at these points.
Finite element analysis may be one of the few techniques for such analysis.

Damping Tapes. Constrained-layer treatments are sometimes available in the
form of a premanufactured combination of an adhesive layer and a constraining
layer, which may be applied to the surface of a vibrating panel in one step, as
opposed to the several steps required when the adhesive and constraining layers are
applied separately. Such damping tapes are available from several companies,
including the 3M Company, Avery International, and Mystic Tapes, to name a few.
An example of such a damping tape is the 3M™ 2552 damping foil product, which
consists of a 0.005-in.-thick layer of a particular pressure-sensitive adhesive pre-
bonded to a 0.010-in.-thick aluminum constraining layer, with an easy-release paper
liner protecting the adhesive layer. One limitation of damping tapes is at once evi-
dent, namely, that the particular adhesive is effective over a specific temperature
range and the adhesive and constraining layer thicknesses are fixed. The choice of
adhesive is particularly important, since it must be selected in accordance with the
required temperature range of operation, and the available thicknesses may not be
ideal for all applications. Constrained-layer treatments such as those illustrated in
Fig. 36.4 could be built up conventionally, with adhesive and constraining layers
applied separately, or by means of damping tapes. In each case, the adhesive mate-
rial and thickness, and the constraining layer thickness, must be chosen to ensure
optimal damping for the temperature range required by each application.The Ross-
Kerwin-Ungar (RKU) equations2,3,6 may be used to estimate, even if roughly, the
best combination of dimensions and adhesive for each application, whether by means
of damping tapes or conventional treatments, applying the complex modulus prop-
erties of the adhesive as described by a temperature-frequency nomogram or by a
fractional derivative equation.
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FIGURE 36.6 Some basic integral damping treatments. (A) Laminate. (B)
Faying surface damping.



Tuned Dampers. The tuned damper is essentially a single-degree-of-freedom
mass-spring system having its resonance frequency close to the selected resonance
frequency of the system to be damped, i.e., tuned. As the structure vibrates, the
damper elastomeric element vibrates with much greater amplitude than the struc-
ture at the point of attachment and dissipates significant amounts of energy per
cycle, thereby introducing large damping forces back to the structure which tend to
reduce the amplitude.The system also adds another degree of freedom, so two peaks
arise in place of the single original resonance. Proper tuning is required to ensure
that the two new peaks are both lower in amplitude than the original single peak.
The damper mass should be as large as practicable in order to maximize the damper
effectiveness, up to perhaps 5 or 10 percent of the weight of the structure at most,
and the damping capability of the resilient element should be as high as possible.The
weight increase needed to add significant damping in a single mode is usually
smaller than for a layered treatment, perhaps 5 percent or less.

Damping Links. The damping link is another type of discrete treatment, joining
two appropriately chosen parts of a structure. Damping effectiveness depends on
the existence of large relative motions between the ends of the link and on the exis-
tence of unequal stiffnesses or masses at each end. The deformation of the structure
when it is bent leads to deformation of the viscoelastic elements.These deformations
of the viscoelastic material lead to energy dissipation by the damper.

RATING OF DAMPING EFFECTIVENESS

MEASURES OR CRITERIA OF DAMPING

There are many measures of the damping of a system. Ideally, the various measures
of damping should be consistent with each other, being small when the damping is
low and large when the damping is high, and having a linear relationship with each
other.This is not always the case, and care must be taken, when evaluating the effects
of damping treatments, to ensure that the same measure is used for comparing
behavior before and after the damping treatment is added. The measures discussed
here include the loss factor η, the fraction of critical damping (damping ratio) ζ, the
logarithmic decrement Δ, the resonance or quality factor Q, and the specific damp-
ing energy D. Table 36.2 summarizes the relationship between these parameters, in
the ideal case of low damping in a single-degree-of-freedom (SDOF) system. Some
care must be taken in applying these measures for high damping and/or for multiple-
degree-of-freedom (MDOF) systems and especially to avoid using different mea-
sures to compare treated and untreated systems.

Loss Factor. The loss factor η is a measure of damping which describes the rela-
tionship between the sinusoidal excitation of a system and the corresponding sinu-
soidal response. If the system is linear, the response to a sinusoidal excitation is also
sinusoidal and a loss factor is easily defined, but great care must be taken for non-
linear systems because the response is not sinusoidal and a unique loss factor cannot
be defined. Consider first an inertialess specimen of linear viscoelastic material
excited by a force F(t) = F0 cos ωt, as illustrated in Fig. 36.7.The response x(t) = x0 cos
(ωt − δ) is also harmonic at the frequency ω as for the excitation but with a phase lag
δ. The relationship between F(t) and x(t) can be expressed as
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F = kx + (36.7)

where k = F0 /x0 is a stiffness and η = tan δ is referred to as the loss factor. The phase
angle δ varies from 0° to 90° as the loss factor η varies from zero to infinity, so a one-
to-one correspondence exists between η and δ. Equation (36.7) is a simple relation-
ship between excitation and response which can be related to the stress-strain
relationship because normal stress σ = F/S and extensional strain ε = x/l. This is a
generalized form of the classical Hooke’s law which gives F = kx for a perfectly elas-
tic system.The loss factor, as a measure of damping, can be extended further to apply
to a system possessing inertial as well as stiffness and damping characteristics. Con-
sider, for example, the one-degree-of-freedom linear viscoelastic system shown in
Fig. 36.8A. The equation of motion is obtained by balancing the stiffness and damp-
ing forces from Eq. (36.7) to the inertia force m(d 2x/dt 2):

m + kx + = F0 cos ωt (36.8)

The steady-state harmonic response, after any start-up transients have died away,
is illustrated in Chap. 2. If k and η depend on frequency, as is the case for real materials,
then the maximum amplitude at the resonance frequency ωr = �k�/m� is equal to
F0 /k(ωr)η(ωr), while the static response, at ω = 0, is equal to F0 /k(0) ��1 + η2(0). The
amplification factor A is approximately equal to 1/η(ωr), provided that η2 (0) << 1.
Furthermore, the ratio Δω/ωr, where Δω is the separation of the frequencies for which
the response is 1/�2� times the peak response, is known as the half-power bandwidth
(see Chap. 2). It is also equal to η, provided that η2 << 1. In summary, therefore,

η = = (36.9)
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TABLE 36.2 Comparison of Damping Measures

Damping Loss Log Quality Spec Amp
Measure ratio factor dec factor damping factor

Damping ratio ζ

Loss factor 2ζ η

Log decrement πζ 2πη Δ

Quality factor Q A*

Spec damping 4πUζ 2πUη 4UΔ D

Amp factor Q A*

* For single-degree-of-freedom system only.
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This relationship between η and 1/A is applicable only for a single-degree-of-
freedom system and may not be directly applicable for more complex systems such
as beams, plates, or more complex structures. The measure Δω/ωr is applicable for
more complex systems, as well as SDOF systems. For large values of η, on the order
of 0.2 or greater, none of these measures of damping agree exactly, even for an ideal
linear SDOF system, but each measure is at least self-consistent. The stiffness and
loss-factor parameters defined here do not specify any particular model of material
behavior. For example, k and η could be constants as for hysteretic damping, or they
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FIGURE 36.8 Single-degree-of-freedom system with:
(A) viscoelastic damping; (B) viscous damping.

FIGURE 36.7 Linear viscoelastic behavior of a sample under sinusoidal loading,
described in terms of response and excitation as functions of time. (A) Specimen. (B)
Response and excitation.



could be functions of frequency, temperature, specimen composition and shape, or
amplitude as for a nonlinear material. The model with constant k and η is not too
useful over a wide frequency range, and such behavior is impossible over an infinite
frequency range, but these parameters can vary quite slowly with frequency for
some particular material compositions. If k and η vary strongly with frequency, or
amplitude, then the various definitions of the loss factor must be used with great
care, since each measure gives different results.

Fraction of Critical Damping. The fraction of critical damping (damping ratio) is
a measure of one very specific mechanism of damping, i.e., viscous damping which is
proportional to velocity. If the damping forces acting on a single-degree-of-freedom
mass-spring system, illustrated in Fig. 36.8B, satisfy this type of relationship, then the
equation of motion for harmonic excitation is

m + c + kx = F0 cos ωt (36.10)

The response depends on m, k, and a parameter c/2�k�m� which involves c, k, and m
and is known as the fraction of critical damping (damping ratio). This parameter,
labeled ζ, controls the peak amplitude, the half-power bandwidth, and the resonance
frequency ωr:

xmax = x(0) =

ωr = �(k�/m�)(�1� −� ζ�2)� = 2ζ

(36.11)

The plot of x(ω) versus frequency ω, for specific values of m and k is very similar to
those for the viscoelastic damping, provided that η � 2ζ. The distinction between
viscous and hysteretic damping (constant k, and η) is not at once apparent. Equa-
tions (36.8) and (36.10) convey the difference, since the damping coefficient in Eq.
(36.8) decreases in proportion to 1/ω as ω increases, while that in Eq. (36.10) is con-
stant with frequency, at least for the hypothetical cases considered here. Figure 36.9
shows plots of response versus frequency based on the solutions of these equations
of motion for each type of damping. Some differences arise at low frequency, but
they are not very great except for very high values of damping. For high values of
damping, neither η nor ζ are linearly related to the bandwidth ratio Δω/ωr. Figure
36.10 shows the variation of Δω/ωr with η and 2ζ for values of η which are not small.
Limits exist beyond which the ratio Δω/ωr does not give a good estimate of η or ζ.

Logarithmic Decrement. When a damped system is struck by an impulsive load
or is released from a displaced position relative to its equilibrium state, a decaying
oscillation usually takes place, as illustrated in Chap. 2.A measure of damping called
logarithmic decrement Δ is defined as the natural logarithm of the ratio of ampli-
tudes of successive peaks (see Chap. 2):

Δ = ln = ln (36.12)

This definition is useful only if these ratios are equal for the various cycles, i.e., for
specific types and amounts of damping. The measure is useful for viscous and hys-
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FIGURE 36.10 Variation of loss factor (η) and 2 times the fraction of critical damping (2ζ)
of a single-degree-of-freedom system with Δω/ωr.

FIGURE 36.9 Comparison of viscous and hysteretic damping of a single-degree-of-
freedom system with (A) low damping (η = 0.1, ζ = 0.05); (B) high damping (η = 1.0, ζ = 0.5).
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teretic damping, within limits. For viscous damping, the solution of Eq. (36.10) for an
impulsive excitation F δ(t) is obtained.

x = e−t �k/�m� sin t�(k�/m�)(�1� −� ζ�2)� (36.13)

so that

Δ = (36.14)

for small ζ. If ζ approaches 1.0, the response becomes aperiodic and a logarithmic
decrement cannot be defined or related to ζ. The loss factor in Eq. (36.7) also can
be related to the transient response of a single-degree-of-freedom mass-spring sys-
tem, subject to an impulsive excitation. Consider the impulsive excitation F(t) to be
modeled as a spike of the form of a delta function at time t = 0. Then the equation
of motion, in the form of Eq. (36.8), cannot be written directly, but if both F(t) and
x(t) are described in terms of their corresponding Fourier transforms, then F̄(ω) =
�∞

−∞
F(t) exp(−jωt) dt = F and x̄ = F/(k − mω2 + jkη). The inverse Fourier transform

gives

x(t) = �∞

−∞
(36.15)

This equation contains real and imaginary parts, but using the fact that exp(jωt) = cos
ωt + j sin ωt and if k(ω) = k(−ω) and η(−ω) = −η(ω), then it may be shown that x(t) is
given by

x(t) = �∞

0
dω (36.16)

For k and η constant over all frequencies from zero to infinity, problems arise
regarding x(t) being finite for values of t less than zero, i.e., before the impulse is
applied, and this is physically impossible.The problem is that k and η cannot be con-
stants for real systems over any extremely wide frequency range, no matter how
close to constant they may be over a limited frequency range. For small values of η,
however, a useful and accurate solution is given by

x(t) = e−1/2ηt�k/�m� sin t�k�/m� (36.17)

Δ = πη/2 (36.18)

Comparing Eqs. (36.16) and (36.18) gives

η = 2ζ (36.19)

Quality Factor. The quality factor Q is defined as ωr/Δω, so

Q = (36.20)

For a single degree of freedom Q = A [where A is defined in Eq. (36.9)], but this is
not the case for multiple-degree-of-freedom systems.
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Specific Damping Energy. Another useful measure of material damping is the
amount of energy dissipated per unit volume per cycle, known as the specific damp-
ing energy. For a damping material specimen subject to an applied external force
F(t) = F0 cos ωt the specific damping energy D is equal to

D = � F dx = �2π/ω

0
F dt (36.21)

For a viscoelastic material obeying Eq. (36.7)

D = F0x0kη �1� +� η�2� (36.22)

But F0 = kx0 �1� +� η�2�, also from Eq. (36.7), so

D = πx0
2 kη (36.23)

The specific damping energy D increases as the square of the amplitude of vibration
x0 for linear viscoelastic materials, so it is clearly desirable to ensure that the damp-
ing material is strained as vigorously as possible in order to maximize D and, hence,
the damping of the system. This has an important bearing on the choice of location
within a vibrating system for application of a damping treatment. Furthermore, both
k and η must be as large as possible to ensure maximum energy dissipation in the
system, but this can be done only to the extent that further increases of k and η do
not reduce x0. While D is related to k and η for linear viscoelastic materials, this is
not possible for nonlinear materials or for high cyclic strain levels where nonlinear
behavior occurs; the value of D is then, of itself, often used as a measure of overall
damping performance.

COMPARISON OF DAMPING MEASURES

The damping measures described in this section are related to each other as follows
(Table 36.2):

η = 2ζ = = = = = (36.24)

These various equations relate η, Δ, and ζ for viscous and viscoelastic damping of
single-degree-of-freedom systems. The relationships usually agree well for low
values of η and ζ (η < 0.2 or so), but for higher values the comparisons are not so
precise.

It is important, when analyzing tests to determine the effects of damping treat-
ments on dynamic response, to be consistent in the use of these damping measures
and to recognize that they are not completely equivalent, especially over wide fre-
quency ranges or for multimodal response.

Effects of Mass and Stiffness. Changing the mass or stiffness of a single-degree-
of-freedom mass-spring system without changing any other parameters leads to a
change of resonance frequency, and when the frequency changes over a wide range,
the differences of viscous and hysteretic damping become more apparent. For vis-
cous damping, the fraction of critical damping ζ = c/2�k�m� changes as k or m change,
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whereas for hysteretic damping η does not change, at least within a limited fre-
quency range.Although viscous and hysteretic damping measures are related by the
simple relationship η = 2ζ for a single mode at a particular frequency, they do not
remain equivalent as the frequency changes, and significant differences in response
may be observed.

METHODS FOR MEASURING COMPLEX MODULUS PROPERTIES

Vibrating Beam Test Methods. The vibrating beam test methods are frequently
used to measure the extensional or shear complex modulus properties of damping
materials.2,3,8,9 The dynamic response behavior of the beam, first in the undamped
uncoated form and then with an added damping layer or added constrained configu-
ration, is measured for several modes of vibration and over a range of temperatures.
At each temperature, the measured damped resonance frequency fn, the undamped
resonance frequency fon, and the loss factor ηn in the nth mode of vibration are mea-
sured and used in an appropriate set of equations to deduce the Young’s modulus E,
or the shear modulus G, and the loss factor η of the damping material at a number of
discrete frequencies and temperatures.

Various configurations of cantilever beams are used to measure viscoelastic
material damping properties in tension-compression or shear at low cyclic strain
amplitudes. Figure 36.11 illustrates some of the configurations used. The damping
layers are bonded to the base beams by means of a stiff adhesive such as an epoxy.
This bonding is very important and must be done well using an adhesive which is
stiff in comparison to the damping layer and is very thin. The thickness ratio h2/h1

generally lies in the range 0.1 ≤ h2/h1 ≤ 2.0, and the length l is about 5 to 10 in. (12.7
to 25.4 cm). The base beam material is typically aluminum, steel, or a stiff epoxy or
epoxy matrix composite material having low intrinsic damping. Great care must be
taken to ensure that the temperature range of the tests is not excessive in relation to
the behavior of the base beam, and in particular to allow for the effect of tempera-
ture on the base beam properties such as Young’s modulus, the resonance frequen-
cies, and the modal loss factor in the absence of the damping layer.The vibration test
is conducted, allowing the specimen to soak at each selected temperature for several
minutes (often 30 minutes) to be sure of thermal equilibrium; then the beam is
excited by means of a noncontacting transducer or by impact, and the resulting
response in the frequency domain is measured, either through swept-sine-wave exci-
tation or fast Fourier transform (FFT) analysis of the transient response signal in the
time domain. At each temperature, several resonance frequencies and modal loss
factors are measured over a wide range of frequencies. The test is then repeated
after thermal equilibrium has been reached at the next selected temperature. The
data obtained for the first mode is usually not used because of the low frequency
involved and the high amplitudes and high modal damping of the base beam, as well
as because of errors in the analysis when sandwich beams are used. Such vibrating
beam tests are widely used for measuring viscoelastic material damping properties
for shear and extensional deformation.8,9

Geiger Thick-Plate Test Method. The Geiger thick-plate method is of impor-
tance because it is widely used to describe damping materials in the automotive
industry. It makes use of a large flat plate, suspended freely from four points selected
to be at or near the nodal lines of the first free-free mode, to which is bonded the
damping layer being evaluated. The rate of decay of vibration amplitude (expressed
in decibels per second) is measured and serves as a measure of the effectiveness of
the damping layer. Figure 36.12 illustrates a typical test setup. The system can be
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excited by an impulsive force, measured through a force gage, and applied by a
hammer, by an electromagnetic exciter, an electrically actuated impeller, or by sine-
wave or random excitation. The response can be picked up by an electromagnetic
transducer, in which case cross talk with the excitation transducer must be avoided
by adequate separation or by the use of capacitative or electro-optical transducers
or by a miniature accelerometer. The measured output can be displayed in many
ways, including a decaying sinusoidal trace representing response to an impulsive
excitation (a measure of the logarithmic decrement), or a frequency-domain display
in the region of the fundamental free-free mode (loss factor measure).The observed
logarithmic decrement or loss factor value is a measure of the damping of the
plate/damping material system and depends on the plate and treatment thicknesses.
The free-layer treatment equations used for the vibrating beam tests may also be
used with the Geiger plate test provided that the same conditions are satisfied. In
particular, the treatment thickness must be sufficient to make the ratio of the
stiffness of the coated plate to that of the uncoated plate greater than about 1.05.
The size of the specimen and the use of only one mode makes this condition
somewhat less restrictive than for the beam tests, for which the specimens are much
smaller.
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FIGURE 36.11 Cantilever beam damping material test configurations. (A)
Nonsymmetric Oberst beam. (B) Symmetric modified Oberst beam. (C)
Symmetric sandwich beam. (D) Symmetric constrained-layer beam.



Single-Degree-of-Freedom Resonance Tests. Digital test instrumentation and
data analysis techniques make it relatively easy to conduct vibration tests directly on
relatively small samples of damping materials and to readily determine the damping
properties. Typical test configurations are illustrated in Fig. 36.13. For a resonance
type of test, the specimen is driven inertially by a large vibration table (see Chap.
25), usually by swept-sine-wave excitation. The input and output accelerations are
usually measured by accelerometers, and the response parameter of interest is the
amplification A = x/x0 as a function of frequency, where x is the amplitude of dis-
placement of the mass and x0 is that of the shaker table.At resonance, the maximum
value of A = x/x0 is observed along with the resonance frequency ωR for each tem-
perature. The loss factor and modulus in both the tension-compression and shear
loading of the specimen material are determined from

η = (36.25)

E = (36.26)

G = (36.27)

For tension-compression loading, l is the length and S1 = wh is the cross-sectional
area of the load-carrying member, where w is the cross-section width and h is the
cross-section thickness, as illustrated in Fig. 36.13. For shear loading, h is the thick-
ness of the shear layer and S2 = 2wl is the cross-sectional area of the shear member,
where l is now the breadth of the load-carrying area, again as illustrated in Fig. 36.13.
The effective mass me includes the added mass m and the effective mass of the spec-
imen damping material, which is about one-third of its actual mass. For the exten-
sional specimen, the ratio l/h or l/w, whichever is smaller, must be greater than 1.0 or
shape effects will have to be taken into account. For the shear configuration, the
ratio h/l must be less than 0.2 for the same reason. For highly damped materials, for
which x/x0 does not exceed 1.0 by a significant amount, considerable error in mea-
suring A and η will be encountered, but the method is very effective for values of η
less than about 0.5. In this method, data are obtained at only one frequency; the mass
m must be changed to obtain data at other frequencies. Care must be taken to avoid
sagging or creep of the specimen at high temperatures and to ensure that thermal
equilibrium has been achieved. A thermocouple placed within the volume of the

meω2
Rh

�
S2

meω2
Rl

�
S1

1
�
�A2 − 1�

36.20 CHAPTER THIRTY-SIX

FIGURE 36.12 Geiger plate test configuration.



specimen material may be necessary, particularly for tests at high strain amplitudes
where internal heating of the specimen by energy dissipation from damping may
lead to wide differences between true specimen temperature and the temperature of
the surroundings.

Impedance Tests. If the specimens are excited by a driver through a force gage,
then the response measure used to characterize the system behavior is the compli-
ance or receptance x/F, where F is the driving force measured by the force gage and
x is the response at the same point, measured by an accelerometer, for example. If
the mass m is large compared with the mass of the specimen, as illustrated in Fig.
36.14, then one may add one-third the mass of the specimen to m to give the effec-
tive mass me of the equivalent single-degree-of-freedom system, so that

= (36.28)

If this is expressed instead in terms of the ratio F/x, the dynamic stiffness at the driv-
ing point, which is directly related to the driving-point impedance, then

κ = k − meω2 + jkη (36.29)

which shows that the direct dynamic stiffness is a linear function of ω2 and the quad-
rature dynamic stiffness κQ = kη. It is not difficult to obtain good measurements of k

1
��
k(1 + jη) − meω2
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F
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FIGURE 36.14 Impedance test concepts.

FIGURE 36.13 Resonance test concepts.



and η by this type of test approach from about 0.2ωr to 3ωr, so data can be obtained
quite easily over about a decade of frequency instead of at only a single frequency as
for the resonance method. Analytical mass corrections may also have to be made to
account for inertial effects at the force gage.

COMMERCIAL TEST SYSTEMS

Many commercial systems are available for measuring the complex modulus prop-
erties of viscoelastic damping materials.10,11 All are based on some kind of deforma-
tion mode of a sample of the material, measurement of the corresponding excitation
forces and displacements, and analysis of the data to obtain the material properties.
Each system has advantages and disadvantages, but when due care is exercised, good
results usually can be obtained with each system. Particular care should be taken to
read, understand, and follow the manufacturer’s instructions. For example, in some
tests such as monitoring cure cycles of epoxies, the temperature sweep rate can be
quite high in order to keep up with the reaction.This is acceptable if one is monitor-
ing the progress of the cure cycle, but it may not be acceptable if one seeks to mea-
sure the damping properties at a state approximating thermal equilibrium. For
thermal equilibrium to be maintained, temperature sweep rates well below 1°F
(0.5°C) per minute are usually recommended, and even lower rates may be required
for large specimens. A dwell period at each temperature is recommended before
performing the test.
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CHAPTER 37
TORSIONAL VIBRATION IN

RECIPROCATING AND
ROTATING MACHINES

Ronald L. Eshleman

INTRODUCTION

Torsional vibration is an oscillatory angular motion causing twisting in the shaft of a
system; the oscillatory motion is superimposed on the steady rotational motion of a
rotating/reciprocating machine. Even though the vibration cannot be detected with-
out special measuring equipment, its amplitude can be destructive. For example,
gear sets that alter speeds of power transmission systems transmit the vibration to
the casing. Similarly, slider crank mechanisms in engines and compressors convert
torques to radial forces that are discernable to human perception but are not mea-
surable because of the insensitivity of test equipment and background noise. If gear-
boxes or reciprocating machines are part of a drive train, excess noise and vibration
can indicate trouble.

Motion is rarely a concern with torsional vibration unless it affects the function of
a system. It is stresses that affect the structural integrity and life of components and
thus determine the allowable magnitude of the torsional vibration.Torsional vibratory
motions can produce stress reversals that cause metal fatigue. Components tolerate
less reversed stress than steady stress. In addition, stress concentration factors associ-
ated with machine members decrease the effectiveness of load-bearing materials.

Figure 37.1 illustrates the twisting of a shaft of an electric motor-compressor sys-
tem. The torsional mode shape associated with the first torsional natural frequency
is shown in Fig. 37.2. A coupling in the power train allows for misalignment in the
assembly. The mode shape shows that the stiffness of the coupling is much less than
that of other shaft sections. This is indicated by the large slope (change in angular
displacement) of the mode shape at the coupling. The coupling will be the predomi-
nant component in the motor-compressor system governing the torsional natural
frequency associated with the mode.

Torsional vibration is usually a complex vibration having many different fre-
quency components. For example, shock resulting from abrupt start-ups and unload-
ing of gear teeth causes transient torsional vibration in some systems; start-up of
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synchronous electric motor systems may cause torsional resonance. Random tor-
sional vibrations caused by gear inaccuracies and ball bearing defects are relatively
common in rotating machines.

MODELING

The torsional elastic system of a drive unit and its associated machinery is a com-
plicated arrangement of mass and elastic distribution. The complete mechanical
system can include the drive unit, couplings, gearboxes or other speed-changing
devices, and one or more driven units. This complicated system is made amenable
to mathematical treatment by representing it as a model—a simpler system that 
is substantially equivalent dynamically. The equivalent system usually consists of
lumped masses which are connected by massless torsionally elastic springs as illus-
trated in Fig. 37.3. The masses are placed at each crank center and at the center
planes of actual flywheels, rotors, propellers, cranks, gears, impellers, and arma-
tures.1

The torsional calculation is made not for the drive unit alone but for the com-
plete system, including all driven machinery. On an engine, it is usually possible to
consider such parts as camshafts, pumps, and blowers either as detached from the
engine (if they are driven elastically) or as additional rigid masses at the point of
attachment to the crankshaft (if the driver is relatively rigid). If there is doubt, these
parts should be included in the torsional calculation as elastically connected masses
and removed if the natural frequencies do not change after the parts are removed
from the model.
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FIGURE 37.1 Schematic drawing illustrating the twisting of
the shaft of a motor-compressor system.

FIGURE 37.2 Torsional mode shape for the motor-
compressor system shown in Fig. 37.1.



CALCULATION OF POLAR MOMENTS OF INERTIA

Circular Disc or Cylinder Rotating About a Perpendicular Axis. The polar
moment of inertia, essential in modeling torsional vibration, often is easy to calcu-
late.The general form is J = ∫r 2 dm, where r is the instantaneous radius, and dm is the
differential mass. The formula for the polar moment of inertia of a circular disc or
cylinder rotating about a perpendicular axis is

J = lb-in.-sec2 (37.1)

where J = polar moment of inertia,
lb-in.-sec2

γ = material density, lb/in.3

d = diameter of disc or cylin-
der, in.

l = axial length of disc or
cylinder, in.

g = acceleration due to gravity,
386.1 in./sec2

Piston and Connecting Rod. The 
piston and connecting rod shown
schematically in Fig. 37.4 introduce a
variable-mass problem, the solution of
which is complex. The exact solution
shows that the effect of the piston and
connecting rod can be closely approxi-
mated by representing them as a concen-
trated rotor of polar inertia J defined by

J = � + Wc�1 − 	 lb-in.-sec2 (37.2)

where WP = weight of piston, piston pin, and cooling fluid, lb
Wc = weight of connecting rod, lb

h = fraction of rod length from crank pin to center of gravity
R = crank radius, in.
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FIGURE 37.3 A model of the motor-compressor
system shown in Fig. 37.1, consisting of a series of
masses connected by massless torsionally elastic
springs (K = stiffness, lb⋅in./rad; J = polar moment of
inertia, lb-in.-sec2).

FIGURE 37.4 Schematic diagram of a crank
and connecting rod.



Crankshaft. The polar inertias of the crank webs, the crankpin, and the journal
sections are added to that given by Eq. (37.2). These polar inertias should be calcu-
lated with the best obtainable accuracy.

Propellers. For propellers, pumps, and hydraulic couplings an addition must be
made for the virtual inertia of the entrained fluid. For marine propellers this is ordi-
narily assumed at 26 percent of the propeller inertia. Virtual inertias for pumps are
not known accurately, but it can be assumed that half the casing is filled with rotat-
ing fluid. Marine propeller polar inertia can be estimated by

J = 0.044MD2 lb-in.-sec2

where M = mass of the propeller, lb · sec2/in.
D = diameter of propeller, in.

EXPERIMENTAL DETERMINATION OF POLAR MOMENT OF INERTIA

For complex shaft elements such as couplings or small flywheels, it is often easier to
determine the polar moment of inertia
experimentally than to calculate it. In
one experimental technique the element
is suspended from three equally spaced
vertical wires as shown in Fig. 37.5. The
element whose polar moment of inertia
is to be measured is hung on the cables
and set into torsional motion. Then the
period of vibration is measured. The
experimentally determined period of
torsional vibration, the weight of the
element, the length of the suspending
cables, and the radius of attachment of
the cables are used to determine the
polar moment of inertia from the fol-
lowing formula:

J = lb-in.-sec2 (37.4)

where J = polar moment of inertia
τ = period of vibration, sec/cycle

W = weight of element, lb
l = length of cables, in.
r = radius of suspending cables, in.

CALCULATION OF STIFFNESS

Shaft. The stiffness of a circular shaft is the most common elastic element encoun-
tered in the modeling process.Table 37.1 shows some common formulas used to cal-
culate torsional stiffness of a hollow circular shaft, a tapered circular shaft, and two

Wr 2� 2

�
(6.28)2l
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FIGURE 37.5 Experimental determination of
the polar moment of inertia. An element of
weight W is suspended by three wires and the
period of the torsional motion is determined.



geared shafts.The stiffness is referred to the rotational speed of shaft no. 1.The iner-
tia of geared shafts is obtained in a similar manner.

Crankshaft. The crankshaft stiffness is the most uncertain element in a torsional
vibration calculation. Shaft stiffness can be measured experimentally either by twist-
ing a shaft with a known torque or from the observed values of the critical speeds in
a running engine. Alternatively, it can be calculated from semiempirical formulas
such as those given in Ref. 1. Refer to Table 37.1 for definitions of the dimensions; le

is the length of a solid shaft of diameter Ds equal in torsional stiffness to the section
of crankshaft between crank centers.

Changes in Section. The shafting of an engine system may contain elements such
as changes of section, collars, shrunk and keyed armatures, etc., which require the
exercise of judgment in the assessment of stiffness. For a change of section having a
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TABLE 37.1 Formulas for Torsional Stiffness

K = torsional stiffness, lb-in./rad; G = shear modulus, lb/in.2

ω = rotational speed, rad/sec

Springs in series

Springs in parallel

Hollow circular shaft

Tapered circular shaft

Two-geared shaft 
(referred to shaft1)

Wilson2 formula
crankshaft

K =

K = K1 + K2

K =

K =

n = d
—
D

K =

n = =

= +
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hW3

a + 0.4Dc��
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fillet radius equal to r at the smaller diameter, the stiffness can be estimated by
assuming that the smaller shaft is lengthened an amount ΔL, obtained from the
curve of Fig. 37.6. This also may be applied to flanges where D is the bolt diameter.
The stiffening effect of collars can be ignored.
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FIGURE 37.6 Junction effect for cylindrical shafts with vari-
ous diameter ratios and fillet radii.1

Shrunk and Keyed Parts. The stiffness of shrunk and keyed parts is difficult to
estimate, as the stiffening effect depends to a large extent on the tightness of the
shrunk fit and keying. The most reliable values of stiffness are obtained by neglect-
ing the stiffening effect of an armature and assuming that the armature acts as a con-
centrated mass at the center of the shrunk or keyed fit.

Elastic Couplings. Properties of numerous types of torsionally elastic couplings
are available from the manufacturers and are given in Ref. 1.

GEARED AND BRANCHED SYSTEMS

The natural frequencies of a system containing gears can be calculated by assuming
a system in which the speed of the driver unit is n times the speed of the driven
equipment. Multiply all the inertia and elastic constants on the driven side of the sys-
tem by 1/n2, and calculate the system’s natural frequencies as if no gears exist. In any
calculations involving damping constants on the driven side, these constants also are
multiplied by 1/n2. Torques and deflections thus obtained on the driven side of this
substitute system, when multiplied by n and 1/n, respectively, are equal to those in
the actual geared system.Alternatively, the driven side can be used as the reference;
multiply the driver constants by n2.

NATURAL FREQUENCY CALCULATIONS

If the model of a system can be reduced to two lumped masses at opposite ends of a
massless shaft, the natural frequency is given by



fn = �� Hz (37.5)

The mode shape is given by θ2/θ1 = −J1/J2.
For the three-mass system shown in Fig. 37.7, the natural frequencies are

fn = �A� ±� (�A�2�−� B�)1�/2� Hz (37.6)

where A = +

B =

In Eqs. (37.5) and (37.6) the ks are torsional stiffness constants expressed in 
lb-in./rad. The notation k12 indicates that the constant applies to the shaft between

rotors 1 and 2. The polar inertia J has
units of lb-in.-sec2.

The preceding formulas and all the
developments for multimass torsional
systems that follow also apply to sys-
tems with longitudinal motion if the
polar moments of inertia J are replaced
by the masses m = W/g and the torsional
stiffnesses are replaced by longitudinal
stiffnesses.

TRANSFER MATRIX METHOD

The transfer matrix method3 is an extended and generalized version of the Holzer
method. Matrix algebra is used rather than a numerical table for the analysis of tor-
sional vibration problems. The transfer matrix method is used to calculate the natu-
ral frequencies and critical speeds of other eigenvalue problems.

The transfer matrix and matrix iteration (Stodola) methods are numerical proce-
dures. The fundamental difference between them lies in the assumed independent
variable. In any eigenvalue problem, a unique mode shape of the system is associ-
ated with each natural frequency. The mode shape is the independent variable used
in the matrix iteration method. A mode shape is assumed and improved by succes-
sive iterations until the desired accuracy is obtained; its associated natural frequency
is then calculated.

A frequency is assumed in the transfer matrix method, and the mode shape of
the system is calculated. If the mode shape fits the boundary conditions, the
assumed frequency is a natural frequency and a critical speed is derived. Determin-
ing the correct natural frequencies amounts to a controlled trial-and-error process.
Some of the essential boundary conditions (geometrical) and natural boundary
conditions (force) are assumed, and the remaining boundary condition is plotted
versus frequency to obtain the natural frequency; the procedure is similar to the
Holzer method. For example, if the torsional system shown in Fig. 37.8 were ana-
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��

J1J2 J3

k23(J1 + J2)
��
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FIGURE 37.7 Schematic diagram of a shaft
represented by three masses.



lyzed, the natural boundary conditions would be zero torque at both ends. The
torque at station no. 1 is made zero, and the torsional vibration is set at unity. Then
M4 as a function of ω is plotted to find the natural frequencies. This plot is obtained
by utilizing the system transfer functions or matrices. These quantities reflect the
dynamic behavior of the system.

No accuracy is lost with the transfer matrix method because of coupling of mode
shapes.Accuracy is lost with the matrix iteration method, however, because each fre-
quency calculation is independent of the others.

A typical station (no. 4) from a torsional model is shown in Fig. 37.8.This general
station and the following transfer matrix equation, Eq. (37.7), are used in a way sim-
ilar to the Holzer table to transfer the effects of a given frequency ω across the
model.


 

n

= � 
n

 


n − 1

(37.7)

where θ = torsional motion, rad
M = torque, lb-in.
ω = assumed frequency, rad/sec
J = station inertia, lb-in.-sec2

k = station torsional stiffness, lb-in./rad

The stiffness and polar moment of inertia of each station are entered into the equa-
tion to determine the transfer effect of each element of the model.Thus, the calcula-
tion begins with station no. 1, which relates to the first spring and inertia in the model
of Fig. 37.8. The equation gives the output torque M1 and output motion θ1 for given
input values, usually 0 and 1, respectively. The equation is used on station no. 2 to
obtain M2 output and θ2 output as a function of M1 output and θ1 output.This process
is repeated to find the value of M and θ at the end of the model. This calculation is
particularly suited for the digital computer with spreadsheet programs.

FINITE ELEMENT METHOD

The finite element method is a numerical procedure (described in Chap. 23) to cal-
culate the natural frequencies, mode shapes, and forced response of a discretely
modeled structural or rotor system. The complex rotor system is composed of an
assemblage of discrete smaller finite elements which are continuous structural mem-
bers. The displacements (angular) are forced to be compatible, and force (torque)
balance is required at the joints (often called nodes).

Figure 37.9 shows a uniform torsional element in local coordinates.4 The x axis is
taken along the centroidal axis. The physical properties of the element are density
(ρ), area (A), shear modulus of elasticity (G), length (l), and polar area moment (I).
M(t) are the torsional forcing functions.

θ
M

1/k
−(ω2J/k) + 1

1
−ω2J

θ
M
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FIGURE 37.8 Typical torsional vibration model.



As noted, the previously described finite elements are in local coordinates. Since
the system as a whole must be analyzed as a unit, the mass and stiffness matrices and
joint force vectors of each element must be expressed in the global coordinate sys-
tem to find the vibration response of the complete system.

Using transformation matrices,4 the mass and stiffness matrices and force vectors
are used to set up the system equation of motion for a single element in the global
coordinates:

[J]e {Θ̈(t)} + [K]e {Θ̈(t)} = {Me(t)} (37.8)

The complete system is an assemblage of the number of finite elements it
requires to adequately model its dynamic behavior. The joint displacements of the
elements in the global coordinate system are labeled as Θ1(t), Θ2(t), . . . , Θm(t), or
this can be expressed as a column vector:

�
Θ1(t)

� (37.9)

Θ2(t)

{Θ(t)} = ⋅
⋅
⋅

Θm(t)

Using global joint displacements, mass and stiffness matrices, and force vectors,
the equations of motion are developed:

[J]nxn{Θ̈ }nx1 + [K]nxn{Θ}nx1 = {M}nx1 (37.10)

where n denotes the number of joint displacements in the system.
In the final step prior to solution, appropriate boundary conditions and con-

straints are introduced into the global model.
The equations of motion for free vibration are solved for the eigenvalues (natu-

ral frequencies) using the matrix iteration method (Chap. 22). Modal analysis is used
to solve the forced torsional response. The analyst must select the joints (nodes,
materials, shape functions, geometry, torques, and constraints) to model the system
for computation of natural frequencies, mode shapes, and torsional response. Simi-
lar to other modeling efforts, engineering art and a knowledge of the capabilities of
the computer program enable the engineer to provide reasonably accurate results.
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FIGURE 37.9 Finite element for torsional vibration in local coor-
dinates.



CRITICAL SPEEDS

The crankshaft of a reciprocating engine or the rotors of a turbine or motor, and all
moving parts driven by them, comprise a torsional elastic system. Such a system has
several modes of free torsional oscillation. Each mode is characterized by a natural
frequency and by a pattern of relative amplitudes of parts of the system when it is
oscillating at its natural frequency. The harmonic components of the driving torque
excite vibration of the system in its modes. If the frequency of any harmonic compo-
nent of the torque is equal to (or close to) the frequency of any mode of vibration, a
condition of resonance exists and the machine is said to be running at a critical
speed. Operation of the system at such critical speeds can be very dangerous, result-
ing in fracture of the shafting.

The number of complete oscillations of the elastic system per unit revolution of
the shaft is called an order of the operating speed. It is an order of a critical speed if
the forcing frequency is equal to a natural frequency. An order of a critical speed
that corresponds to a harmonic component of the torque from the engine as a whole
is called a major order. A critical speed also can be excited that corresponds to the
harmonic component of the torque curve of a single cylinder. The fundamental
period of the torque from a single cylinder in a four-cycle engine is 720°; the critical
speeds in such an engine can be of 1⁄2, 1, 11⁄2, 2, 21⁄2, etc., order. In a two-cycle engine
only the critical speeds of 1, 2, 3, etc., order can exist. All critical speeds except those
of the major orders are called minor critical speeds; this term does not necessarily
mean that they are unimportant. Therefore, the critical speeds occur at

rpm (37.11)

where fn is the natural frequency of one of the modes in Hz, and q is the order num-
ber of the critical speed. Although many critical speeds exist in the operating range
of an engine, only a few are likely to be important.

A dynamic analysis of an engine involves several steps. Natural frequencies of the
modes likely to be important must be calculated. The calculation is usually limited to
the lowest mode or the two lowest modes. In complicated arrangements, the calculation
of additional modes may be required, depending on the frequency of the forces caus-
ing the vibration.Vibration amplitudes and stresses around the operating range and at
the critical speeds must be calculated.A study of remedial measures is also necessary.

VIBRATORY TORQUES

Torsional vibration, like any other type of vibration, results from a source of excita-
tion. The mechanisms that introduce torsional vibration into a machine system are
discussed and quantified in this section.The principal sources of the vibratory torques
that cause torsional vibration are engines, pumps, propellers, and electric motors.

GENERAL EXCITATION

Table 37.2 shows some ways by which torsional vibration can be excited. Most of these
sources are related to the work done by the machine and thus cannot be entirely
removed. Many times, however, adjustments can be made during the design process.
For example, certain construction and installation sources—gear runout, unbalanced
or misaligned couplings, and gear-tooth machining errors—can be reduced.

60fn�
q
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In Table 37.2 note that the pulsating torque during start-up of a synchronous
motor is equal to twice the slip frequency. The slip frequency varies from twice the
line frequency at start-up to zero at synchronous speed. Many mechanical drives
exhibit characteristics of pulsating torque during operation due to their design func-
tion. Electric motors with variable-frequency drives induce pulsating torques at fre-
quencies that are harmonics of line frequency. Blade-passing excitations can be
characterized by the number of blades or vanes on the wheel: the frequency of exci-
tation equals the number of blades multiplied by shaft speed. The amplitude of a
pulsating torque is often given in terms of percentage of average torque generated
in a system.

ENGINE EXCITATION

In more complex cases—diesel and gasoline engines, for example—the multiple fre-
quency components depend on engine design and power output. The power output,
crankshaft phasing, and relationship between gas torque and inertial torque influ-
ence the level of torsional excitation.

TABLE 37.2 Sources of Excitation of Torsional Vibration

Amplitude in 
Source terms of rated torque Frequency

Mechanical

Gear runout 1 ×, 2 ×, 3 × rpm
Gear tooth machining tolerances No. gear teeth × rpm
Coupling unbalance 1 × rpm
Hooke’s joint 2 ×, 4 ×, 6 × rpm
Coupling misalignment Dependent on drive 

elements

System function

Synchronous motor start-up 5–10 2 × slip frequency
Variable-frequency induction motors 0.04–1.0 6 ×, 12 ×, 18 × line

(six-step adjustable frequency (LF)
frequency drive)

Induction motor start-up 3–10 Air gap induced at 60 Hz
Variable-frequency induction motor 0.01–0.2 5 ×, 7 ×, 9 × LF, etc.

(pulse width modulated)
Centrifugal pumps 0.10–0.4 No. vanes × rpm

and multiples
Reciprocating pumps No. plungers × rpm

and multiples
Compressors with vaned diffusers 0.03–1.0 No. vanes × rpm
Motor- or turbine-driven systems 0.05–1.0 No. poles or blades × rpm
Engine geared systems 0.15–0.3 Depends on engine design  

with soft coupling and operating conditions;
can be 0.5n and n × rpm

Engine geared system 0.50 or more Depends on engine design 
with stiff coupling and operating conditions

Shaft vibration n × rpm



Inertia Torque. A harmonic analysis of the inertia torque of a cylinder is closely
approximated by1

M = Ω2r� sin � − sin 2� − λ sin 3� − sin 4� ⋅⋅⋅	 (37.12)

where W = Wp + hWc [see Fig. 37.4 and Eq.(37.2)]
λ = R/l [see Fig. 37.4 and Eq. (37.2)]
Ω = angular speed, rad/sec
R = crank radius, in.
l = connecting rod length, in.
� = crank angle, radians

Wp = weight of piston, lb
Wc = weight of connecting rod, lb

It is usual to drop all terms above the third order.

Gas-Pressure Torque. A harmonic analysis of a gas torque versus rotation curve
yields the gas-pressure components of the exciting torque. It is usually expressed as a
Fourier series (see Chap. 14).These data are normally obtained from an indicator card
or pressure transducer (p versus θ).Then the torque M for the crank angle θ is approx-
imated by1

M ≅ RAp(θ) sin θ {1 + cos θ (λ + λ3 sin2 θ + λ5 sin4 θ + …)} (37.13)

where A is the piston area.A gas pressure–versus–rotation curve analyzed to obtain
harmonic gas coefficients is required to conduct a gas-pressure torque calibration.
Harmonic gas coefficients are usually available from engine manufacturers.

FORCED VIBRATION RESPONSE

The torsional vibration amplitude of a modeled system is determined by the magni-
tude, points of application, and phase relations of the exciting torques produced by
engine or compressor gas pressure and inertia and by the magnitudes and points of ap-
plication of the damping torques. Damping is attributable to a variety of sources, in-
cluding pumping action in the engine bearings, hysteresis in the shafting and between
fitted parts, and energy absorbed in the engine frame and foundation. In a few cases,
notably marine propellers, damping of the propeller predominates.When an engine is
fitted with a damper, the effects of damping dominate the torsional vibrations.

Techniques available for calculation of vibration amplitudes include the exact
solution of differential equations, the energy balance method, the transfer matrix
method, and modal analysis.The techniques are implemented on lumped–parameter
or finite-element models.

EXACT METHOD FOR TWO-DEGREE-OF-FREEDOM SYSTEMS

The lowest mode of vibration of some systems, particularly marine installations, can
be approximated with a two-mass system (Fig. 37.10); an excitation is applied at one
end and damping at the other. The natural frequency was given by Eq. (37.5).

3
�
8

1
�
2

λ2

�
4

3
�
4

1
�
2

λ
�
4

W
�
g

37.12 CHAPTER THIRTY-SEVEN



The shaft torque is M12 = k(θ1 − θ2). The amplitude of M12 at resonance is

|M12| = k|θ1 − θ2| = Me ��1 + (37.14)

Since with usual damping the second
term under the radical is large compared
with unity, Eq. (37.14) reduces to

|M12| � ��(I1 + I2) (37.15)

The torsional damping constant c of a
marine propeller is a matter of some
uncertainty. However, considerations of
oscillating airfoil theory indicate the fol-
lowing damping value.

c = in.-lb/rad/sec (37.16)

where Ω = angular speed of shaft in radians per second.
Equation (37.15) is applicable only when I1/I2 > 1. If used outside this range with

other types of damping neglected, fictitiously large amplitudes will be obtained.

ENERGY BALANCE METHOD

Both rational and empirical formulas for the resonance amplitudes of systems with
linear or nonlinear dampers can be based on the energy balance at resonance. It is
assumed that the system vibrates in a normal mode and that the displacement is in a
90° phase relationship to the exciting and damping torques. The energy input by the
exciting torques is then equal to the energy output by the damping torques. Unless
the damping is extremely large, this assumption gives a very close approximation to
the amplitude at resonance.

Figure 37.11 shows a curve of relative amplitude in the first mode of vibration.
Assume that a cylinder acts at A. Let the actual amplitude at A be θa and the ampli-
tude relative to that of the no. 1 cylinder be β.The β values are taken from the mode

2.3Mmean�
Ω

I2k�
I1

I2�
I1

Me�
c

kI2(I1 + I2)��
I1c2
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FIGURE 37.10 Schematic diagram of a shaft
with two rotors, showing positions of excitation
and damping.

FIGURE 37.11 Diagram of actual amplitude θ and relative amplitude β as a
function of position along shaft. Excitation is at A, and B is the position where
damping is applied. The no. 1 cylinder is at the free end of the crankshaft.



shape normalized to cylinder no. 1. At a point such as B, where damping may be
applied, let the actual amplitude be θd and the amplitude relative to the no. 1 cylin-
der be βd.

The energy input to the system from the cylinder acting at A is

πMeθa in.-lb/cycle

and the energy output to the damper is

πcωθd
2 in.-lb/cycle

where c is the damping constant action of the damper at B. Equating input to 
output,

Meθa = cωθd
2 (37.17)

Let θ′ be the amplitude at the no. 1 cylinder produced by the cylinder acting at A.
Then θa /θ′ = β and θd /θ′ = βd. Substituting in Eq. (37.17) and summing all the cylin-
ders and dampers applied at a variety of points, the total amplitude at the no. 1 cylin-
der is

θ = Σθ′ = (37.18)

where Σβ is taken over the cylinders and Σcβd
2 is taken over the points at which

damping is applied. This formula can be applied directly when the magnitude and
points of application of the damping torques are known.

Good results have been obtained using the Lewis formula5

Mm = �MeΣβ (37.19)

The maximum torque at resonance in any part of the system is Mm; the exciting
torque per cylinder is Me. R is a constant from Table 37.3. The vector sum over the
cylinders of the relative amplitudes as taken from the mode shape for a natural fre-
quency is Σβ. It is determined as follows.

For a four-cycle engine construct a phase diagram, Table 37.4, of the firing
sequence in which 720° corresponds to a complete cycle of a single cylinder, or two
revolutions. The phase relationship for a critical of order number q is obtained by
multiplying the angles in this diagram by 2q, with the no. 1 crank held fixed. The β
values assigned to each direction then are obtained from the values corresponding
to each cylinder in the mode shape β. Then Σβ is the vector sum. The summation
extends only to those rotors on which exciting torques act.

MeΣβ
�
ωΣcβd

2
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TABLE 37.3 Empirical Factors 
for Engine Amplitude Calculations

Bore Stroke �

20 in. × 24 in. or larger 50–60
8 in. × 10 in. 40–50
4 in. × 6 in. or smaller 35



In a two-cycle engine the β phase relations are determined by multiplying the
crank diagram by q, holding the no. 1 cylinder fixed.

Table 37.4 shows the Σβ phase diagrams and Σβ values for the one-noded mode
with a firing sequence 1, 6, 2, 5, 8, 3, 7, 4. The firing sequence is drawn first; then the
angles of this diagram are multiplied by 2, 3, 4, etc., in succeeding diagrams.After mul-
tiplication by 8 for the fourth order, the diagrams repeat. Diagrams which are equidis-
tant in order number from the 2, 6, 10, etc., orders are mirror images of each other and
have the same Σβ.The numerical values of Σβ in Table 37.4 have been obtained by cal-
culation, summing the vertical and horizontal components.

The empirical factor � is determined by the measurement of amplitudes in run-
ning engines (Table 37.3).

The exciting torque per cylinder, Me in Eq. (37.18) is composed of the sum of the
torques produced by gas pressure, inertia force, gravity force, and friction force. The
gravity and friction torques are of negligible importance; and the inertia torque is of
importance only for first-, second-, and third-order harmonic components.

TORSIONAL VIBRATION IN RECIPROCATING AND ROTATING MACHINES 37.15

TABLE 37.4 Phase Diagrams and Deflections, β, for a Calculated Torsional Mode



APPLICATION OF MODAL ANALYSIS TO ROTOR SYSTEMS

Classical modal analysis of vibrating systems6 can be used to obtain the forced
response of multistation rotor systems in torsional motion. The natural frequen-
cies and mode shapes of the system are found using the transfer matrix or finite
element methods. The response of the rotor to periodic phenomena (not necessar-
ily a harmonic or shaft frequency) is determined as a linear weighted combination
of the mode shapes of the system. Heretofore with this technique, damping has
been entered in modal form; the damping forces are a function of the various
modal velocities. The formation of equivalent viscous damping constants that are
some percentage of critical damping is required. The critical damping factor is
formed from the system modal inertia.7

The modal analysis technique can be used for a torsional distributed mass model of
engine systems using modal damping; nonsynchronous speed excitations are allowed.
The shaft sections of the modeled rotor have distributed mass properties and lumped
end masses (including rotary inertia). A transfer matrix or finite element analysis is
performed to obtain a finite number of natural frequencies. The number required
depends on the range of phased forcing frequencies used in the problem. A function
consisting of a weighted average of the mode shapes is formed and substituted into

θ(x, t) = �
N

n = 1
an(x)fn(t) (37.20)

where θ = torsional response
an = normal modes
fn = periodic time-varying weighting factors

The function fn(t) is determined from the ordinary differential equations of motion
and is a function of the phased forcing functions, rotor speed, modal damping con-
stants, and mode shapes of the system.

DIRECT INTEGRATION

Direct integration of equations of motion of a system utilize first- or second-order
differential equations.The method is fundamental for linear and nonlinear response
problems.7 Any digitally describable vibration or shock excitation can be carried out
with this method.

Direct integration can be used on nonlinear models and arbitrary excitation, so it
is one of the most general techniques available for response calculation. However,
large computer storage is required, and large computer costs are usually incurred
because small time- or space-step sizes are needed to maintain numerical stability.
An adjustable step integration routine such as predictor-corrector helps to alleviate
this problem. Such a numerical integration must be started with another routine
such as Runge-Kutta.

Direct integration is particularly useful when nonlinear components such as elas-
tomeric couplings are involved or when the excitation force varies in frequency and
magnitude. Direct integration is used for analysis of synchronous motor start-ups in
which the magnitude of the torque varies with rotor speed and the frequency is 2
times the slip frequency—starting at twice the line frequency and ending at zero
when the rotor is locked on synchronous speed. Examples of this type of analysis are
given in Ref. 7.
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PERMISSIBLE AMPLITUDES

Failure caused by torsional vibration invariably initiates in fatigue cracks that start at
points of stress concentration—e.g., at the ends of keyway slots, at fillets where there
is a change of shaft size, and particularly at oil holes in a crankshaft. Failures can also
start at corrosion pits, such as occur in marine shafting.At the shaft oil holes the cracks
begin on lines at 45° to the shaft axis and grow in a spiral pattern until failure occurs.
Theoretically the stress at the edges of the oil holes is 4 times the mean shear stress in
the shaft, and failure may be expected if this concentrated stress exceeds the fatigue
limit of the material. The problem of estimating the stress required to cause failure is
further complicated by the presence of the steady stress from the mean driving torque
and the variable bending stresses.

In practice the severity of a critical speed is judged by the maximum nominal tor-
sional stress

τ = (37.21)

where Mm is the torque amplitude from torsional vibration and d is the crankpin
diameter. This calculated nominal stress is modified to include the effects of
increased stress and is compared to the fatigue strength of the material.

U.S. MILITARY STANDARD

A military standard8 issued by the U.S. Navy Department states that the limit of
acceptable nominal torsional stress within the operating range is

τ = for steel

τ = for cast iron

If the full-scale shaft has been given a fatigue test, then

τ = for either material

Such tests are rarely, if ever, possible.
For critical speeds below the operating range which are passed through in start-

ing and stopping, the nominal torsional stress shall not exceed 13⁄4 times the above
values.

Crankshaft steels which have ultimate tensile strengths between 75,000 and
115,000 lb/in.2 usually have torsional stress limits of 3000 to 4600 lb/in.2.

For gear drives the vibratory torque across the gears, at any operating speed, shall
not be greater than 75 percent of the driving torque at the same speed or 25 percent
of full-load torque, whichever is smaller.

AMERICAN PETROLEUM INSTITUTE

Sources of torsional excitation considered by American Petroleum Institute9 (API)
include but are not limited to the following: gear problems such as unbalance, pitch

torsional fatigue limit
���

2

torsional fatigue limit
���

6

ultimate tensile strength
���
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line runout, and eccentricity; start-up conditions resulting from inertial impedances;
and torsional transients from synchronous and induction electric motors.

Torsional natural frequencies of the machine train shall be at least 10 percent
above or below any possible excitation frequency within the specified operating
speed range. Torsional critical speeds at integer multiples of operating speeds (e.g.,
pump vane pass frequencies) should be avoided or should be shown to have no
adverse effect where excitation frequencies exist.Torsional excitations that are non-
synchronous to operating speeds are to be considered. Identification of torsional
excitations is the mutual responsibility of the purchaser and the vendor.

When torsional resonances are calculated to fall within the ±10 percent margin
and the purchaser and vendor have agreed that all efforts to remove the natural fre-
quency from the limiting frequency range have been exhausted, a stress analysis
shall be performed to demonstrate the lack of adverse effect on any portion of the
machine system.

In the case of synchronous motor driven units, the vendor is required to perform
a transient torsional vibration analysis with the acceptance criteria mutually agreed
upon by the purchaser and the vendor.

TORSIONAL MEASUREMENT

Torsional vibration is more difficult to measure than lateral vibration because the
shaft is rotating. Procedures for signal analysis are similar to those used for lateral
vibration.Torsional response—both strains and motions—can be measured at inter-
mediate points in a system. But sensors cannot be placed at a nodal point; for this
reason the transfer matrix method is valuable for calculating mode shapes prior to
sensor location selection.

SENSORS

Strain gauges, described in Chap. 12, are available in a variety of sizes and sensitivities
and can be placed almost anywhere on a shaft. They can be calibrated to indicate
instantaneous torque by using static torque loads on drive shafts. If calibration is not
possible, stresses and torques can be calculated from strength of materials theory.
Strain gauges are usually mounted at 45° angles so that shaft bending does not influ-
ence torque measurements. The signal must be processed by a bridge-amplifier unit
that can be arranged to compensate for temperature. Because strain gauge signals are
difficult to take from a rotating shaft, such techniques are not common diagnostic tools.

Slip rings can be used to obtain a vibration signal from a shaft. Wireless teleme-
try is also available. A small transmitter mounted on the rotating shaft at a conven-
ient location broadcasts a signal to a nearby receiver. Commercial torque
transducers are available for torsional measurement. However, they must be
inserted in the drive line and thus may change the dynamic characteristics of the sys-
tem. If the natural frequency of the system is changed, the vibration response will
not accurately reflect the properties of the system.

The velocity of torsional vibration is measured using a toothed wheel and a fixed
sensor.10 The signal generated by the teeth of the wheel passing the fixed sensor has
a frequency equal to the number of teeth multiplied by shaft speed. If the shaft is
undergoing torsional vibration, the carrier frequency will exhibit frequency modula-
tion (change in frequency) because the time required for each tooth to pass the fixed
pickup varies.
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DATA ACQUISITION

The frequency change (velocity) is converted to a voltage change by a demodulator
and integrated to obtain angular displacement. Angular displacement can be mea-
sured at the end of a shaft with encoders or at intermediate points with a gear-
magnetic pickup or proximity probe arrangement.The frequency of the carrier signal
(e.g., number of teeth on a gear × rpm) must be at least 4 times the highest frequency
to be measured. In most cases, the raw torsional signal is tape recorded prior to pro-
cessing and analysis. Because the output of the magnetic pickup is speed dependent
and the gap between the magnetic pickup and the toothed wheel is less than 0.025 in.
the proximity probe is preferred—especially in synchronous motor startups.

TORSIONAL ANALYSIS

A torsional signal must be analyzed for frequency components using a spectrum
analyzer, described in Chap. 14. Figure 37.12 shows a torsional response spectrum
for a variable-frequency motor-driven pump. The pump ran at 408 rpm. The tor-
sional vibration response excited by the variable frequency motor is 0.23° at a fre-
quency of 38 Hz.
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FIGURE 37.12 Torsional response of a variable-frequency motor-driven pump at
408 rpm. There are significant peaks at 6.8 and 38.0 Hz.

MEASURES OF CONTROL

The various methods which are available for avoiding a critical speed or reducing
the amplitude of vibration at the critical speed may be classified as:

1. Shifting the values of critical speeds by changes in mass and elasticity
2. Vector cancellation methods



3. Change in mass distribution to utilize the inherent damping in the system
4. Addition of dampers of various types

SHIFTING OF CRITICAL SPEEDS

If the stiffness of all the shafting to a system is increased in the ratio a, then all the
frequencies will increase in the square root of the ratio a, provided that there is no
corresponding increase in the inertia. It is rarely possible to increase the crankshaft
diameters on modern engines; in order to reduce bearing pressures, bearing diame-
ters usually are made as large as practical. If bearing diameters are increased, the
increase in the critical speed will be much smaller than indicated by the a ratio
because a considerable increase in the inertia will accompany the increase in diam-
eter. Changes in the stiffness of a system made near a nodal point will have maxi-
mum effect. Changes in inertia near an antinode will have maximum effect, while
those near a node will have little effect.

By the use of elastic couplings it may be possible to place certain critical speeds
below the operating speed where they are passed through only in starting and stop-
ping; this leaves a clear range above the critical speed. This procedure must be used
with caution because some critical speeds, for example the fourth order in an eight-
cylinder, four-cycle engine, are so violent that it may be dangerous to pass through
them. If the acceleration through the critical speed is sufficiently high, some reduc-
tion in amplitude may be attained, but with a practical rate the reduction may not be
large. The rate of deceleration when stopping is equally important. In some cases
mechanical clutches disconnect the driven machinery from the engine until the
engine has attained a speed above dangerous critical speeds. Elastic couplings may
take many forms including helical springs arranged tangentially, flat leaf springs
arranged longitudinally or radially, various arrangements using rubber, or small-
diameter shaft sections of high-tensile steel.1

VECTOR CANCELLATION METHODS

Choice of Crank Arrangement and Firing Order. The amplitude at certain
minor critical speeds sometimes can be reduced by a suitable choice of crank
arrangement and firing order (i.e., firing sequence).These fix the value of the vector
sum Σβ in Eq (37.19), Mm = �MeΣβ. But considerations of balance, bearing pres-
sures, and internal bending moments restrict this freedom of choice. Also, an
arrangement which decreases the amplitude at one order of critical speed invariably
increases the amplitude at others. In four-cycle engines with an even number of
cylinders, the amplitude at the half-order critical speeds is fixed by the firing order
because this determines the Σβ value.

V-Type Engines. In V-type engines, it may be possible to choose an angle of the V
which will cancel certain criticals. Letting φ be the V angle between cylinder banks,
and q the order number of the critical, the general formula is

qφ = 180°, 540°, 1080°, etc. (37.22)

For example, in an eight-cylinder engine the eighth order is canceled at angles of
221⁄2°, 671⁄2°, 1121⁄2°, etc.
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Cancellation by Shift of the Node. If an engine can be arranged with approxi-
mately equal flywheel (or other rotors) at each end so that the node of a particular
mode is at the center of the engine, Σβ will cancel for the major orders of that mode.
This procedure must be used with caution because the double flywheel arrangement
may reduce the natural frequency in such a manner that low-order minor criticals of
large amplitudes take the place of the canceled major criticals.

Reduction by Use of Propeller Damping in Marine Installations. From Eq.
(37.15) it is evident that the torque amplitude in the shaft can be reduced below any
desired level by making the flywheel moment of inertia I1 of sufficient magnitude.
The ratio of the propeller amplitude to the engine amplitude increases as the fly-
wheel becomes larger; thus the effectiveness of the propeller as a damper is
increased.

DAMPERS

Many arrangements of dampers can be employed (see Chap. 6). In each type there
is a loose flywheel or inertia member which is coupled to the shaft by:

1. Coulomb friction (Lanchester damper)
2. Viscous fluid friction
3. Coulomb or viscous friction plus springs
4. Centrifugal force, equivalent to a spring having a constant proportional to the

square of the speed (pendulum damper) (see Chap. 6)

Each of these types acts by generating torques in opposition to the exciting torques.
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CHAPTER 38
THEORY OF SHOCK AND
VIBRATION ISOLATION

Michael A. Talley

INTRODUCTION

Shock and vibration isolation reduces the excitation transmitted to systems requir-
ing protection. An example is the insertion of isolators between equipment and
foundations supporting the equipment.The isolators act to reduce effects of support
motion on the equipment and to reduce effects of force transmitted by the equip-
ment to the supporting structure. Isolators or isolation systems discussed in this
chapter are idealized into combinations of linear resilient elements and dampers.The
resilient elements act by deflecting and storing energy at resonant frequencies of the
isolation system, thereby decreasing force levels transmitted at higher frequencies.
The dampers act by dissipating energy to reduce the amplification of forces that
occur at resonance.

ISOLATION AREAS

Performance of isolation systems may be described in terms of maximum responses
to inputs or as time history responses. Maximum responses may be presented in
terms of shock response spectra (SRS; see Chap. 20), transmissibility, and other
motion response parameters. Time histories, usually generated by computer simula-
tions1 of the equations of motion, or by analytical solutions, are used to assess the
transient character of responses to shock. Figure 38.1 shows examples of SRS and
vibration transmissibility, with shaded isolation areas representing reduced response
levels.2 The ordinate of each represents the ratio of the maximum acceleration of the
equipment being isolated to that of the excitation (e.g., if the isolator was rigid).The
abscissa τ/T of the SRS (Fig. 38.1A) represents the ratio of the excitation pulse dura-
tion τ to the natural period T of the isolator (or product of the excitation pulse dura-
tion and natural frequency of the isolator).The abscissa of the transmissibility curve
(Fig. 38.1B) is the ratio of excitation frequency to that of the isolator.As a result, the
isolation areas where response levels are decreased are represented at different
ends of the spectra, even though the isolator may have the same natural frequency
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FIGURE 38.1 Examples of shock response spectra and vibration transmissibility,
with shaded isolation areas representing reduced response levels. The ordinate of each
is the ratio of the maximum acceleration of the isolated equipment to that of the exci-
tation. The abscissa of (A) is the product of the excitation pulse duration and natural
frequency of the isolator. The abscissa of (B) is the ratio of excitation frequency to that
of the isolator. As a result, the isolation areas where response levels are decreased are
represented at different ends of the spectra, even though the isolator may have the
same natural frequency for shock and vibration applications.



for shock and vibration applications. Transmissibility may also be used to describe
shock isolation performance when isolated equipment has a flexible component and
when equipment is isolated on a flexible foundation.

CLASSIFICATION OF ISOLATION PROBLEMS

Two major classes of isolation will be discussed in this chapter:

● Class A: isolation of support motion
● Class B: isolation of force originating at equipment

The objective of Class A is to isolate components of equipment from shock and
vibration inputs originating from the support or foundation. Examples include such
items as the draft gear on a railroad car, the shock strut of aircraft landing gear, the
mounts on airborne electronic equipment, shock isolation mounts on equipment on
battleships, and the corrugated paper used to package lightbulbs. The objective of
Class B is to isolate the supporting foundation from input forces originating at
equipment. Examples include the recoil cylinders on gun mounts and the isolators
on drop hammers, looms, and reciprocating presses.

ISOLATION ANALYSIS METHODS

Transient, steady-state, and random responses may occur in isolated systems, depend-
ing on the source of excitation. In this chapter, shock responses of isolated systems are
discussed in terms of transient analysis methods, and vibration isolation is discussed in
terms of steady-state and random vibration analysis methods. Although there are
some similarities in the presentation of isolator performance data (e.g., transmissibil-
ity), the analytical methods differ.The first part of this chapter focuses on discussion of
shock isolation. Discussion of vibration isolation theory is presented in later sections.

IDEALIZATION OF THE SYSTEM FOR SHOCK

The location of shock isolators on equipment depends on the available interfaces
for the isolators both on the equipment and in the environment where the equip-
ment is installed. In general, isolators are not at optimum locations, resulting in
nonsymmetry and coupled modes3 not well adapted to analysis by simple means.
Also, isolator forces F(δ̇,δ) may be represented as having nonlinear resilient ele-
ments and dampers, hysteresis,4 strain-rate sensitivity, nonorthogonal principal axes,
output forces that vary with multiaxis deflections [e.g., F(δ̇x,δ̇y,δ̇z,δx,δy,δz)], and many
other factors that may affect their isolation performance. To simplify the discussion
of shock isolators, linear hypothetical one- (1-DOF) and two- (2-DOF) degree-of-
freedom systems are analyzed.

EQUATION OF MOTION FOR 1-DOF CLASS A

The simplest approach to problems of Class A is through a study of single-degree-of
freedom (1-DOF) systems. Consider the system in Fig. 38.2A. The basic elements are
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a mass and a spring-dashpot unit attached to the mass at one end. The block may be
taken to represent the equipment (assumed to be a rigid body), and the spring-
dashpot unit to represent the shock isolator. The displacement of the support is u.
The equation of motion is

mδ̈ + F(δ̇,δ) = −mü (38.1)

where m = mass of block, lb-sec2/in. (kg)
δ = deflection of spring (δ = x − u), in. (m)

F(δ̇,δ) = force exerted on mass (positive when tensile), lb (N)
u = absolute displacement of left-hand end of spring-dashpot unit, in. (m)

In the typical shock isolation problem, the system just described is initially at rest
(u̇ = δ̇ = 0) in an equilibrium position (u = δ = 0). An external shock causes the sup-
port to move. If the corresponding movement of the left end of the shock isolator is
described in terms of the support acceleration ü, then Eq. (38.1) may be solved for
the resulting extreme values of δ and F(δ̇,δ). These values may be compared with
the permissible deflection and force transmission limits of the shock isolator. It is
also necessary to determine whether the internal stresses developed in the equip-
ment are excessive. If the equipment is sufficiently rigid so that all parts have sub-
stantially equal accelerations, then the internal stresses are proportional to ẍ, where
−mẍ = F(δ̇,δ).

38.4 CHAPTER THIRTY-EIGHT

FIGURE 38.2 Idealized systems used in the discussion of shock isolation. Single-degree-of-freedom
Class A isolation is shown in (A), and Class B isolation is shown in (B). A general two-degree-of-
freedom system is shown in (C).



EQUATION OF MOTION FOR 1-DOF CLASS B

Consider the system in Fig. 38.2B as representing equipment (mass m) attached to its
support by the shock isolator (spring-dashpot unit).The left end of the spring-dashpot
unit is fixed to a supporting structure, and there is a force F applied externally to the
mass. The force F may be a real external force or it may be an inertia force generated
by moving parts of the equipment.The equation of motion may be written as

mδ̈ + F(δ̇,δ) = F (38.2)

where F is the external force applied to the mass in pounds and the relative dis-
placement δ of the ends of the spring-dashpot unit is equal to the absolute dis-
placement x of the mass. Assuming the system to be initially in equilibrium (δ̇ = 0,
δ = 0), Eq. (38.2) is solved for extreme values of δ and F(δ̇,δ), since F is a known
function of time. These are to be compared with the displacement and force limi-
tations of the shock isolator. Often, the supporting structure is sufficiently rigid
that the maximum force in the isolator may be considered as a force applied stati-
cally to the support. Then the foregoing analysis is adequate for determining the
stress in the support.

The similarity of shock isolation principles in Class A and Class B is indicated by
the similar form of the 1-DOF Eqs. (38.1) and (38.2).The right-hand side (−mü or F)
is given as a function of time, and the extreme values of δ and F(δ̇,δ) are desired.

SPECIFYING ISOLATOR REQUIREMENTS

When the spring-dashpot units are nonlinear, tests to characterize5 the nonlinear iso-
lators are typically conducted and the resulting system responses using the nonlin-
ear models are computed numerically. Parameters specifying the isolator model may
take the form of lookup tables, graphs, or analytical expressions with parameters that
specify the curves of the resilient elements and damping along each principal axis of
the isolator. For purposes of discussion in this chapter, the isolators are considered
linear, with each spring-dashpot unit having the following force characteristic:

F(δ̇,δ) = cδ̇ + kδ (38.3)

where c = damping coefficient, lb-sec/in. (N-sec/m), and k = spring stiffness, lb/in.
(N/m). Even with this simplification, the number of parameters (m1,c1,k1,m2,c2,k2) for
a 2-DOF system is so great that it is necessary to confine the analysis to a particular
system. If the damping may be neglected [let c = 0 in Eq. (38.3)], then it is feasible to
obtain equations in a form suitable for routine use.

The design requirements for the isolator usually include as a specification one or
more of the following quantities:

1. Maximum allowable deflection δa

2. Maximum allowable force transmitted to support Fa

3. Maximum expected support velocity change u̇a

4. Maximum allowable absolute acceleration ẍa

The specifications may be expressed mathematically as follows:

δm ≤ δa Fm ≤ Fa u̇m ≥ u̇a ẍm ≤ ẍa (38.4)
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RESPONSE OF A 1-DOF SYSTEM TO A 

VELOCITY STEP

PHYSICAL BASIS FOR VELOCITY STEP

The idealization of a shock motion as a
simple change in velocity (velocity step)
may form an adequate basis for design-
ing a shock isolator and for evaluating
its effectiveness. Consider the two types
of acceleration ü versus time t curves
illustrated in Fig. 38.3A. The solid line
represents a rectangular pulse of accel-
eration, and the dashed line represents 
a half-sine pulse of acceleration. Each
pulse has a duration τ. In Fig. 38.3B, the
corresponding velocity-time curves are
shown. Each of these curves is defined
completely by specifying the type of
acceleration pulse (rectangular or half-
sine), the duration τ, and the velocity
change u̇m. The curves of Fig. 38.3B are
repeated in Fig. 38.3C, with the time
scale shrunk to one-tenth. If τ is suffi-
ciently short, the only significant remain-
ing characteristic of the velocity step is
the velocity change u̇m. The idealized
velocity step, then, is taken to be a dis-
continuous change of u̇ from zero to u̇m.
A shock isolation system characteristi-
cally has a low natural frequency (long
period), and this idealization leads to
good results even when the pulse dura-
tion τ is about 1⁄4 the natural period of the
isolation system.

STEP RESPONSE OF AN UNDAMPED ISOLATOR

If damping is neglected [c = 0 in Eq. (38.3)], expressions relating the extreme value
of isolator deflection δ = δm may be obtained from

�δm

0
F(δ)dδ = 1/2 mu̇2 (38.5)

The right side of Eq. (38.5) represents the initial kinetic energy of the equipment rel-
ative to the support, and the integral on the left side represents the work done on the
isolator. If there is no damping, the latter quantity is equal to the elastic potential
energy stored in the isolator.

For the special case of a rigid body mounted on an undamped isolator, Eq. (38.5)
suffices to determine all important results. In particular, the quantities of engineer-
ing significance are:
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FIGURE 38.3 Acceleration-time curves (A)
and velocity-time curves (B) and (C) for rect-
angular acceleration pulse (solid curves) and
half-sine acceleration pulse (dashed curves).



1. The maximum deflection of the isolator δm

2. The maximum isolator force Fm = F(δm) = mẍm

3. The corresponding velocity change u̇m

The force-deflection characteristic of an undamped linear spring is

F(δ) = kδ (38.6)

where k = spring stiffness, lb/in. Using the notation

ωn = �� rad/sec (38.7)

the maximum acceleration is

ẍm = ω2
nδm (38.8)

From Eqs. (38.5) and (38.7), the relation between velocity change u̇m and maximum
deflection δm is

u̇m = ωnδm (38.9)

Combining Eqs. (38.9) and (38.8),

ẍm = ωnu̇m (38.10)

STEP RESPONSE OF A VISCOUS DAMPED ISOLATOR

The addition of viscous damping can almost double the energy absorption capabil-
ity of a linear shock isolator. Consider the system of Fig. 38.2A, with both spring and
dashpot linear as defined by Eq. (38.3). Substituting F(δ̇,δ) from Eq. (38.3) in Eq.
(38.1) gives the equation of motion

δ̈ + 2ζωnδ̇ + ω2
nδ = −ü (38.11)

where ζ = c/cc represents the fraction of critical damping and cc = 2mωn denotes crit-
ical damping [see Eq. (2.12)].

The initial conditions are δ̇ = −u̇m, δ = 0, when t = 0; for t > 0, ü = 0. The solution of
Eq. (38.11) is obtained by applying the Duhamel integral Eq. (20.33) to the right-
hand side of Eq. (38.11), which results in

δ(t) = e−ζωnt sin �ωn�1 − ζ2�t	 (38.12)

for ζ < 1. The acceleration is given by ẍ = δ̈ + ü; however, ü = 0 for t > 0. Therefore,
ẍ(t) = δ̈(t), which may be obtained from the second derivative of Eq. (38.12). The
times at which ẍ(t) and δ(t) achieve maximum values may be obtained by setting
derivatives of Eq. (38.12) equal to zero and solving for tm. The expressions for tm for
ẍm and δm are given by

tmδ = cos−1 ζ / ωn�1 − ζ2�

tmẍ =�tan−1� 	�ωn�1 − ζ2� for ζ <= 0.5 (38.13)

0 for ζ > 0.5

�1 − ζ2�(4ζ2 − 1)
��

ζ(4ζ2 − 3)

−u̇m
��
ωn�1 − ζ2�

k
�
m
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Substituting these into absolute-value expressions for δ(t) and ẍ(t) results in the fol-
lowing dimensionless ratios representing the quantities of engineering significance:

= e
−� cos−1ζ	

(38.14)

= �e
−� tan−1� 		 for ζ <= 0.5 (38.15)

2ζ for ζ > 0.5

The product of Eqs. (38.14) and (38.15) is given by

�
ẍm

u̇
δ
2
m

m
� =�e

− �(cos−1ζ) + tan−1� 		 for ζ <= 0.5 (38.16) 

2ζe
−� cos−1ζ	 for ζ > 0.5

Figure 38.4 shows the time history responses of an isolation system subjected to
a velocity step with several values of ζ, ranging from 0 to 1. The acceleration
response in the ordinate is normalized to the maximum undamped acceleration.
The abscissa is time with respect to the natural period of the isolation system. Note
that the presence of small damping reduces the maximum acceleration. As ζ is
increased beyond 0.25, the maximum acceleration increases again. For ζ > 0.50,
the maximum acceleration occurs at t = 0 and exceeds that for no damping. There-
fore, at t = 0, maximum acceleration is accounted for solely by the damping force 
cδ̇ = cu̇m.

In Fig. 38.5 the dimensionless parameters ẍm/u̇mωn from Eq. (38.15) and ẍmδm/u̇ 2
m

from Eq. (38.16) are plotted as functions of ζ.The parameter ẍmδm/u̇ 2
m is a measure of

the ability of the isolator to remove energy from the system. In the neighborhood ζ =
0.40, the parameter ẍmδm/u̇ 2

m attains a minimum value of 0.52.This parameter has the
value of 1.00 for an undamped linear system.

ζ
�
�1 − ζ2�

�1 − ζ2�(4ζ2 − 1)
��

ζ(4ζ2 − 3)

ζ
�
�1 − ζ2�

�1 − ζ2�(4ζ2 − 1)
��

ζ(4ζ2 − 3)
ζ

�
�1 − ζ2�ẍm

�
u̇mωn

ζ
�
�1 − ζ2�δmωn

�
u̇m
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FIGURE 38.4 Dimensionless time histories of transmitted acceleration ẍ
for an isolator having a linear spring and viscous damping.



Damping Considerations. True vis-
cous damping provides a convenient
model for discussing shock isolation,
although it is difficult to attain except
in electrical or magnetic form. Fluid
dampers which depend upon orifices or
other constricted passages to throttle
the flow are likely to produce damp-
ing forces that vary more nearly as 
the square of the velocity. Dry friction
tends to provide damping forces which
are virtually independent of velocity.
Elastomeric and structural materials
tend to exhibit hysteretic or frequency-
independent damping.

Additional information on damping
is provided in Chaps. 2, 35, and 36. The
section “Damped Multiple-Degree-of-
Freedom Systems” in Chap. 2 discusses
the difficulty in separating coupled nor-

mal modes when damping is present and provides a multiple-degree-of-freedom
(MDOF) solution methodology [see Eqs. (2.86–2.88)] for the free vibration prob-
lem. The use of uniform viscous, structural, and mass damping to solve MDOF sinu-
soidal vibration problems is also presented. Chapter 35 discusses various damping
materials and their properties. Chapter 36 provides methods of applying damping, a
comparison of damping measures, and discussion of their use in 1-DOF systems.

Example 38.1: Equipment weighing 40 lb (177.9 N) and sufficiently stiff to be con-
sidered rigid is to be protected from a shock consisting of a velocity step u̇a = 70 in./sec
(1.8 m/sec). The maximum allowable acceleration is ẍa = 21 g (g is the acceleration of
gravity), and available clearance limits the deflection to δa = 0.70 in. (0.0178 m). This
information may be used to find isolator characteristics (e.g., stiffness k and damp-
ing c) for an undamped linear spring and linear spring with viscous damping.

Undamped linear spring. Taking the maximum velocity u̇m equal to the expected
velocity u̇a and using Eqs. (38.9) and (38.4),

δm = ≤ δa or ωn ≥ = 100 rad/sec

From Eqs. (38.10) and (38.4), ẍm = ωnu̇m ≤ ẍa. Then

ωn ≤ = = 116 rad/sec

Selecting a value in the middle of the permissible range gives ωn = 108 rad/sec 
(17.2 Hz).The corresponding maximum isolator deflection is δm = 0.65 in. (0.0165 m),
and the maximum acceleration of the equipment is ẍm = 7560 in./sec2 (192 m/sec2)
= 19.6g. The isolator stiffness given by Eq. (38.7) is

k = mω2
n = × (108 rad/sec)2 = 1210 lb/in. = 211,903 N/m

The value of k in the preceding equation represents the sum of the stiffnesses of the
individual isolators.

40 lb
��
386 in./sec2

21 × 386 in./sec2

��
70 in./sec

ẍa
�
u̇m

70 in./sec
��

0.7 in.
u̇m
�
ωn
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2 of an isolator having
a linear spring and viscous damping.



Linear spring and viscous damping. The introduction of viscous damping in
combination with a linear spring [Eq. (38.3)] affords the possibility of large energy
dissipation capacity. From Fig. 38.5, the best performance is obtained at the fraction
of critical damping ζ = 0.40, where ẍmδm/u̇2

m = 0.52. If the maximum isolator deflection
is chosen as δm = 0.47 in. (0.0119 m), which is 67 percent of δa, then

ẍm = 0.52 = 5450 in./sec2 = 138.4 m/sec2 = 14.1g

This acceleration is 67 percent of ẍa. From Fig. 38.5 or Eq. (38.15):

= 0.86 at ζ = 0.40

Then

ωn = = 90 rad/sec [14.3 Hz]

The spring stiffness k from Eq. (38.7) is

k = (90)2 = 840 lb/in. = 147,107 N/m

The dashpot constant c is

c = 2ζmωn = 2 × 0.40 × × 90 = 7.46 lb-sec/in. = 1306 N-sec/m

RESPONSE OF 1-DOF SYSTEM TO

ACCELERATION PULSE

Use of the velocity step or impulse to determine system responses has its limitations.
A comparison of the velocity step (e.g., impulse) response with that of rectangular,
half-sine, versed sine, and triangle pulse shapes is shown in the response spectra of
Fig. 8.18B. The ordinate νM/ξpo of Fig. 8.18B is the ratio of the maximum response νM

of the 1-DOF isolation system to the excitation ξpo. In the case of acceleration
response, this would be ẍm/üm. The abscissa τ/T is in terms of the ratio of the pulse
duration τ to that of the natural period T of the isolation system.

The straight line in Fig. 8.18B represents the undamped response to a velocity
step and continues to increase with increasing values of τ/T, since the maximum
acceleration response from the velocity step input is ẍm = u̇mωn = 2πu̇m/T. Compari-
son of the impulse response to the responses of the acceleration pulses indicates that
pulse shape is of little concern when the pulse width is less than 1⁄4 of the natural
period of the responding system (e.g., τ/T < 1⁄4. In these cases, a velocity step or
impulse loading is adequate for estimating responses. When τ/T > 1⁄4, pulse shape
becomes a factor in the response.

For positive pulses (ü > 0) having a single maximum value and finite duration,
three basic characteristics of the pulse are of importance: maximum acceleration üm,
duration τ, and velocity change u̇c. A typical pulse is shown in Fig. 38.6. The relation
among acceleration, duration, and velocity change is

40
�
386

40
�
386

5450
��
0.86 × 70

ẍm
�
u̇mωn

u̇2
m

�
δm
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u̇c = �τ

0
üdt (38.17)

where the value of the integral corre-
sponds to the shaded area of the figure.
The equivalent rectangular pulse u̇c =
τrüm is characterized by (1) the same
maximum acceleration üm and (2) the
same velocity change u̇c or area under
the acceleration curve.

In Fig. 38.6, the horizontal and verti-
cal dashed lines outline the equivalent
rectangular pulse corresponding to the
shaded pulse. From condition (2) and
Eq. (38.17), the effective duration τr of
the equivalent rectangular pulse is

τr = �τ

0
üdt (38.18)

where τr may be interpreted physically as the average width of the shaded pulse.
Using Eq. (38.18) and Eqs. (8.32), (8.33), and (8.34), the following effective pulse
widths are τr = (2/π)τ for half-sine and τr = (1⁄2)τ for versed sine and triangle pulses. If
the equivalent rectangular pulse τr = u̇c/üm and approximate shape of the pulse are
known, then the aforementioned effective duration relations may be used to deter-
mine the pulse duration for the approximated shape. Once the pulse shape and dura-
tion are determined, then shock response spectra of the pulses may be used to
estimate responses.

SHOCK RESPONSE SPECTRUM

The curve of maximum response of a 1-DOF system as a function of the natural
period or frequency of the responding system is called a shock response spectrum or
response spectrum. This concept is discussed more fully in Chaps. 8 and 20. Consider
the response spectra shown in Fig. 8.16 with the pulse duration τ fixed in the abscissa
τ/T of each graph; then the curves show the effect of varying the natural period of
the spring-mass system. If the ordinate of Fig. 8.16 is represented as ẍm/üm in place of
ν/ξp, then the figure shows the maximum acceleration induced by a given accelera-
tion pulse upon spring-mass systems of various natural periods T. As a result, Fig.
8.16 may be used to determine the required natural period or frequency of the iso-
lation system if ẍm and üm are known, and the pulse shape is defined. Alternatively,
ẍm may be determined if the natural frequency of the isolator and üm are known.
Spectra of maximum isolator deflection δm also may be drawn and are useful in pre-
dicting the maximum isolator deflection when the natural frequency of the isolator
is known.

When the isolator includes damping, the SRS should be calculated and drawn
using the same damping values. Examples of damped SRS are illustrated in Fig. 20.7.
In selecting a shock isolator for a specified application, it may be necessary to use
both maximum acceleration and maximum deflection spectra. This is illustrated in
the following example.

Example 38.2. A piece of equipment weighing 230 lb (1023.1 N) is to be iso-
lated from the effects of a vertical shock motion defined by the spectra of accelera-

1
�
üm
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FIGURE 38.6 Typical acceleration pulse with
maximum acceleration üm and duration τ.



tion and deflection shown in Fig. 38.7. It
is required that the maximum induced
acceleration not exceed 7g (2700 in./sec2

or 68.58 m/sec2). Clearances available
limit the isolator deflection to 2.25 in.
(0.0572 m). The curves in Fig. 38.7A rep-
resent maximum response acceleration
ẍm as a function of the angular natural
frequency ωn of the equipment sup-
ported on the shock isolators. The iso-
lator springs are assumed linear and
viscously damped, and separate curves
are shown for values of the damping
ratio ζ = 0, 0.1, 0.2, and 0.3. The curves in
Fig. 38.7B represent the maximum isola-
tor deflection δm as a function of ωn for
the same values of ζ.

Consider first the requirement that
ẍm < 2700 in./sec2 (68.58 m/sec2). In Fig.
38.7A, the horizontal dashed line indi-
cates this limiting acceleration. If the
damping ratio ζ = 0.3, then the angular
natural frequency ωn may not exceed
38.5 rad/sec on the criterion of maxi-
mum acceleration. The dashed horizon-

tal line of Fig. 38.7B represents the deflection limit δm = 2.25 in. (0.0572 m). For ζ =
0.3, the minimum natural frequency is 30 rad/sec on the criterion of deflection. Con-
sidering both acceleration and deflection criteria, the angular natural frequency ωn

must lie between 30 rad/sec and 38.5 rad/sec. The spectra indicate that both criteria
may be just met with ζ = 0.2 if ωn is 35 rad/sec. Smaller values of damping do not per-
mit the satisfaction of both requirements. Conservatively, a suitable choice of param-
eters is ζ = 0.3, ωn = 35 rad/sec. This limits ẍm to 2500 in./sec2 (63.5 m/sec2) and δm to
2.0 in. (0.051 m). The spring stiffness k is

k = mω2
n = × (35 rad/sec)2 = 730 lb/in. = 127,843 N/m

If the equipment is to be supported by four like isolators, then the required stiffness
of each isolator is k/4 = 182.5 lb/in. (31,961 N/m).

SHOCK RESPONSE OF 2-DOF CLASS A SYSTEMS:

ISOLATION OF SUPPORT MOTION

IMPACT WITH REBOUND

Consider the system of Fig. 38.2C. The block of mass m1 represents the equipment,
and m2, with its associated spring-dashpot unit, represents a critical component of
the equipment. The left spring-dashpot unit represents the shock isolator. It is
assumed here that m1 >> m2 so that the motion of m1 is not sensibly affected by m2;

230 lb
��
386 in./sec2
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FIGURE 38.7 Shock response spectra: (A)
maximum acceleration and (B) maximum isola-
tor deflection for Example 38.2.



larger values of m2 are considered in a later section. Consider the entire system to be
moving to the left at uniform velocity when the left-hand end of the isolator strikes
a fixed support (not shown). The isolator will be compressed until the equipment is
brought to rest. Following this, the compressive force in the isolator will continue to
accelerate the equipment toward the right until the isolator loses contact with the
support and the rebound is complete. This type of shock is called impact with re-
bound. Practical examples include the shock experienced by a single railroad car
striking a bumper and that experienced by packaged equipment that rebounds when
the container holding the equipment is dropped upon a hard surface.

Figure 38.5 may be used to determine the maximum deflection of the isolator and
the maximum acceleration of equipment, and Eq. (38.18) may be used to find the
duration of the pulse when the shape is known or approximated. Once the pulse
shape and duration are determined, the shock response spectra for the light critical
component may be calculated or obtained from figures in Chaps. 8 and 20.

Example 38.3. Let the equipment of Example 38.1 weighing 40 lb (177.9 N)
have a flexible component weighing 0.2 lb (0.9 N). By vibration testing, this com-
ponent is found to have an angular natural frequency ωn = 260 rad/sec (41.4 Hz)
and to possess negligible damping. For the undamped linear spring of Example
38.1, it is desired to determine the maximum acceleration ẍ2m experienced by the
mass m2 of the component if the equipment, traveling at a velocity of 70 in./sec 
(1.8 m/sec), is arrested by the free end of the isolator striking a fixed support. It is
assumed that the component has a negligible effect on the motion of the equip-
ment because m2 << m1.

Estimate from figures and equations: linear spring example. From the results of
Example 38.1, it is known that ωn = 108 rad/sec (17.2 Hz) for the linear spring and
that the maximum acceleration of the equipment as found from Eq. (38.10) is

ẍ1m = 7560 in./sec2 = 192 m/sec2 = 19.6g

This acceleration occurs at the instant when the isolator deflection has the extreme
value δ1m = 0.65 in. (0.0165 m). [If the equipment (Fig. 38.2C) is moving toward the
left when the isolator contacts the support, the extreme value of δ1m is negative. It
suffices to deal here with absolute values.] Subsequently, the isolator spring contin-
ues to accelerate the equipment until the isolator force is zero and the rebound is
complete. Since there is no damping, the rebound velocity equals the striking veloc-
ity (with opposite sign). The velocity change ẋ1c is twice the striking velocity, and the
effective duration τr [Eq. (38.18)] of an equivalent rectangular pulse is

τr = = = 0.0185 sec

The shape of the pulse is assumed half-sine, since the system is linear and undamped.
Therefore, the duration of the actual half-sine pulse is

τ = τr = 0.0291 sec

Since the equipment is the “support” for the component, the response of the lat-
ter may be found from the half-sine maximax curve of Fig. 8.16B if the ordinate 
is read as ẍ2m/ẍ1m for ν/ξp, and the abscissa has the value of τ/T = τ × f = 0.0291 ×
41.4 = 1.2. From Fig. 8.16B, ẍ2m/ẍ1m = 1.65, so ẍ2m = 1.65  7560 = 12,474 in./sec2 =
316.8 m/sec2 = 32.3g.

π
�
2

2 × 70
�
7560

ẋ1c
�
ẍ1m

THEORY OF SHOCK AND VIBRATION ISOLATION 38.13



IMPACT WITHOUT REBOUND

When impact of the isolator occurs without rebound, it must be recognized that the
equipment-isolator system continues to oscillate until the initial kinetic energy is dis-
sipated. Consider the system of Fig. 38.2C; it consists of equipment m1, shock isolator
(left spring-dashpot unit), and flexible component (subsystem 2). The system is ini-
tially at rest. The left end of the shock isolator is attached to a support (not shown),
which is given a velocity step of magnitude u̇m at t = 0. The subsequent motion of the
support is u = u̇mt. The equations of motion for the 2-DOF Class A system are

δ̈1 + 2ζ1ωn1δ̇1 + ω2
n1δ1 = (2ζ2ωn2δ̇2 + ω2

n2δ2) − ü

δ̈2 + 2ζ2ωn2δ̇2 + ω2
n2δ2 = −δ̈1 − ü = −ẍ1

(38.19)

where the initial conditions are: δ̇1 = −u̇m , δ̇2 = 0, δ1 = δ2 = 0. Analytic solutions of
Eq. (38.19) to find the acceleration ẍ2 = ẍ1 + δ̈2 of the component, the maximum
force F1m transmitted by the isolator, and the maximum isolator deflection δ1m are
too laborious to be practical.

Two simplified analyses of this problem are presented, where (1) the influence of
damping is considered but the component mass m2 is assumed of negligible size rel-
ative to m1, and (2) damping is neglected but the effect of the mass m2 of the com-
ponent upon the motion of the system is considered.

Uncoupled 2-DOF Class A Analysis. Assume that m1 >> m2 so that the motion x1

of the equipment may be determined by neglecting the effect of the component.
Allowing the ratio m2/m1 to approach zero reduces Eq. (38.19) to

δ̈1 + 2ζ1ωn1δ̇1 + ω2
n1δ1 = −ü

δ̈2 + 2ζ2ωn2δ̇2 + ω2
n2δ2 = −ẍ1

(38.20)

Then the extreme value of the force F1m transmitted by the isolator and the extreme
deflection δ1m of the isolator that occur during the first quarter-cycle of the equip-
ment motion may be found from Fig. 38.5 in the section entitled “Step Response of
a Viscous Damped Isolator.” The subsequent motion of the equipment is an expo-
nentially decaying sinusoidal oscillation. Computer-generated results are shown in
Fig. 38.8.The ordinate ẍ2m/ẍ2mo in Fig. 38.8 represents the ratio of the maximum accel-
eration of the component to that which would be experienced with the isolator rigid
(absent); thus, it may properly be called shock transmissibility. If shock transmissi-
bility is less than unity, the isolator is beneficial (for the component considered).The
denominator ẍ2mo in the ordinate of Fig. 38.8 is calculated using Eq. (38.15), since a
rigid isolator would result in a step velocity input to the component. The abscissa of
Fig. 38.8 is the ratio of the undamped natural frequency ωn2 of the component to the
undamped natural frequency ωn1 of the equipment on the isolator spring. Curves are
given for several different values of the fraction of critical damping ζ1 for the isola-
tor. For all curves, the fraction of critical damping for the component is ζ2 = 0.01. For
ωn2/ωn1 < 2, large isolator damping (e.g., ζ1 > 0.1) significantly reduces the transmissi-
bility of the component. However, in the isolation area where ωn2/ωn1 > 2, large
damping may significantly increase the maximum acceleration of the component.

An isolator must have a natural frequency significantly less than that of the criti-
cal component in order to reduce the transmitted acceleration. If there are several
critical components having different natural frequencies ωn2, each must be consid-

m2
�
m1
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ered separately and the natural frequency of the isolator must be significantly lower
than the lowest natural frequency of a component.

Undamped 2-DOF Class A Analysis. This section includes an analysis of the
transient response of the 2-DOF system shown in Fig. 38.2C, neglecting the effects
of damping but assuming the equipment mass m1 and the component mass m2 to be
of the same order of magnitude. Setting ζ1 and ζ2 equal to zero reduces Eq. (38.19)
to

δ̈1 + ω2
n1δ1 = ω2

n2δ2 − ü

δ̈2 + ω2
n2δ2 = −δ̈1 − ü = −ẍ1

(38.21)

Equation (38.21) may be solved simultaneously for maximum values of the acceler-
ation ẍ2m of the component and maximum deflection δ1m of the isolator:

ẍ2m = (38.22)
u̇mωn2
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FIGURE 38.8 Shock transmissibility for a component of a viscously damped system with lin-
ear elasticity, where the effect of the component on the equipment motion is neglected (e.g.,
m2<<m1). The bobble in the transmissibility spectra for ωn2/ωn1 < 0.5 occurs as a result of the
modal interaction associated with the low mass of m2. This interaction is significantly reduced
when the mass of m2 is increased.



δ1m = (38.23)

where ẍ2m = maximum absolute acceleration of component mass, in./sec2 (m/sec2);
δ1m = maximum deflection of isolator spring, in. (m); ωn1 = angular natural frequency
of isolator (k1/m1)1/2, rad/sec; and ωn2 = angular natural frequency of component
(k2/m2)1/2, rad/sec. (ωn1 and ωn2 are fixed-base natural frequencies, not modal fre-
quencies associated with coupling between the subsystems.) Equation (38.22) is
shown graphically in Fig. 38.9. The dimensionless ordinate is the ratio of maximum
acceleration ẍ2m of the component to the maximum acceleration ẍ2mo = u̇mωn2, which
the component would experience with no isolator present.The expression for ẍ2mo is
obtained from Eq. (38.15), with ζ2 = 0.The abscissa is the ratio of component natural
frequency ωn2 to isolator natural frequency ωn1. Separate curves are given for mass
ratios m2/m1 = 0.01, 0.1, 0.3, and 1.0.

Figure 38.9 shows that the effect of the mass ratio m2/m1 upon the maximum com-
ponent acceleration ẍ2m is very great near resonance (ωn2/ωn1 � 1).As ωn2/ωn1 increases
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FIGURE 38.9 Shock transmissibility for component of system of Fig. 38.2C
under impact at velocity u̇m without rebound, where component and isolator
have undamped linear elasticity.



above resonance, the effect of finite component mass steadily decreases. A notable
observation from Figs. 38.8 and 38.9 is that isolation begins to occur when the support
structure and isolation system frequencies are an octave apart [e.g., ω2/ωn1 ≥ 2]. Fre-
quency ratios of ω2/ωn1 ≥ 3 are needed to achieve reductions in component accelera-
tion on the order of 50 percent or more for isolation systems having damping ζ1 < 0.25.
As a minimum, to avoid amplification of the component, the isolation system fre-
quency should be an octave lower than the component system frequency.

Equation (38.23) is shown graphically in Fig. 38.10.The ordinate is the ratio of the
maximum isolator deflection δ1m to the deflection δ1mo which would occur if compo-
nent stiffness k2 were infinite.The abscissa is the ratio of natural frequencies ωn2/ωn1,
and curves are given for values of m2/m1 = 0.1 and 1.0. The term δ1mo in the denomi-
nator of the ordinate parameter of Fig. 38.10 is obtained from Eq. (38.14) by consid-
ering the total equipment mass of m1 + m2 for the limiting case of rigid equipment (k2

infinite). The following expressions for natural frequency ωn and damping ratio ζ
should be substituted in Eq. (38.14) to ensure that the stiffness and damping associ-
ated with the isolator of system 1 stays the same:

k1 = (m1 + m2)ω2
n ⇒ ωn =

c1 = c = 2ζ1m1ω1 = 2ζ(m1 + m2)ωn ⇒ ζ =
ζ1

��
(1 + m2/m1)1/2

ωn1
��
(1 + m2/m1)1/2
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FIGURE 38.10 Dimensionless representation of maximum isolator deflec-
tion in system of Fig. 31.2C under impact at velocity u̇m without rebound,
where component and isolator have undamped linear elasticity.



Substituting these relations in Eq. (38.14) where ζ = 0 and solving for δ1mo results in

δ1mo = (1 + m2/m1)1/2

Figure 38.10 shows that, except for small values of ωn2/ωn1, the effect of finite com-
ponent mass on the maximum isolator deflection δ1m is slight. As ωn2/ωn1 increases,
the curves for all mass ratios asymptotically approach the ordinate 1.0. This is in
agreement with the result given by Eq. (38.23) as ωn2/ωn1 approaches infinity. Select-
ing isolation systems to have frequency ratios of ω2/ωn1 ≥ 3 ensures that a high per-
centage of the shock energy is used to displace the isolators in lieu of exciting the
components.

Example 38.4. Equipment weighing 152 lb (676.1 N) has a flexible compo-
nent weighing 3 lb (13.3 N). The angular natural frequency of the component is 
ωn2 = 130 rad/sec.The equipment is mounted on a shock isolator with a linear spring
k1 = 2400 lb/in. (420304 N/m) and having a fraction of critical damping ζ1 = 0.10.
Find the maximum isolator deflection δ1m and the maximum component acceleration
ẍ2m which result when the base experiences a velocity step u̇m = 55 in./sec (1.4 m/sec).

Consider first a solution assuming that m2 has a negligible effect on the equip-
ment motion:

m1 = = 0.393 lb-sec2/in. = 69 kg

ωn1 = �� = �� = 78.1 rad/sec (12.4 Hz)

Figure 38.5 or Eq. (38.15) gives ẍ1m/u̇mωn1 = 0.88, and Fig. 38.5 or Eq. (38.16) gives
ẍ1mδ1m/u̇2

m = 0.76 for ζ1 = 0.1. Then

δ1m = × = = 0.61 in. = 0.0155 m

In finding ẍ2m, it is assumed that damping of the component has the typical value 
ζ2 = 0.01. Using ωn2/ωn1 = 130/78.1 = 1.67, Fig. 38.8 gives a shock transmissibility of
ẍ2m/ẍ2mo = 1.15. The acceleration ẍ2m of the component is obtained by multiplying the
transmissibility value of 1.15 by the acceleration ẍ2mo [obtained from Eq. (38.15)]
which would have occurred if the isolator were rigid. The resulting acceleration of
the component is

ẍ2m = 1.15 × ẍ2mo = 1.15 × u̇mωn2e
−� tan−1� 		

ẍ2m = 1.15 × 55 × 130 × 0.9847 = 8096.7 in/sec2 = 205.7 m/sec2 = 21.0g

If component damping is neglected, then ẍ2m = 1.15  55  130 = 8223 in./sec2 = 208.9
m/sec2 = 21.3g.

A second solution, taking into consideration the mass m2 of the component, may
be obtained if the damping is neglected. From Eq. (38.23):

�1 − ζ2
2�(4ζ2

2 − 1)
��

ζ2(4ζ2
2 − 3)

ζ2
�
�1 − ζ2�2

0.76 × 55
��
0.88 × 78.1

u̇m
�
ωn1

0.76
�
0.88

2400
�
0.393

k1
�
m1

152 lb
��
386 in./sec2

u̇m
�
ωn1
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δ1m =

δ1m = = 0.71 in. = 0.0180 m

From Eq. (38.22):

ẍ2m =

ẍ2m = = 10,070 in/sec2 = 255.8 m/sec2 = 26.1g

Computer simulation using the actual parameters of this example case results in
a deflection of δ1m = 0.61 in. (0.0155 m) and a component acceleration of ẍ2m = 20.0g.
Since the component mass is significantly less than the equipment mass, the uncou-
pled analysis gives a very good approximation for the responses. Compared to the
computer simulation results, the undamped 2-DOF analysis results are ∼30 percent
higher for acceleration and ∼16 percent higher for deflection.The importance of this
difference depends on the fragility of the component.

ISOLATED EQUIPMENT ON A FLEXIBLE SUPPORT—

WITH VISCOUS DAMPING

This section includes response comparisons of isolated equipment where the sup-
port is flexible. Both the support and the isolator include damping. Consider the
support to be subsystem 1 of Fig. 38.2C and the isolator to be subsystem 2. The
equations of motion are given by Eq. (38.19). The system is initially in equilibrium;
at time t = 0, the left end of the support (subsystem 1 of Fig. 38.2C) is given a veloc-
ity step of magnitude u̇m. Initial conditions are δ̇1 = u̇m, δ̇2 = 0, δ1 = δ2 = 0. Computer
simulations using the equations of motion were run with the following parameters:
mass ratio m2/m1 = 0.2, support damping ζ1 = 0.01, and isolator damping at selected
values of ζ2 = 0.0, 0.1, 0.25, and 0.50.The shock transmissibility ratios of acceleration
ẍ2m/ẍ2mo and relative displacement δ2m/δ2mo of the equipment are shown in Figs. 38.11
and Fig. 38.12, respectively. The numerator of the ordinate in these figures is the
maximum response of the isolated equipment with a flexible support, and the
denominator is the maximum isolated equipment response with a rigid support.
The denominator term ẍ2mo in Fig. 38.11 may be obtained from Eq. (38.15), and the
denominator term δ2mo of Fig. 38.12 may be obtained from Eq. (38.14). The abscissa
is the ratio of the undamped natural frequency of the isolator to the undamped nat-
ural frequency of the support.
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The maximum responses for ẍ2m and δ2m may be obtained by entering Figs. 38.11
and 38.12 at the desired frequency ratio to find the corresponding ordinate ratio val-
ues.These values are then multiplied by ẍ2mo and δ2mo obtained from Eqs. (38.15) and
(38.14), respectively.

Example 38.5. Consider a 1300-lb (5782.7-N) isolated equipment item having
a natural frequency of 7 Hz and viscous damping of ζ2 = 0.25 mounted on a 6500-lb
(28,913.4-N) flexible support having a natural frequency of 14 Hz and damping 
ζ1 = 0.01, which is subjected to a 120-in./sec (3.05-m/sec) step velocity. Since the
mass ratio is 1300/6500 = 0.2 and the frequency ratio is 0.5, Figs. 38.11 and 38.12 and
Eqs. (38.15) and (38.14) can be used to determine ẍ2m and δ2m, respectively. At a
frequency ratio of 0.5, Fig. 38.11 indicates ẍ2m/ẍ2mo = 1.75 and Fig. 38.12 indicates
δ2m/δ2mo = 1.67. The resulting values for ẍ2m and δ2m are

ẍ2m = 1.75 × ẍ2mo = 1.75 × u̇mωn2e
−� tan−1� 		

ẍ2m = 1.75 × 120 × 43.98 × 0.8107 = 7487.5 in/sec2 = 190.2 m/sec2 = 19.4g

δ2m = 1.67 × δ2mo = 1.67 × e
−� cos−1ζ2	

δ1m = 1.67 × × 0.7115 = 3.25 in. = 0.0826 m

Figures 38.11 and 38.12 indicate that an increase in isolator damping generally
lowers acceleration and relative displacement transmissibility for frequency ratios

120
�
43.98

ζ2
�
�1 − ζ2�2

u̇m�
ωn2

�1 − ζ2
2�(4ζ2

2 − 1)
��

ζ2(4ζ2
2 − 3)
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FIGURE 38.11 Acceleration shock transmissibility comparisons of iso-
lated equipment where the support is flexible. The support is modeled to be
subsystem 1 of Fig. 38.2C and the isolator to be subsystem 2.The denomina-
tor of the ordinate ratio is the acceleration that would occur if the support is
rigid. Parameters in the figure are mass ratio m2/m1 = 0.2, support damping 
ζ1 = 0.01, and isolator damping at selected values of ζ2 = 0.0, 0.1, 0.25, and 0.50.



between 0.5 and 1.5. However, for frequency ratios less than 0.5, higher damping
tends to increase transmissibility. When isolator damping is greater than 0.4 and the
frequency ratio is greater than 1.5, acceleration transmissibility tends to be lower
than the zero-damped case while relative displacement transmissibility tends to be
higher.

A structure used to support isolated equipment generally has distributed mass
and elasticity; thus, the application of a velocity step or impulse tends to excite the
structure to vibrate not only in its fundamental mode but also in higher modes of
vibration. The 2-DOF system discussed in this section only simulates the fundamen-
tal modes of vibration associated with the support structure. In many applications,
such simulation is adequate because the displacements and strains are greater in the
fundamental mode than in higher modes. The vibration of members having distrib-
uted mass is discussed in Chap. 7, and the formulation of models suitable for shock
analysis of systems with multiple modes is discussed in Chap. 23.

SHOCK RESPONSE OF 1- AND 2-DOF 

CLASS B SYSTEMS

RESPONSE OF 1-DOF CLASS B SYSTEMS

Analogous Use of Impulse J. Consider the system of Fig. 38.2B with the spring-
dashpot forces represented by Eq. (38.3).The force F, applied externally to the equip-
ment, is taken to be a known function of time. Considering only force-time relations

THEORY OF SHOCK AND VIBRATION ISOLATION 38.21

FIGURE 38.12 Relative displacement shock transmissibility comparisons of
isolated equipment where the support is flexible.The support is modeled to be
subsystem 1 of Fig. 38.2C and the isolator to be subsystem 2.The denominator
of the ordinate ratio is the relative displacement that would occur if the sup-
port is rigid. Parameters in figure are mass ratio m2/m1 = 0.2, support damping
ζ1 = 0.01, and isolator damping at selected values of ζ2 = 0.0, 0.1, 0.25, and 0.50.



F(t) in the form of a single pulse, the analogous mathematical relations of Eqs. (38.1)
and (38.2) are used by defining the impulse J applied by the force F as

J = �τ

0
Fdt

where τ is the duration of the pulse. If the damping in the support is small, then
analogies of the step response of the undamped linear spring are applicable; other-
wise, the linear-spring viscous damping analogies apply.

Short-Duration Impulses. If τ is less than 1⁄4 the natural period of the isolation
system, then the results derived in the section entitled “Step Response of a Viscous
Damped Isolator” may be applied directly. An impulse J of negligible duration act-
ing on the mass m produces a velocity change u̇m given by

u̇m = (38.24)

The subsequent relative motion of the system is identical with that resulting from a
velocity step of magnitude u̇m.

The maximum deflection δm for the 1-DOF system when the impulse J is applied
directly to m may be determined by substituting Eq. (38.24) into Eq. (38.14) and
solving for δm. The force Fm applied to the support is obtained by multiplying the
stiffness k = mω2

n of the spring by the maximum deflection δm. The resulting
absolute-value expressions for δm and Fm are given as follows:

δm = e
−� cos−1ζ	 = e

−� cos−1ζ	

Fm = mω2
n  δm = Jωne

−� cos−1ζ	
(38.25)

Long-Duration Impulses. If the duration τ of the applied impulse exceeds about
one-third of the natural period of the equipment-support system, application of
velocity step results may be unduly conservative. Then the results developed in the
section entitled “Response of a 1-DOF System to Acceleration Pulse” are applica-
ble. The mathematical equivalence of Eqs. (38.1) and (38.2) is based on identifying 
−mü in the former, with F in the latter. Accordingly, if the shape of the force F ver-
sus time curve is similar to the shape of the curve of acceleration ü versus time, then
the response of a system to an acceleration pulse may be used by analogy to find the
response to a force pulse by making the following substitutions:

üm = �
F
m

m
� τr = �

F
J

m
�

where Fm is the maximum value of F, üm is the maximum value of ü, and τr is the
effective duration. If the mathematical equivalence is literally applied, Fm/m is anal-
ogous to −üm, not üm. Since acceleration pulse results are given in terms of extreme
absolute values, the sign is not important.
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RESPONSE OF 2-DOF CLASS B SYSTEMS

Idealized System. When a shock isolator is used to reduce the magnitude of the
force transmitted to the support foundation, the idealized system is as shown in Fig.
38.2C. Subsystem 2 represents the equipment (mass m2) mounted on the shock iso-
lator (right-hand spring-dashpot unit). Subsystem 1 is an idealized representation of
the support with effective mass m1 and with stiffness and damping represented by
the left spring-dashpot unit. The free end of the latter unit is taken to be fixed (u =
0) to the support foundation. If the system consists only of linear elements as defined
by Eq. (38.3), the equations of motion for the 2-DOF Class B system are

δ̈1 + 2ζ1ωn1δ̇1 + ω2
n1δ1 = (2ζ2ωn2δ̇2 + ω2

n2δ2) = � − ẍ2	
δ̈2 + 2ζ2ωn2δ̇2 + ω2

n2δ2 = −δ̈1 − where ẍ1 = δ̈1

It is assumed that the system is initially in equilibrium (δ̇1 = δ̇2 = 0; δ1 = δ2 = 0) and
that force F (positive in the +X direction) applies an impulse J to m2.Analysis is sim-
plified by treating the duration τ of impulse J as negligible. This assumption, always
conservative, usually is warranted if the natural frequency of the shock isolator is
small relative to the natural frequency of the support.

Effect of Class B Isolation. The effect of Class B isolation in a 2-DOF system
may be judged by comparing ratios of the responses of the support structure with
and without an isolation system present.When no isolation is present, the equipment
is considered rigidly attached to the supporting structure and the responses are
determined from a 1-DOF analysis. When an isolator is inserted between the equip-
ment and the support structure, a 2-DOF analysis is necessary. The 1-DOF analysis
for the condition of equipment rigidly attached to the support structure is presented
first to establish a baseline for comparison. The 2-DOF analysis showing the effect
of inserting the isolation system is presented afterward.

Equipment Rigidly Attached. Consider the system of Fig. 38.2C with the spring-
dashpot unit 2 assumed to be rigid. The mass m2 represents the equipment, and the
mass m1 represents, with spring and dashpot assembly (1), the support. Since the
equipment is rigidly attached, the system is equivalent to that shown in Fig. 38.2B,
where m = m1 + m2 and F1(δ̇1,δ1) = F(δ̇,δ). As a result, the equation of motion has the
same form as Eq. (38.2) and by analogy Eq. (38.25) may be used to obtain absolute-
value solutions for maximum deflection and maximum force. These solutions are
presented as follows, with the condition that m = m1 + m2:

δ1mo = e
−� cos−1ζ	

F1mo = m1ω2
1n  δ1mo = e

−� cos−1ζ	

where ζ = ζ1/(1 + m2/m1)1/2
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Uncoupled 2-DOF Class B Analysis. In many applications, the support motion 
x1 = δ1 is sufficiently small compared with the equipment motion x2. As a result, the
equipment acceleration ẍ2 is closely approximated by δ̈2 in lieu of letting ẍ2 = δ̈2 + ẍ1.
The validity of this approximation is based on m2 << m1. Using this approximation,
the analysis is resolved into two separate uncoupled parts, each dealing with a 1-DOF
system.

Setting ẍ1 = δ̈1 = 0, the equation of motion of the equipment mounted on the
shock isolator (subsystem 2 of Fig. 38.2C) becomes

δ̈2 + 2ζ2ωn2δ̇2 + ω2
n2δ2 = − �

m
F

2
� where F = 0 for t > 0 (38.26)

The initial conditions are δ2 = 0, δ̇2 = J/m2 = u̇m when t = 0, and F = 0 when t > 0.Apart
from the subscripts, Eqs. (38.11) and (38.26) are identical for t > 0. As a result, the
maximum equipment acceleration ẍ2m and the maximum isolator deflection δ2m may
be found from Fig. 38.5 or Eqs. (38.14), (38.15), and (38.16) by letting u̇m = J/m2.

The differential equation for the motion of the support in Fig. 38.2C for t > 0 is

δ̈1 + 2ζ1ωn1δ̇1 + ω2
n1δ1 = − ẍ2 (38.27)

The initial conditions are δ̇1 = 0, δ1 = 0.The solution of Eq. (38.27) is the same as that
of Eq. (38.20) because the equations differ only by the interchange of the numerical
subscripts and the presence of the factor m2/m1 on the right-hand side of Eq. (38.27).
Computer simulation results for the support force shock transmissibility of the
uncoupled system [e.g., Eqs. (38.26) and (38.27)] are shown in Fig. 38.13. The ordi-

m2
�
m1
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FIGURE 38.13 Support force shock transmissibility resulting from impulse J
loading on equipment. The ordinate shows the ratio of maximum force in sup-
port F1m with several values of isolator damping to the force F1mo with equip-
ment rigidly attached. The support damping is 0.01 for all cases.



nate is the ratio of the maximum force F1m in the support to the maximum force F1mo

that results if the isolator is rigid (see previous section, “Equipment Rigidly
Attached”). The abscissa in Fig. 38.13 is the ratio of the undamped support natural
frequency ωn1 to the undamped isolator natural frequency ωn2. Curves are drawn for
various values of the fraction of critical damping ζ2 for the isolator, assuming that the
fraction of critical damping ζ1 for the support is constant at ζ1 = 0.01.

A notable observation from Fig. 38.13 is that, like the results of Figs. 38.8 and 38.9,
isolation begins to occur when the support structure and isolation system frequen-
cies are an octave apart (e.g., ωn1/ωn2 ≥ 2). Results shown in Fig. 38.13 apply only
when the support deflection δ1 is small compared with the isolator deflection δ2, a
condition which is not met in the neighborhood of unity frequency ratio. A more
realistic analysis for this condition involves the 2-DOF system discussed in the next
section.

Undamped 2-DOF Class B Analysis. This section includes an analysis of the sys-
tem of Fig. 38.2C, considered as a coupled 2-DOF system where both the support
and the isolator are linear and undamped [F1(δ̇1,δ1) = k1δ1,F2(δ̇2,δ2) = k2δ2].This analy-
sis makes it possible to consider the effect of deflection of the support on the motion
of the equipment. Fixing the support base (u = 0), the equations of motion may be
written

δ̈1 + ω2
n1δ1 = ω2

n2δ2

δ̈2 + ω2
n2δ2 = −δ̈1

(38.28)

Assuming that the impulse J has negligible duration, the initial conditions are δ̇1 = 0,
δ̇2 = J/m2, δ1 = δ2 = 0. The solution of Eq. (38.28) parallels that of Eq. (38.21); the
resulting expressions for the maximum isolator deflection δ2m and force F1m applied
to the support are

δ2m = �1 + 
−1/2

(38.29)

F1m = Jωn1 ��1 − 	
2

+ 
−1/2

(38.30)

The maximum deflection of the isolator given in Eq. (38.29) is shown graphically
in Fig. 38.14. For small values of the ratio of support natural frequency to isolator
natural frequency, the flexibility of the support may significantly reduce the maxi-
mum isolator deflection, especially if the mass of the support is small relative to the
mass of the equipment. For large values of the frequency ratio, the effect of the mass
ratio is small.

The support force shock transmissibility F1m/F1mo is graphed in Fig. 38.15 as a
function of frequency ratio. Like Fig. 38.13, the ordinate is the ratio of the maximum
force F1m in the support, given by Eq. (38.30), to the maximum force F1mo that results
if the isolator is rigid (see previous section “Equipment Rigidly Attached”). The
abscissa in Fig. 38.15 is the ratio of the undamped support natural frequency ωn1 to
the undamped isolator natural frequency ωn2. The effect of the mass ratio is pro-
found for small values of the frequency ratio. The curves of Figs. 38.13 and 38.15
show corresponding results. The former includes damping, and the latter includes
the coupling effect between the two systems.The analysis which ignores the coupling
effect may grossly overestimate the maximum force applied to the support at low

m2
�
m1

ωn1
�
ωn2

m2/m1
��
(1 + ωn1/ωn2)2

J
�
m2ωn2

m2
�
m1
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values of the frequency ratio.At high values of the frequency ratio and for m2 << m1,
the two analyses yield like results if the fraction of critical damping in the isolator is
ζ2 = 0.10 or less. The two methods are compared in Example 38.6.

Example 38.6. A forging machine weighs 7000 lb (31,137.5 N) exclusive of the
600-lb (2668.9 N) hammer. It is mounted at the center of a span formed by two 12-
in. (0.3048-m) -deep, 50-lb/ft (729.7-N/m) I beams [area moment of inertia = 394 in.4

(16,399.5 cm4)] having hinged ends and a span l = 18 ft (5.906 m). The hammer falls
freely from a height of 60 in. (1.524 m) before striking the work. Determine:

a. Maximum force F1m in the beams and maximum deflection δ1m of the beams if
the machine is rigidly bolted to the beams.

b. The maximum force F1m in the beams and the maximum deflection δ2m of an
isolator interposed between machine and beams.

Solution
a. When the machine is bolted rigidly to the beams, the system may be considered

to have only a single degree of freedom. The mass is that of the machine, plus the 
hammer, plus the effective mass of the beams. For the machine: m2 = (7000 + 600)/
386.4 = 19.67 lb-sec2/in. (3451 kg).The effective mass of the beams is taken as one-half
of the actual mass:

m1 = = 2.33 lb-sec2/in. (409 kg)

m = m1 + m2 = 22.0 lb-sec2/in. (3860 kg)

2(0.5)(18)(50)
��

386.4
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FIGURE 38.14 Dimensionless representation of maximum isolator deflec-
tion δ2m resulting from action of impulse J on equipment. Isolator and support
have undamped linear elasticity.



The stiffness of the beams is

k = 2 = 2 = 109,000 lb/in. (19,088,818 N/m)

The natural frequency of the machine-and-beams system is

ωn = �� = �� = 70.4 rad/sec (11.2 Hz)

If the impact between the hammer and the work is inelastic and its duration is neg-
ligible, the resulting velocity u̇m of the machine may be found from conservation of
momentum. The impulse J is the product of the weight of the hammer and time of
fall:

J = (600)� 	
1/2

= 334 lb-sec (1485.7 N-sec)

If the damping of the beams is neglected, the maximum beam deflection and maxi-
mum force in the beams are found from Eq. (38.25) as follows:

δm = e
−� cos−1ζ	 = e−(0) = 0.22 in. = 0.00559 m

Fm = Jωne
−� cos−1ζ	 = (334)(70.4)e−(0) = 23,500 lb = 104,533 N

ζ
�
�1 − ζ2�

334
��
(22.0)(70.4)

ζ
�
�1 − ζ2�J

�
mωn

2 × 60
�
386.4

109,000
�

22.0
k
�
m

48 × (29 × 106) × 394
���

(18 × 12)3

48EI
�

l3
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FIGURE 38.15 Support force shock transmissibility resulting from impulse J
loading on equipment. The ordinate shows the ratio of maximum force in sup-
port F1m with isolation to force F1mo with equipment rigidly attached. Both sup-
port and isolator are undamped.



b. An isolator having a stiffness k2 = 36,000 lb/in. (630,456.4 N/m) and a frac-
tion of critical damping ζ2 = 0.10 is interposed between the machine and the beams.
The uncoupled natural frequencies defined in connection with Eqs. (38.22) and
(38.23) are

ωn2 = �� = �� = 42.8 rad/sec (6.8 Hz)

ωn1 = �� = �� = 216.3 rad/sec (34.4 Hz)

Consider first the limitations of using uncoupled analysis where m2 > m1. Figure 38.5
gives, respectively:

ẍ2m/u̇mωn2 = 0.88

ẍ2mδ2m/u̇2
m = 0.76

Substituting u̇m = J/m2 = 17 in./sec (0.4318 m/sec) and solving for δ2m results in

δ2m = = 0.34 in. = 0.00864 m

Entering Fig. 38.13 at ωn1/ωn2 = 5.06, F1m/F1mo = 0.23. Since the maximum force in the
undamped beams with the machine system rigidly attached is 23,500 lb (104,533 N),
then F1m = (0.23) ∗ (23,500) ≈ 5,400 lb (24,020 N). Alternatively, if damping of the
beam is considered, F1m may be determined as follows:

F1m = 0.23F1mo = e
−� cos−1ζ	 =

= 5330 lb. = 23,709 N

where ζ = = 0.01/3.07 = 0.0033

Use of the uncoupled transmissibility shown in Fig. 38.13 assumes that m2 has no
influence on the motion of the support structure. Since m2/m1 = 8.44 is significant,
this assumption is invalid. A computer simulation of this scenario results in a beam
deflection of δ1m = 0.11 in. (0.00279 m), which is not negligible, and an isolator deflec-
tion of δ2m = 0.31 in. (0.00787 m). The support force shock transmissibility from the
computer simulation is F1m/F1mo = 0.515, which gives the value of F1m as ∼12,000 lb
(53,379 N). Compared to the computer simulation results, the uncoupled analysis
predicts F1m to be 55 percent lower. This is not a reasonable estimate of force for
design of foundation supports and may result in failure if the isolation system was
necessary for protection.

Consider now that the floor and machine-isolator systems are coupled, and use
the 2-DOF analysis which neglects damping. From Eq. (38.29):

δ2m = �1 + 
−1/2

δ2m = �1 + 
−1/2

= 0.36 in. = 0.00914 m
19.67/2.33
��
(1 + 5.06)2

334
��
19.67 × 42.8

m2/m1
��
(1 + ωn1/ωn2)2

J
�
m2ωn2

ζ1��
(1 + m2/m1)1/2

(0.23)(334)(216.3)(0.985)
���

(1 + 8.44)1/2

ζ
�
�1 − ζ2�0.23Jω1n��

�1 + �
m
m

2

1
�	

1/2

0.76 × 17
��
0.88 × 42.8

109,000
�

2.33
k1
�
m1

36,000
�
19.67

k2
�
m2
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From Eq. (38.30):

F1m = Jωn1 ��1 − 	
2

+ 
−1/2

F1m = 334 × 216.3 �(1 − 5.06)2 + 
−1/2

= 14,500 lb. = 64,499 N

Compared to the computer simulation results, the undamped 2-DOF analysis pre-
dicts F1m to be 21 percent higher.This is a conservative estimate and is reasonable for
design of foundation supports.

CONCEPT OF VIBRATION ISOLATION

The concept of vibration isolation is illustrated by consideration of the 1-DOF sys-
tems shown in Figs. 2.20 and 2.12 (also depicted in columns 1 and 2 of Table 38.1).
The performance of the isolator may be evaluated by the following characteristics of
the response of the system to steady-state sinusoidal vibration:

Absolute transmissibility. Transmissibility is a measure of the reduction of
transmitted force or motion afforded by an isolator. If the source of vibration is an
oscillating motion of the foundation (motion excitation with Class A isolation),
transmissibility is the ratio of the vibration amplitude of the equipment to the vibra-
tion amplitude of the foundation. If the source of vibration is an oscillating force
originating within the equipment (force excitation with Class B isolation), transmis-
sibility is the ratio of the amplitude of the transmitted force to the amplitude of the
exciting force.

Relative transmissibility. Relative transmissibility is the ratio of the relative
deflection amplitude of the isolator to the displacement amplitude imposed at the
foundation. A vibration isolator effects a reduction in vibration by permitting
deflection of the isolator. The relative deflection is a measure of the clearance
required in the isolator. This characteristic is significant only in an isolator used to
reduce the vibration transmitted from a vibrating foundation.

Displacement motion response. Displacement motion response is the ratio of
the displacement amplitude of the equipment to the quotient obtained by dividing
the excitation force amplitude by the static stiffness of the isolator. If the equipment
is acted on by an exciting force, the resultant motion of the equipment determines
the space requirements for the isolator; that is, the isolator must have a clearance at
least as great as the equipment motion.

FORM OF ISOLATOR

Isolators may be modeled using many different combinations of resilient elements
and dampers. The combinations considered in this chapter are the rigidly connected
and elastically connected viscous dampers described as follows.

Rigidly connected viscous damper. A viscous damper c, represented by the
dashpot in column 1 of Table 38.1, is connected rigidly between the equipment and
its foundation. The damper has the characteristic property of transmitting a force Fc

that is directly proportional to the relative velocity δ̇ across the damper, where Fc =
cδ̇. This damper sometimes is referred to as a linear damper.

19.67
�
2.33

m2
�
m1

ωn1
�
ωn2
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TABLE 38.1 Transmissibility and Motion Response for Rigidly Connected (Column 1) and 
Elastically Connected (Column 2) Viscous Damper

(1) (2)

Rigidly connected viscous damper Elastically connected viscous damper

(A) TA = = = ���
TA = = = ���

(B) TR = = ���
TR = = ���

(C) = ���
= ���

Row A is absolute transmissibility; row B is relative transmissibility; and row C is displacement motion response.
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Elastically connected viscous damper. The elastically connected viscous damper
c, represented by the dashpot in column 2 of Table 38.1, is in series with a spring of
stiffness k1; the load-carrying spring k is related to the damper spring k1 by the
parameter N = k1/k. This type of damper system sometimes is referred to as a viscous
relaxation system.

INFLUENCE OF DAMPING IN 

VIBRATION ISOLATION

The nature and degree of vibration isolation is influenced by the characteristics of the
damper. This aspect of vibration isolation is evaluated in this section in terms of the
1-DOF concept; that is, the equipment and the foundation are assumed rigid and 
the isolator is assumed massless. The performance is defined in terms of absolute
transmissibility, relative transmissibility, and motion response.A system with a rigidly



connected viscous damper is discussed in detail in Chap. 2. Additional information,
such as relative transmissibility and displacement motion response, is given in this
chapter. The elastically connected viscous damper is also discussed. Vibration isola-
tors with other types of dampers such as coulomb, quadratic, velocity-nth power, and
hysteretic are discussed in detail in Ref. 6.

RIGIDLY CONNECTED VISCOUS DAMPER

Absolute and relative transmissibility curves are shown graphically in Figs. 2.17 and
38.16, respectively, and the displacement motion response is shown in Fig. 38.17. The
subscript o is used to differentiate variables associated with steady-state vibration
from those of transient shock. For linear systems, the absolute transmissibility may be
expressed as TA = xo/uo for motion-excited systems and TA = FT/Fo in force-excited sys-
tems.The relative transmissibility TR = δo/uo applies only to the motion-excited system.
As the damping increases, the transmissibility at resonance decreases and the absolute
transmissibility at the higher values of the forcing frequency increases; that is, the
reduction of vibration is not as great. For an undamped isolator, the absolute trans-
missibility at higher values of the forcing frequency varies inversely as the square of
the forcing frequency.When the isolator embodies significant viscous damping, the ab-
solute transmissibility curve becomes asymptotic at high values of forcing frequency to
a line whose slope is inversely proportional to the first power of the forcing frequency.
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FIGURE 38.16 Relative transmissibility for
the rigidly connected, viscous-damped isolation
system shown in column 1, row B in Table 38.1 as
a function of the frequency ratio ω/ω0 and the
fraction of critical damping ζ.The relative trans-
missibility describes the motion between the
equipment and the foundation (i.e., the deflec-
tion of the isolator).

FIGURE 38.17 Displacement motion response
for the rigidly connected viscous-damped isola-
tion system shown in column 1, row C of Table
38.1 as a function of the frequency ratio ω/ω0 and
the fraction of critical damping ζ.The curves give
the resulting motion of the equipment x in terms
of the excitation force F and the static stiffness of
the isolator k.



The maximum value of absolute transmissibility associated with the resonant
condition is a function solely of the damping in the system, taken with reference to
critical damping. For a lightly damped system, where ζ < 0.1, the maximum absolute
transmissibility [see Eq. (2.51)] of the system is

Tmax = (38.31)

where ζ = c/cc is the fraction of critical damping.

ELASTICALLY CONNECTED VISCOUS DAMPER

General expressions for absolute and relative transmissibility are given in Table
38.1. The characteristics of the elastically connected viscous damper may best be
understood by successively assigning values to the viscous damper coefficient c
while keeping the stiffness ratio N constant. For zero damping, the mass is supported
by the isolator of stiffness k. The transmissibility curve has the characteristics typical
of a transmissibility curve for an undamped system having the natural frequency

ω0 = �� (38.32)

When c is infinitely great, the transmissi-
bility curve is that of an undamped sys-
tem having the natural frequency

ω∞ = �� = �N + 1�ω0 (38.33)

where k1 = Nk. For intermediate values
of damping, the transmissibility falls
within the limits established for zero and
infinitely great damping. The value of
damping which produces the minimum
transmissibility at resonance is called
optimum damping.

A comparison of absolute transmissi-
bility curves for the elastically connected
viscous damper and the rigidly connected
viscous damper is shown in Fig. 38.18. A
constant viscous damping coefficient of
0.2cc is maintained, while the value of 
the stiffness ratio N is varied from zero 
to infinity. The transmissibilities at reso-
nance are comparable, even for relatively
small values of N, but a substantial gain is
achieved in the isolation characteristics at
high forcing frequencies by elastically
connecting the damper.

k + k1
�

m

k
�
m

1
�
2ζ
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FIGURE 38.18 Comparison of absolute trans-
missibility for rigidly and elastically connected,
viscous-damped isolation systems shown in row
A in Table 38.1, as a function of the frequency
ratio ω/ω0. The solid curves refer to the elasti-
cally connected damper, and the parameter N is
the ratio of the damper spring stiffness to the
stiffness of the principal support spring. The
fraction of critical damping ζ = c/cc is 0.2 in both
systems. The transmissibility at high frequencies
decreases at a rate of 6 dB per octave for the
rigidly connected damper and 12 dB per octave
for the elastically connected damper.



Transmissibility at Resonance. The maximum transmissibility (at resonance) is
a function of the damping ratio ζ and the stiffness ratio N, as shown in Fig. 38.19.The
maximum transmissibility is nearly independent of N for small values of ζ. However,
for ζ > 0.1, the coefficient N is significant in determining the maximum transmissi-
bility.The lowest value of the maximum absolute transmissibility curves corresponds
to the conditions of optimum damping.
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FIGURE 38.19 Maximum absolute transmissibility for the elastically connected, viscous-damped
isolation system shown in column 2, row A in Table 38.1 as a function of the fraction of critical damp-
ing ζ and the stiffness of the connecting spring. The parameter N is the ratio of the damper spring
stiffness to the stiffness of the principal support spring.

Motion Response. A typical motion response curve is shown in Fig. 38.20 for the
stiffness ratio N = 3. For small damping, the response is similar to the response of an
isolation system with rigidly connected viscous damper. For intermediate values of
damping, the curves tend to be flat over a wide frequency range before rapidly
decreasing in value at the higher frequencies. For large damping, the resonance
occurs near the natural frequency of the system with infinitely great damping. All
response curves approach a high-frequency asymptote for which the attenuation
varies inversely as the square of the excitation frequency.

Optimum Transmissibility. For a system with optimum damping, maximum
transmissibility coincides with the intersections of the transmissibility curves for
zero and infinite damping.The frequency ratios (ω/ω0)op at which this occurs are dif-
ferent for absolute and relative transmissibility:



Absolute transmissibility:

� 	op

(A)
= �� (38.34)

Relative transmissibility:

� 	op

(R)
= ��

The optimum transmissibility at reso-
nance, for both absolute and relative
motion, is

Top = 1 + (38.35)

The optimum transmissibility as deter-
mined from Eq. (38.35) corresponds to
the minimum points of the curves of Fig.
38.19.

The damping which produces the op-
timum transmissibility in the elastically
connected viscous damper is obtained
by differentiating the general expres-
sions for transmissibility in Table 38.1
with respect to the frequency ratio, set-
ting the result equal to zero and combin-
ing it with Eq. (38.34):

Absolute transmissibility:

(ζop)A = �2(N +�2)� (38.36a)

Relative transmissibility:

(ζop)R = (38.36b)

Values of optimum damping determined from the first of these relations correspond
to the minimum points of the curves of Fig. 38.19. By substituting the optimum
damping ratios from Eqs. (38.36) into the general expressions for transmissibility
given in Table 38.1, the optimum absolute and relative transmissibility equations are
obtained, as shown graphically by Figs. 38.21 and 38.22, respectively. For low values
of the stiffness ratio N, the transmissibility at resonance is large, but excellent isola-
tion is obtained at high frequencies. Conversely, for high values of N, the transmissi-
bility at resonance is lowered, but the isolation efficiency also is decreased.

N
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FIGURE 38.20 Motion response for the elasti-
cally connected, viscous-damped isolation system
shown in column 2, row C in Table 38.1 as a func-
tion of the frequency ratio ω/ω0 and the fraction of
critical damping ζ. For this example, the stiffness
of the damper connecting spring is three times as
great as the stiffness of the principal support
spring (N = 3). The curves give the resulting mo-
tion of the equipment in terms of the excitation
force F and the static stiffness of the isolator k.



MULTIPLE-DEGREE-OF-FREEDOM SYSTEMS

The 1-DOF systems discussed previously are adequate for illustrating the funda-
mental principles of vibration isolation but are an oversimplification insofar as many
practical applications are concerned. The condition of unidirectional motion of an
elastically mounted mass is not consistent with the requirements in many applica-
tions. In general, it is necessary to consider freedom of movement in all directions, as
dictated by existing forces and motions and by the elastic constraints. Thus, in the
general isolation problem, the equipment is considered as a rigid body supported by
resilient elements or isolators.

The most practical approach to assess resiliently supported rigid bodies is to use
6-DOF simulation methods that allow specification and implementation of the
many parameters used in analyzing isolated systems. Advantages provided by simu-
lations of 6-DOF models are (1) estimates of the excursion space needed for
dynamic travel of mounted systems; (2) rapid prediction of responses such as accel-
eration, velocity, force, and displacement; (3) a design feedback tool for the location,
sizing, and orientation of mounts for equipment and structures; (4) calibration via
optimization; (5) multivariate sensitivity analyses of system parameters; and (6) mul-
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FIGURE 38.21 Absolute transmissibility with
optimum damping in the elastically connected,
viscous-damped isolation system shown in col-
umn 2, row A in Table 38.1 as a function of the
frequency ratio ω/ω0 and the fraction of critical
damping ζ. These curves apply to elastically con-
nected, viscous-damped systems having optimum
damping for absolute motion.The transmissibility
(TA)op is (x0/u0)op for the motion-excited system
and (FT/F0)op for the force-excited system.

FIGURE 38.22 Relative transmissibility with
optimum damping in the elastically connected,
viscous-damped isolation system shown in col-
umn 2, row B in Table 38.1 as a function of the
frequency ratio ω/ω0 and the fraction of critical
damping ζ.These curves apply to elastically con-
nected, viscous-damped systems having opti-
mum damping for relative motion. The relative
transmissibility (TR)op is (δ0/u0)op for the motion-
excited system.



tidirectional inputs via foundation motion or application of forces and moments to
the body.

For cases where symmetry and other simplifications can be made or where simu-
lation methods are not possible or practical, analytical expressions can be used to
make estimates of multiple-degree-of-freedom responses. For example, linear
expressions for properties of resilient supports and equations of motion for a
resiliently supported rigid body are presented in Chap. 3. The equations of motion
are given by Eq. (3.31). The general case of this model is shown in Fig. 3.12, which
depicts a rigid body supported by resilient elements.

USE OF SYMMETRY

By employing various types of symmetry and neglecting damping, natural frequen-
cies and rigid-body dimensionless responses on resilient mounts may be estimated.
Relevant expressions from Chap. 3 for estimating natural frequencies and responses
for a resiliently support rigid body are summarized as follows.

Rigid-Body Natural Frequencies. For one plane of symmetry, as shown in Fig.
3.13, coupled natural frequencies may be estimated by obtaining the roots of the
cubic equation given by Eq. (3.36). This equation may be solved graphically for the
natural frequencies of the system by use of Fig. 3.14. When three planes of symme-
try are present, the natural frequencies are uncoupled and are given by Eq. (3.42).

For two planes of symmetry, as shown in Fig. 3.15, coupled natural frequencies
may be estimated by using Eqs. (3.39) and (3.40). For two planes of symmetry with
resilient supports inclined in one plane only, as shown in Fig. 3.21, uncoupled natural
frequencies may be estimated by using Eqs. (3.43) and (3.44) and coupled frequen-
cies by Eqs. (3.45) and (3.46). The inclination angle of resilient supports may be
selected to decouple translation and rotation modes. Decoupling of these modes is
effected if Eq. (3.47) is satisfied, allowing natural frequencies of the decoupled trans-
lation and rotation modes for the inclined support system to be estimated using Eqs.
(3.48) and (3.49).

Rigid-Body Responses. For the one-plane-of-symmetry translational case excited
by foundation motion, dimensionless response expressions for maximum displace-
ment and acceleration are given by Eqs. (3.72) and (3.73), respectively. For the rota-
tional case, these expressions are given by Eqs. (3.77) and (3.78), respectively.

For two planes of symmetry with orthogonal resilient supports excited by foun-
dation motion, the dimensionless response expressions for translation and rotation
are given by Eqs. (3.55) and (3.56), respectively.When resilient supports are inclined
in one plane, the dimensionless response expressions are given by Eqs. (3.58) and
(3.59). For two planes of symmetry with orthogonal resilient supports excited by a
rotating force, the dimensionless response expressions for translation and rotation
are given by Eq. (3.63). When excited by an oscillating moment, the dimensionless
response expressions for translation and rotation are given by Eq. (3.68).

For all of these cases, analysis of the dynamics of a rigid body on resilient sup-
ports includes the assumption that the principal axes of inertia of the rigid body are,
respectively, parallel with the principal elastic axes of the resilient supports. This
makes it possible to neglect the products of inertia of the rigid body. The coupling
introduced by the product of inertia is not strong unless the angle between the prin-
cipal axes of inertia and the elastic axes is substantial. Therefore, it is convenient to

38.36 CHAPTER THIRTY-EIGHT



take the coordinate axes through the center of gravity of the supported body, paral-
lel with the principal elastic axes of the isolators.

The procedures in Chap. 3 for determining natural frequencies in coupled modes
represent a rigorous analysis where the assumed symmetry exists. They are also
somewhat indirect, requiring the use of dimensionless ratios involving the coordi-
nate distances of elastic centers of the resilient elements and the radius of gyration
of the equipment. For the case of two planes of symmetry, as shown in Fig. 3.15, the
relations may be approximated in a more readily usable form if (1) the mounted
equipment can be considered a cuboid having uniform mass distribution, (2) the
four isolators are attached precisely at the four lower corners of the cuboid, and (3)
the height of the isolators may be considered negligible. The ratio of the natural fre-
quencies in the coupled rotational and horizontal translational modes to the natural
frequency in the vertical translational mode then becomes a function of only the
dimensions of the cuboid and the stiffnesses of the isolators in the several coordinate
directions. Making these assumptions and substituting in Eq. (3.40), results in

= = �� � �������	
2� −�� (38.37)

where η = kx/kz designates the ratio of horizontal to vertical stiffness of the isolators
and λ = 2az/2ax indicates the ratio of height to width of mounted equipment.This rela-
tion is shown graphically in Fig. 38.23.The curves included in this figure are useful for
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FIGURE 38.23 Curves indicating the natural frequencies ωxβ in
coupled rotational and horizontal translational modes with refer-
ence to the natural frequency ωz in the decoupled vertical transla-
tional mode, for the system shown in Fig. 3.15.The ratio of horizontal
to vertical stiffness of the isolators is η, and the height-to-width ratio
for the equipment is λ. These curves are based upon the assumption
that the mass of the equipment is uniformly distributed and that the
isolators are attached precisely at the extreme lower corners thereof.



calculating approximate values of natural frequencies and for indicating trends in
natural frequencies resulting from changes in various parameters as follows:

1. Both of the coupled natural frequencies tend to become a minimum, for any
ratio of height to width of the mounted equipment, when the ratio of horizontal to
vertical stiffness kx/kz of the isolators is low. Conversely, when the ratio of horizontal
to vertical stiffness is high, both coupled natural frequencies also tend to be high.
Thus, when the isolators are located underneath the mounted body, a condition of
low natural frequencies is obtained using isolators whose stiffness in a horizontal
direction is less than the stiffness in a vertical direction. However, low horizontal
stiffness may be undesirable in applications requiring maximum stability.A compro-
mise between natural frequency and stability then may lead to optimum conditions.

2. As the ratio of height to width of the mounted equipment increases, the lower
of the coupled natural frequencies decreases. The trend of the higher of the coupled
natural frequencies depends on the stiffness ratio of the isolators. One of the cou-
pled natural frequencies tends to become very high when the horizontal stiffness of
the isolators is greater than the vertical stiffness and when the height of the mounted
equipment is approximately equal to or greater than the width. When the ratio of
height to width of mounted equipment is greater than 0.5, the spread between the
coupled natural frequencies increases as the ratio kx/kz of horizontal to vertical stiff-
ness of the isolators increases.

ISOLATION OF RANDOM VIBRATION

In random vibration, all frequencies exist concurrently, and the amplitudes and
phases of frequency components are random. A trace of random vibration is illus-
trated in Fig. 24.1B. The equipment-isolator assembly responds to the random
vibration with the substantially single-frequency pattern shown in Fig. 24.1A. This
response is similar to a sinusoidal motion with a continuously and irregularly vary-
ing envelope; it is described as narrowband random vibration or a random sine
wave.

The characteristics of random vibration are defined by a frequency spectrum of
power spectral density (see Chaps. 19 and 24). This is a generic term used to desig-
nate the mean square value of some magnitude parameter passed by a filter, divided
by the bandwidth of the filter, and plotted as a spectrum of frequency. The magni-
tude is commonly measured as acceleration in units of g; then the particular expres-
sion to use in place of power spectral density is mean square acceleration density,
commonly expressed in units of g2/Hz.When the spectrum of mean square accelera-
tion density is substantially flat in the frequency region extending on either side of
the natural frequency of the isolator, the response of the isolator may be determined
in terms of (1) the mean square acceleration density of the isolated equipment and
(2) the deflection of the isolator at successive cycles of vibration.

The mean square acceleration densities of the foundation and the isolated equip-
ment are related by the absolute transmissibility that applies to sinusoidal vibration:

Wr(f) = We(f)T 2
A (38.38)

where Wr(f) and We(f) are the mean square acceleration densities of the equipment
and the foundation, respectively, in units of g2/Hz, and TA is the absolute transmissi-
bility for the vibration-isolation system. Additional discussion of dynamic random
vibration analysis of systems is provided in Ref. 7.
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CHAPTER 39
SHOCK AND VIBRATION

ISOLATION SYSTEMS

Herb LeKuch

INTRODUCTION

Isolation technology, once limited mostly to selecting mounts for the protection of
machinery and equipment, is now routinely applied to devices ranging from person-
nel comfort to large civil engineering structures and low-frequency vibration atten-
uation of instruments and precision mechanisms. The technology has been widely
developed through improved designs, better materials, and greater depth of techni-
cal analysis. More refined test methods and simulation modeling have significantly
broadened the database of isolator properties. The levels of complex vibration and
shock disturbances can now be substantially reduced at the equipment.

Applications have grown extensively over the last 20 years. In addition to machin-
ery isolation, examples are servo-controlled self-leveling isolated platforms, energy
dissipation devices such as frictional and tuned mass dampers for large structures,
semiactive (SA) isolation for aircraft landing gear, and base isolation for seismic
protection of entire buildings. Active-controlled auto and seat suspension systems
are in large production. In microelectronics, isolation techniques have been devel-
oped to control the fabrication process and ensure device quality.Architects and en-
gineers consider isolation as a basic technique in building design and have established
vibration criterion curves to specify vibration-sensitive production tools. Companies
will continue to incorporate isolation to increase product reliability and improve
manufacturing efficiencies. Isolation methods developed in semiconductor fabrica-
tion are now used in other industries to reduce costs in high-volume production and
enable rapid change as new designs are introduced. The use of commercial off-the-
shelf (COTS) electronics will continue to grow in military systems, requiring im-
proved isolation to meet severe conditions.

The focus of this chapter is mounts and isolation systems to protect equipment
and sensitive machinery. Isolator types that are commercially available are described
in the passive mount section of this chapter; some have broad industrial and military
use. In the semi-active and active isolation sections, the operation of isolation systems
and general principles of tuned control are described. Structural control, seismic, and
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energy dissipation damper devices are considered engineered motion limiters and
are briefly noted.The first two sections describe guidelines for the design of isolation
systems and the problems that can occur, followed by review of several types of com-
mercial mounts, their characteristics, the features of ideal isolators, and mount selec-
tion. The third section is an overview of active and semiactive isolation methods.
Commercial products described in this section are the SA type where the mount’s
fail-safe mode, enhanced performance, simplicity, and relatively low cost are the main
objectives.This chapter generally follows the form of Chap. 32 of the 5th edition; how-
ever, it contributes additional details to isolation system design and describes several
newer isolators and applications.

ISOLATORS AND ISOLATION SYSTEMS

Well-designed isolation substantially decreases the intensity of the shock and vibra-
tion (S&V) reaching the equipment from the disturbance. The isolation system is a
mechanical filter between the source and the receiver that reduces the dynamic loads
at the equipment to levels that the equipment can withstand; isolation tailors the
S&V environment so that a reasonable margin of safety exists for satisfactory oper-
ation. Disturbances can emanate from the equipment or external sources to the unit.
In some cases, isolators cannot be mounted directly to the receiver (or source), and
an attachment frame (platform) is needed. The selection begins with characterizing
conditions and comparing those against allowable limits.

TYPES OF ISOLATORS AND ISOLATION SYSTEMS

Shock and vibration isolators and isolation systems can be grouped according to
how they protect equipment. Passive isolation is the simplest and least expensive. It
involves only unit mounts or a combination of mounts at the equipment. Semiactive
and active isolation requires sensors, feedback controls, and variable damper and/or
force actuators. In response to the motion of the equipment, these precisely shift the
operating characteristics of the isolation system for better performance. Passive sys-
tems are essentially nonactive; S&V control is entirely a function of the properties
and mechanical design of the isolator and its compliant elements. No external power
or control loop is needed. SA mounts operate to modify the stiffness or damping of
the system. Active isolation uses variable force to counteract the driving force. The
several types of isolation control, ranging from hard-mounted to passive and active
methods, are outlined in Fig. 39.1. Table 39.1 compares these methods and describes
the features. Active isolation exhibits the most sensitive control for optimum per-
formance; passive isolation is the least sensitive.

Passive mounts incorporate molded elastomers, shaped metal springs, or other
means that can deform predictably under load and provide stiffness and damping to
the spring/mass system. The response is self-regulated in accordance with perfor-
mance characteristics of the mount. Stiffness and damping values of the isolators are
based on static test data adjusted for dynamic and environmental conditions. The
performance of the mount may be different in each axis; however, the isolator
exhibits defined and repeatable properties for calculation of resonant frequency and
response. The passive mount can have linear or nonlinear stiffness depending on its
design and orientation with respect to the applied load. If nonlinear, results can be
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affected by the level and type of vibration or shock. For instance, a nonlinear mount
in vibration can show a different resonant frequency at 1g swept-sine than at 2g
sine because the dynamic load on the isolator shifts its stiffness to a different region
of its operating curve.This modifies the stiffness-to-mass ratio, thereby changing the
resonant frequency.A nonlinear mount can be typified as having bilinear or even tri-
linear stiffness characteristics.

Active and semiactive systems use controls and actuators or variable damping
devices to modify the restraining forces and adjust the operation of the isolation sys-
tem. They can better regulate dynamic response than passive mounts but at greater
complexity and cost. SA designs use damper or stiffness control and can be battery/
low-power operated. Isolation reverts to passive type if variable features fail.

SHOCK AND VIBRATION ISOLATION SYSTEMS 39.3

FIGURE 39.1 The several types of isolation control include hard-mounted, passive, semiac-
tive, and active. The active type has the best control features for optimum isolation perfor-
mance; passive control is the least sensitive.
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TABLE 39.1 Comparison of Principal Isolation Methods

Isolation Passive Semiactive Active

Type Elastomer MR fluid Hydraulic/servo valve
Helical cable ER fluid Electromagnetic
Pneumatic Force actuator
Spring
Friction damper Can work with passive Can supplement passive 
Viscous damping mounts mounts

Performance Conforms with Fail-safe reverts to Optimum isolation T 
vibration passive control if can be less than 1.0 at 
transmissibility curves, damper or electronics resonance
shock reduction fail
factors
Proven SV reduction Improved performance Excellent broad
in many applications over passive mounts frequency effectiveness

Proven low frequency 
isolation table designs,
optical and semi-
conductor uses

Features Self-contained Closed-loop control Closed-loop control 
No external energy Requires very little sensor on moving  
needed power, can be battery unit, measurements 

operated of position, velocity,
or acceleration

Acceleration converted Controller drives
to velocity for control force actuator

Control None Skyhook—absolute Skyhook—absolute 
Open loop velocity velocity

Force resistance using  Movement resisted by 
variable damper, counterforce using 
setting based on external force
equivalent relative actuator(s)
On/off control often Relative, PID, and other
used methods described and

used for control

Positive Low cost MR devices available Can handle wide range 
factors Simple design as commercial products of disturbances, can be 

Predictable Competitive prices used with a variety of 
Defined properties Published engineering energy dissipation 

properties devices for seismic 
control

Very wide selection Very rapid response Considerable 
and availability of Simple programming is development for 
mounts effective for SV control seismic structures

Proven tuned 
mass dampers



OPERATING PERFORMANCE

Stiffness and damping properties of isolation are chosen as a compromise to limit
vibration amplification at resonance and still provide effective isolation at higher
frequencies. Shock is controlled in a similar way through the design and means of
compliance for large deflection. For some isolators, the same mount can provide
both vibration and shock isolation.The theory of shock and vibration isolation is dis-
cussed in Chap. 38. The concept is similar for active and semiactive control. Condi-
tions can be examined in the equations for a single-degree-of-freedom (SDOF)
system. The important relationship is the transmissibility T between the input and
response, with the isolator bridging the two. Damping influences the amount of rel-
ative displacement that occurs.

Figure 39.2 shows the three main regions in the T plot of the simple mass spring
damper system: (1) the ratio of natural frequency to disturbing frequency (less than
0.5), T ranges from 1.0 to 1.5 regardless of the amount of damping; (2) the ratio of
natural frequency to disturbing frequency (0.5 to �2�), T reaches a maximum at res-
onance (frequency ratio of 1.0) and ranges from 2.5 with moderate damping to 15.0
with light damping for the passive system; (3) the ratio of natural frequency to
source frequency greater than �2�, T decreases below 1.0 and falls off at a rate
depending on the level of damping. Light damping results in rapid decline. T at res-
onance is a maximum. Passive system ratios are greater than 1.0. Active systems can
achieve ratios less than 1.0 due to the extremely high damping that can be set at the
resonant frequency.

Crossover occurs at the frequency ratio f/fn = �2�. This is where isolation begins
(T declines to 1.0). The acceleration response of the system is at least 1:1 or ampli-
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TABLE 39.1 Comparison of Principal Isolation Methods (Continued)

Isolation Passive Semiactive Active

Negative Isolation effectiveness May require separate High power needed to 
factors limited by fixed motion control in each drive the actuator

stiffness and damping direction High cost, complex 
design and configuration
Reliability can be a 
problem

Isolators may not be Requires more space Instability due to 
SV rated for severe for damping device than nonlinearity
loads passive isolation alone Possible sensor/actuator
Nonlinear effects can failure
influence results Can put uncontrolled 

force into the system
Some compliant Software and processor/
materials are controller is application 
temperature limited driven

Technical/ Extensive Extensive Extensive
Literature documentation

Manufacturers’ Seat suspension data Control theory history
catalogs Various applications Structural dynamics
Test history and applications
applications



fied in regions 1 and 2 until the driving frequency is slightly greater than �2�, the dis-
turbing frequency. It is here that the transition from amplification to isolation
occurs. Except at crossover, the rate of isolation strongly depends on the amount of
damping. At the higher frequencies, it occurs more rapidly with less damping. In
region 1 and 2 (and particularly at resonance) more damping reduces T. At lower
frequencies, the displacement of the isolated mass essentially follows the displace-
ment of the disturbance. The foundation (source of vibration) and mass are moving
relatively the same amount and in phase with one another. Beyond transition, mass
displacement becomes less than foundation motion. Increasing the damping ratio
reduces the transmissibility at resonance but also decreases the effectiveness of
high-frequency isolation. Most passive isolators are designed around these factors.
There is also a slight shift in the resonant frequency versus the natural frequency, but
this can usually be disregarded in the selection of properties. The ratio of stiffness
relative to mass affects only the natural frequency of the system; the amount of
damping strongly influences amplification in the resonance region and the degree of
isolation beyond resonance.

Shock response can be described in terms of the separation of shock pulse fre-
quency from shock response frequency of the isolation system. The effective fre-
quency of the input pulse is a characteristic of its initial time duration. Dynamic load
factors (DLFs) are useful for describing the acceleration response relative to the
magnitude of the applied shock. As shown in Fig. 39.3, the response to a shock input
is more severe for a half-sine pulse than for a triangular pulse having the same time
duration. Other pulse shapes can be similarly compared. Shock transmissibility can
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FIGURE 39.2 The transmissibility plot of an SDOF isolation system exhibits increasing peak ampli-
tude at resonance as the damping ratio decreases. Three regions are designated with isolation begin-
ning at frequency crossover.



be calculated from design data charts that show the ratio of frequency coupling and
the character of the pulse. Damping contributes to energy dissipation in the system
and helps to limit maximum deflection and peak acceleration. In general, if the
applied pulse frequency is 0.5 or greater than the effective shock response fre-
quency, the shock will be amplified and can reach a maximum of 2.0 times the input
acceleration peak of a half-sine pulse. Figure 39.3 can also be interpreted in terms of
pulse duration and period of the isolation. If the pulse is more than 1⁄4 of the natural
period of the isolation system, the shock will be amplified. The theory of shock iso-
lation is covered in Chap. 38.

COMPETING STRATEGIES FOR THE SELECTION OF ISOLATORS

Stiffness and damping establish the performance of isolators and are a guide to mount
effectiveness. Other factors include load capability, size of the mount, rattle space
(allowable space for relative movement), fit, cost, availability, long-term use, and reli-
ability. Table 39.2 compares various passive mounts, including their characteristics,
uses, and general applications. Determination of the resonant frequency of the isola-
tion system is needed to establish the separation of the driving frequencies from the
resonant frequency and calculate T efficiency. Damping controls the level of attenua-
tion over the operating range of the mount. Commercial mounts are the least costly—
there is a very wide selection to choose from. Custom isolators may be required for
special applications such as avoidance of outgassing in spacecraft and vacuum cham-
bers. Passive mounts exhibit nearly constant damping properties within their operat-
ing range. However, vibration stiffness (small-amplitude motion) can be different
from shock response stiffness (large displacement) due to the particular load deflec-
tion characteristics of the isolators.

Depending on the type and level of shock and vibration, similar or even the same
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FIGURE 39.3 The response to a shock input is more severe to a half-sine pulse than to a triangular
pulse at the same frequency ratio. Similar relationships exist for other pulse shapes with respect to a
half-sine pulse.
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TABLE 39.2 Passive Isolators: General Characteristics and Uses

Applications Typical Sources of Other Levels of Critical Needed isolator Other
equipment shock and environmental shock and isolator characteristics requirements
protected vibration factors vibration performance

Navy Multiple displays, Barge shock test, Saltwater, Mil Std 901D Reduce shock Long-term use, Multiaxis,
shipboard switchgear, air and water temperature 120–150 g, and vibration inspectable, wide Large deflection 

COTS blast, ship’s extremes 25 Hz deck temperature range, moderate
electronics, vibration, rough Mil Std 167 range, severe damping
workstations seas loads

Military VME electronics High-speed flight, Temperature Mil Std 810 Reduce shock Low profile, Multiaxis,
aircraft displays, gyros hard landings, and pressure 30 g, 11-ms crash and vibration test qualified close tolerance,

and avionics, gunfire and rapid extremes landing moderate 
data acquisition maneuvers 15 g, 11-ms hard damping

landing

Shipping and Jet engines, Transportation, Altitude changes, ATA 300 Reduce shock Large deflection, Multiaxis,
handling missiles, handling drop, exposure to Accidental drops and vibration long-term moderate 

commercial airlift, and rain and to 48 in. storage, easily damping
electronics, off-load humidity replaceable
special
equipment

Off-road and Displays, rough road and Temperature Mil Std 810 Reduce Low profile, Multiaxis,
military computer racks tank test grounds extremes Munson rough vibration, severe moderate 
vehicles road frequent shocks environments damping

Geophysical Data acquisition, Irregular roads, Temperature, Munson rough Reduce Low profile, Multiaxis,
and oil computer rough terrain high humidity road (equivalent) vibration, severe moderate 
exploration systems occasional shock environments damping

Materials Centrifuge, Rotary Corrosive 0.01–0.02 in./sec Reduce Easily Single axis,
processing pumps, equipment, environments, (rms) vibration replaceable, side restraint,

compressors unbalanced chlorine, sulfur (2–5 mm/sec) rugged, light damping
loads, defective maintenance
bearings free
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Building HVAC, Fluid and air Indoor and 0.008–0.016 Reduce Maintenance Single axis,
services cooling towers handling, outdoor in./sec (rms) vibration free, outdoor side restraint

low-speed conditions (0.1–0.2 mm/sec) environments
rotation

Construction Heavy operating Excavations and Temperature, Munson rough Reduce High reliability, Multiaxis,
mobile earthmoving, high humidity road (equivalent) vibration, severe service high damping
equipment heavy lifts occasional shock

Industrial Stamping, Repetitive shock, Shop conditions, 0.016 in./sec (rms) Reduce Maintenance Single axis,
manufacturing punch presses, continuous high (0.2 mm/sec) vibration, free, high load side restraint,

drop forge operation, temperature, oil frequent shock rating light damping
crushable and greases
materials

Semiconductor Precision Nearby road Air-conditioning 0.001–0.002 Reduce low-level Long-term Multiaxis,
inspection, traffic, factory failure in./sec (rms) vibration reliability, light damping
wafer fabrication site operations (0.025–0.050 verifiable 

mm/sec) performance

Research Diffraction- Adjacent Air-conditioning 0.0005–0.001 Reduce very low Very low level Multiaxis,
limited optics, equipment, failure in./sec (rms) level vibration characteristics light damping
critical HVAC (0.012–0.025 
measurements operations mm/sec)

Seismic Infrastructure, Earthquake and Temperature, IBC 2000, Restrain Large lateral Multiaxis,
facilities, accidental high humidity UBC 1997 structures, deflection, limit restraint,
occupied explosions specifications dissipate energy multiple shocks moderate to 
buildings and codes high damping



isolator can be used for different situations. The same mount may fit a variety of
applications ranging from building facilities to mobile equipment and commercial
electronics, depending on the availability of the isolator, its operating features, and
the user’s design. Commonly used isolators for buildings and machinery are open
and housed steel springs, bonded elastomer, air springs, and mounts using metal
spring and rubber elements. Other designs, used for both military and industrial pur-
poses, include multiloop helical wire rope (preformed steel cable) and high-
deflection elastomer shock mounts. Seismic isolation and energy dissipation devices
have been developed for structural control. In the area of very low level table isola-
tion, leveling, controlled pneumatic mounts, or other “zero or negative” stiffness
devices are used.There are numerous products, such as composite open- and closed-
cell foams, glass fiber, layered elastomer pads, and plastic mesh, that can also be
effective for general applications. There is a rapidly expanding field of vibration iso-
lation for nanotechnology research and development (R&D) and manufacturing.

There are three basic conditions: (1) where vibration is predominant, (2) where
shock is the major concern, and (3) severe service where both shock and vibration
occur.

Vibration. These isolators are intended primarily to reduce the response at reso-
nance and then to ensure that the output remains below the level of applied excita-
tion at higher frequencies beyond resonance. The isolator must also be capable of
dissipating energy (damping) and limiting displacement. Relative motion across the
mount is generally small.

Shock. The mount undergoes abrupt velocity or displacement change and must
absorb large amounts of shock energy, then release the energy slowly at the shock
response frequency of the isolation system. The mount must be capable of relatively
large displacement to reduce the shock experienced at the equipment that it sup-
ports. For example, a drop from 18 in. (45.7 cm) onto a hard floor typically requires
an isolator capable of nearly 4 in. (10.16 cm) of deflection to reduce the shock to
about 20g at the equipment. Many high-deflection isolators are capable of com-
pressing 0.5 to 0.6 of static height; the mount would have to be nearly 7 in. (17.78 cm)
tall for 4 in. (10.16 cm) of stroke space.

Severe Service. The mount has to have a low natural frequency in its small-
amplitude motion region to isolate vibrations and the ability to deflect in a con-
trolled and repeatable way over a larger stroke to absorb high-acceleration,
short-duration shock loads. Selection favors the softening-type mount because of its
well-defined multistiffness characteristics—linear stiffness to approximately 10 to 15
percent of its initial stroke, then greater compliance and nearly constant force over
the second stage (75 to 80 percent of its stroke). Snubbing occurs in the final 10 to 15
percent of its stroke. Linear and stiffening isolators each have different characteris-
tics that can result in greater g’s than the softening mount. Hard snubbing is an
unpredictable condition and should be avoided.

SHOCK AND VIBRATION CRITERIA

The fragility of most equipment is often not well defined.There may be field reports
or test data from similar equipment indicating a threshold of S&V damage. But pre-
cise levels are uncertain. Test specifications, contract requirements, and design stan-
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dards should be used to establish levels that the equipment has to withstand. Peak
accelerations, direction, duration, and frequency range should be identified. Shock
response spectra (SRS) can be useful to identify the distribution of energy (based on
pseudo-velocity values) at different frequencies.Allowable stresses in structural ele-
ments, electronic packaging, chassis, connectors, and other critical parts of equip-
ment should be checked. Criteria have been established describing S&V levels
ranging from imperceptible to structural damage in buildings and structures. A gen-
eral method of limits is to first set a maximum level expected from machinery. Sec-
ond, specify or calculate S&V that operation of the equipment may cause, such as in
laboratory, office, or other areas. The range of input force versus response can then
be characterized and compared. For operating equipment, similar means are applied
to identify threshold versus maximum levels. Attenuation using commercial mounts
is possibly the simplest hardware method of reducing higher g’s to what is accept-
able at least cost. Knowing the acceptable level at sensitive areas and comparing that
against the levels generated by the nonisolated equipment yields a reduction factor
or T for effective isolation.

ISOLATION—ESSENTIAL PROPERTIES

Dynamic loads can vary over time and with operation of the equipment or machinery.
The isolator must therefore exhibit (1) well-defined load deflection characteristics, (2)
repeatable multiaxis stiffness and damping, (3) absence of creep or set, (4) return to
the centered position after load, and (5) resistance to conditions that can affect stiff-
ness and damping. Other issues include load stability and verification of performance.
In airborne and space applications, steady-state acceleration forces should also be con-
sidered due to flight maneuvers and launch loads. For example, a constant-stiffness,
5-Hz housed mount experiences 0.38 in. (0.97 cm) static deflection under a 1-g load.
The same mount loaded to 4g, as in a rocket launch, would need 1.5 in. (3.81 cm) plus
the expected vibration displacement for free movement. Many small-displacement
vibration mounts have free-space capability less than 1.0 in. (2.54 cm) and thus would
be ineffective under sustained acceleration loads as the mount snubs within its hous-
ing. Temperature extremes, aging, and immersion in fluids can affect material proper-
ties and cause degradation or change in stiffness or damping and should be taken into
account in calculating response. In general, undesirable changes are a frequency shift
of more than 10 percent or change in the amount of damping by more than 15 percent
from published values. Matched sets of isolators are often required for precise posi-
tion control such as aircraft gyro stability. Molded elastomer isolators can exhibit 10 to
15 percent variation in stiffness from among the same production lot. Metal mounts
(axial steel spring) exhibit 1 to 2 percent variation. Cable metal isolators typically
range from 10 to 15 percent, depending on the wire rope construction. Equations that
focus on stiffness and damping are often incomplete because the coupling characteris-
tics within the isolator from one direction to another are uncertain. Empirically
derived values and test verification are important in mount design.

How the isolator deforms under load generally falls into one or more of the types
shown in Fig. 39.4. An isolator will deform in one or more of several ways depending
on the properties, the orientation of the mount, and the direction of applied load.
Compression moves the upper surface toward the base. Shear and roll shift the upper
surface laterally. Directions are defined with respect to the major axes of the mount.
In some cases, loads may be applied in combined directions. Every isolator can be
described by a set of unique load deflection (LD) stiffness curves. A particular model
may have load ratings and LD curves that are similar in form for the entire isolator
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series. The allowable load depends on the construction of the isolator, its design, and
the strength of the resilient material and also on the stiffness and strain capacity of the
mount. Mounts should be derated in the case of sustained vibration or a large number
of stress reversal cycles. Refer to published catalogs for specific data. Manufacturers’
stiffness data is often based on static load measurements made on a pair of mounts in
a constrained direction (roll or shear) and on a single mount in compression.

Analytical techniques for calculating resonant frequencies and response of iso-
lated systems require values for damping and stiffness properties of the candidate
isolators. Details of analysis are covered in Chap. 38. Manufacturers’ catalogs and
design guidelines that describe applications can be helpful, too. In calculations, the
basic approach is to consider the unit as a rigid mass, and the entire system is then
characterized as a six-degree-of-freedom rigid body on mounts having three transla-
tion and three rotational modes. Objectives are usually to select and arrange the iso-
lators in such a way that rotational responses are minimized and the translation
response in the direction of interest at the critical frequencies of the unit is substan-
tially reduced. A simple relationship for the natural frequency fn of a single-degree-
of-freedom (SDOF) system is

fn = 3.13�k/W� (without damping) (39.1)

where k = stiffness, lb/in.
W = weight, lb

Weight and center of gravity (CG) are known from drawings and design infor-
mation about the unit. Values for damping and stiffness are properties of the isola-
tors and are generally available from data sheets. Consideration of how the
properties were measured by the isolator manufacturer is important. There are few
standardized test methods among commercial companies. It is here that the user’s
engineering criteria and test experience are useful in the final selection of isolators.
Several issues should be closely defined in order to establish the operating parame-
ters of the isolators.
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FIGURE 39.4 An isolator under load will deform in one or more of several ways, depending on the
orientation and the direction of the applied load.



Damping. Estimate the percentage of critical damping c/cc. Is damping constant
over the entire temperature range in which the isolator is expected to operate? Is
the damping axis sensitive? Is the damping dependent on the amount of relative dis-
placement of the isolator?

Stiffness. Examine the load versus deflection characteristics in each direction.
Are the stiffness curves relatively linear or nonlinear and are the LD curves stable,
meaning that the mount exhibits minimal change in stiffness between the first, sec-
ond, and successive load cycles? If nonlinear, list k values for small-amplitude versus
large-amplitude motion of the mount.

Orientation. Measured test data for isolators is usually obtained with mounts
constrained to move in one axis only. There is no allowance for simultaneous free
motion in vertical and lateral directions. For example, in actual use, isolators can
undergo shear and compression to an oblique load. Does load in one direction affect
the stiffness in another direction?

Stability. Due to simultaneous compression and lateral movement of the mount,
combined loads may cause buckling sooner than in a single-direction test. By what
percentage should the allowable vertical load be reduced?

SELECTION AND DESIGN

The designer’s first decision is to determine whether isolation is needed. In some
cases, the equipment is rugged enough to withstand shock and vibration without iso-
lator protection. When isolation is necessary, it is important to establish the general
layout of the isolation system, the available space, and the location of the mounts.This
will, in turn, define the allowable static height, width, and depth of the unit isolators.
Allowance should then be made for extension in all directions and sway space of the
equipment. Also, make sure that the mounts would not be short-circuited by nearby
support brackets or restraint from semirigid electrical cables. Having set these limits,
analyses should be done to validate isolation system layout and verify that the candi-
date isolators can support the load under all conditions within available space. Deter-
mine the isolator’s stiffness and damping characteristics. These are important in
considering vibration and shock isolation effectiveness, and whether the mounts have
sufficient control to limit deflection and meet requirements. The amount of static
deflection should be calculated. This helps in visually determining how well the sys-
tem is balanced and whether it is properly carrying the entire load. Measurements
and leveling may be needed to verify static balance. Major components of an isolated
system typically involve the mass, the unit isolators, and an isolation platform.

GENERAL GUIDELINES—PART 1

1. Establish the center of gravity and overall mass (equipment), and locate possible
attachment places for the isolators. Establish the allowable shock and vibration
levels that the unit can withstand with a reasonable margin of safety.The isolators
can usually be attached between the unit and the support frame (or foundation).
Refer to Table 39.3. Minimize rotation of the isolated unit. This can be achieved
when the center of mass coincides with the center of dynamic stiffness and the
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TABLE 39.3 Vibration Isolation Characteristics

Overhead support Side support Inclined support Base mounted Base and side or rear

Equipment
types Displays Packaged Packaged Universal Universal

Arrangement

Feasibility Useful for tight spaces CG support; check for May require more Commonly used where For equipment isolation
range and vertical vibrations; stiffness in each space for isolators; moderate CG requires where the CG is high 

sway is possible direction; often used in useful for shock no stabilizers; sway is and coupling is a 
electronics isolation possible concern

Dynamic Horizontal motions Minimal coupling Negligible Horizontal motions Small pitch and sway 
coupling possible possible can be set

Rattle space Small, under 1 in. Small, under 1 in. Moderate, under 1.5 in. Small, under 1 in. Moderate, under 1.5 in.
needed

Dynamic Not critical Not critical May be critical with Not critical Can be critical with 
stability very soft isolators very soft isolators

Static Not critical above 4 Hz Not critical above 4 Hz Not critical above 4 Hz Not critical above 4 Hz Not critical above 4 Hz
stability
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Shock isolation characteristics

Feasibility Useful for tight spaces CG support, check for May require more Commonly used where For equipment isolation 
range and vertical shock; stiffness in each space for isolators; moderate CG requires where the CG is high 

sway is possible if large direction; often used in useful for shock no stabilizers; sway is and coupling is a 
deflection electronics; limited isolation likely concern

space

Dynamic Horizontal motions Moderate coupling Small coupling can Horizontal motions Small pitch and sway 
coupling possible be set possible can be set

Rattle space Moderate, under 2 in. Moderate, under 2 in. Moderate, under 2.5 in. Moderate, under 3 in. Large, under 5 in.
needed

Dynamic Can be critical Can be critical Will be critical with Can be critical Will be critical with 
stability very soft isolators; very soft isolators;

Check sway space Check sway space Check sway space Check sway space Check sway space

Static
stability Not critical above 5 Hz Not critical above 5 Hz Not critical above 5 Hz Not critical above 5 Hz Not critical above 5 Hz

Remarks: For stability, shock response frequency of the mount should be kept above 5 Hz.
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system is statically and dynamically stable. The loads should be distributed to the
mounts so that deflection is nearly the same at each isolator in the principal
directions of motion. For example, static deflections should be nearly equal in the
vertical direction if vibration is especially severe in this direction. Consider can-
didate mounts (type, size, dimensions), and group the isolators to establish the
size of the platform and the number of isolators. Mounts can be represented as
damped springs in the X, Y, Z axes.

2. Position the base isolators so that they balance the load vertically. The isolators
should be in line with the unit’s structural frame. In some cases, an intermediate
baseplate can be used to carry the load from the unit through its structural mem-
bers and into the isolators. Mounts should be secured to the foundation.They can
be secured to a separate plate that is removable. In this way the mounts can be
replaced at a later time for maintenance or equipment changes. The isolators
carry load and should be considered a part of the equipment’s structural design.
Stabilizers (if required) should be attached to a rigid outer structure such as a
wall, columns, or overhead beams. They can experience different levels of vibra-
tion or shock than the base mounts that are attached to a foundation.

3. Define the input S&V at each isolator group. Check the stiffness of the unit and
platform to ensure that they are sufficiently rigid and resonate at a frequency
well above that of the isolation system.

4. Consider alternative designs—for example, base mounts only, base and stabilizer
isolators, or isolators and external dampers. Perform dynamic analysis for each
design at the lower and upper stiffness and damping ranges of candidate isola-
tors. Reposition the mounts if necessary, use readily available mounts, and avoid
custom or specially engineered mounts in the preliminary design.

5. Restrain pitching and sway motion of a tall unit (one whose height is more than
1.5 times its narrow width) with stabilizing mounts near its top.The stabilizers can
be mounted behind or above the tall unit and should be oriented to minimize free
motion of the top outer corners of the unit. For a shorter unit whose width and
depth are approximately equal to the height of the CG, stabilizers can be placed
in the plane of the CG or slightly above the CG. Stabilizers can be avoided for a
unit whose width and depth are 1.5 times greater than the height. In this case,
base isolators may be sufficient, provided that the lateral stiffness of the mounts
is at least 0.5 times the vertical stiffness. Verify the stiffness values of the isolator
in its principal directions. If necessary, adjust stiffness data so that it correctly
characterizes the expected movement of the isolators.

GENERAL GUIDELINES—PART 2

The design of isolation systems can be simplified by using the simplest and fewest
number of proven mounts that can carry the load in the available space. Because
conditions may not be well defined, isolation can require broad frequency response,
while the ideal design would be tuned to a narrow band of frequencies.There should
be only minimal shift of performance if the isolated weight changes or unbalanced
loads operate at variable speeds or disturbances vary with time.The designer should
evaluate several candidate designs before making a final selection of mounts. The
stiffness and location of the isolators controls the isolated frequencies of the unit
and its stability and motion. The number, location, and orientations of the isolators
often receive only modest attention in the preliminary stage. Equipment and posi-
tion can change. Isolator layout is designed to decouple between translations and
rotations of the isolated unit and simplify the analysis. This is sometimes referred to
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as the generic system approach. The balanced design—isolators sharing equal load
and the dynamic center of gravity of the isolation system reasonably close to the iso-
lated mass CG—has been proven in use and verified by analysis.

In the usual arrangement, isolators are in parallel and supporting the unit in equal
proportion of distributed weight to stiffness of the mount at each location. Mounts
are sometimes used in series for greater deflection and lower spring rate.A variety of
mounting versions is shown in Fig. 39.5. Multiaxis designs include base and stabilizer
mounts with stiffness matched to total load in each direction. Dual isolators, in paral-
lel and in series, have been used in shock control. However, difficulties in properly

FIGURE 39.5 Variety of isolation mounting arrangements. Some isolators have preferred direc-
tions. Stiffness may be axis-dependent. Parallel and series mounting is used; parallel is the most com-
mon type.



matching dynamic stiffness rates from among isolators of different types can result in
poor shock attenuation. Known as two-stage snubbing designs, they are not recom-
mended without extensive shock testing. Snubbing effects are not predictable, and
high g’s can result. Commercial mounts are available that are intended for vibration
control in one set and then to dissipate shock in a parallel set of isolators that are ini-
tiated once beyond the vibration region.The stiffness of mounts in parallel is the sum
kt = � kn. In a series arrangement, it is 1/kt = � 1/kn. When isolators are inclined, the
stiffness in the vertical and horizontal directions kv and kh is a function of the angle of
the isolators with respect to the force direction and should be measured by test.

STEPS FOR SELECTING ISOLATORS

VIBRATION

1. Determine the static load that each isolator in the mounting system supports.
Simplest is if the total load is equally divided among the number of isolators and
the mounts are uniformly positioned to support the mass at several places. The
total stiffness is the combined sum of individual stiffness for each mount. Review
manufacturers’ documentation and catalogs for complete descriptions of candi-
date isolator properties and performance in similar applications.

2. Knowing or estimating the sensitivity of the equipment, determine the two to
three lowest critical frequencies of the unit. Substantial vibration at these fre-
quencies often contributes to damage or unsatisfactory operating performance.

3. Determine the effectiveness of the isolation system needed to reduce the vibra-
tion at the critical frequencies to acceptable levels. Set an adequate margin of
safety. Refer to the isolation effectiveness chart in Chap. 38. A reasonable guide-
line is 75 to 85 percent isolation. Check also that secondary vibrations above the
isolators are within acceptable limits. From the published stiffness data and the
static load on the mounts, calculate the natural frequency of the isolation/mass
system. Based on the ratio of driving frequency versus natural frequency, deter-
mine the percentage of isolation at the critical or resonant frequencies of the
equipment. Use stiffness values from the load deflection curves corresponding to
the orientation in which the isolator is used. Check the natural frequency in the
lateral directions for vibration effectiveness in those directions, too.

4. Isolators that meet requirements will have a natural frequency approximately
one-fourth of the first critical frequency or predominant resonant frequency of
the unit. Select an isolator having 10 to 20 percent of critical damping for motion
control. Elastomers should have a dynamic-to-static stiffness ratio of 1.2 to 3.0,
depending on the material. Refer to the isolator data sheets. For cable and steel
spring isolation, the dynamic-to-static stiffness ratio is 1.0 to 1.1.

Examples of analysis for vibration isolation are given in Chap. 38 and in Ref. 1,
Chap. 32.

SHOCK

1. As in the vibration selection, determine the static load each mount supports. Esti-
mate the fragility of the unit in terms of the g’s that can cause damage or what is
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believed to be the maximum stress level that the unit can withstand before dam-
age occurs. For multiple shocks, the allowable shock on a unit should be derated
by a factor of at least 1.2 to 1.3. For example, for COTS electronics, a 12- to 15-g
shock appears to be an acceptable criterion. “Hardened” electronics can meet 25
to 30g. Machinery such as pumps and compressors are often limited to 25 to 35g.
Equipment can often withstand greater shock loads than static loads due to the
ductility of the components and structural parts and the fact that the stresses may
not be distributed throughout the unit as they are in static conditions.

2. Calculate the shock response frequency of the isolation system and compare it to
the predominant frequency of the shock pulse. From the dynamic load factor
curves, select the appropriate shock pulse and verify that there is sufficient fre-
quency separation that load coupling is not a factor. Refer to Fig. 39.5 and Chap.
38 for typical DLF curves.

3. Select the mount whose shock transmissibility is less than 0.4 to 0.5 at the speci-
fied pulse duration and shock type, such as 11-ms half-sine, triangular, or ramp.
Check that the stroke capability of the isolator is at least 25 percent greater than
the calculated deflection.

Shock response is dependent on the type of shock pulse (half-sine, triangular,
irregular) and how near the isolation frequency is to the shock frequency. Known as
coupling analysis, the ratio of pulse duration (in terms of frequency) to effective
shock response frequency plus the amount of damping determines the expected
response. When selecting isolators, particularly nonlinear mounts, it is important to
evaluate the effective shock response frequency of the system in all directions, as well
as its damping. Limiting motion in the principal shock direction, the damping ratio is
a coupling term in modal equations and can be a factor in increased acceleration in
cross-axis response. Because shock in one direction can also result in motion in other
directions, verify that allowable sway space all around the unit is not exceeded.

Examples of analysis for shock isolation are given in Chap. 38 and in Ref. 1,
Chap. 32.

ATTACHING AND LOCATING ISOLATORS

Isolators can be directly attached to equipment if the unit is sufficiently rigid that
the mounts and unit are an integral assembly and provisions for attachment exist.
However, if the geometry is complex and the mass unevenly distributed, it may be
necessary to use an intermediate frame (or platform) to position the isolators. Cor-
rectly designed, a frame also simplifies installation and corrects for unbalance or
misalignment of the unit and improperly positioned mounts. Improper placement
will contribute to pitch and sway of a unit and can increase its peak accelerations
and displacement. The addition of substantial mass to the frame (the frame then be-
comes an inertia base) decreases the acceleration response at the higher frequencies
above resonance.The unit itself may not be a rigid mass.There are examples where, on
the same unit such as a missile engine, widely spaced large masses went into different
modes at closely coupled frequencies and the measured accelerations were substan-
tially more than expected. Forward isolators responded at a different frequency than
rear isolators due to the large masses reacting independently of one another.

A poorly designed frame may lack adequate stiffness and couple with the isolation
frequency.This can broaden the frequency range at which amplification occurs. Chap-
ter 38 notes that the frequency ratio of the frame to isolation should be at least 5 to 1
for adequate separation of the two resonant modes. For example, that would require a
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frame assembly at 35 Hz if the isolation system were at 7 Hz. Other literature refers to
a 10-to-1 separation, which is ideal but may not be possible to attain. The frequency
response of any isolated mass should be checked for coupling. For example, electronic
racks are commonly mounted with base and stabilizer isolators. Many populated racks
have resonant frequencies in bending at 15 to 17 Hz, which could couple with the lat-
eral resonance of the isolation system at 7 to 8 Hz. Shock response could also be
affected because the shock above the isolators might then be amplified. Good design
practice is to secure the frame and unit together along the length and depth of the unit.
This enables the isolation frame to stiffen and strengthen the unit.

In selecting isolators, the foundation is usually taken as rigid and a simple mass
model can be adequate. However, if the equipment and/or foundation to which the
isolators are attached is less stiff than assumed (and also poorly damped), the com-
bined dynamics can contribute to the response spectrum of the system. T at equip-
ment resonance can be amplified and/or shock frequency coupling will increase the
peak acceleration response of the unit at critical frequencies.An example is 5-Hz iso-
lated equipment installed on a 14-Hz deck on a ship. The same equipment could also
be located on a 25-Hz deck elsewhere on the ship. Because the 25-Hz deck is much
stiffer than the 14-Hz deck, the response factor of identical equipment would be dif-
ferent to the same level of vibration or shock. The dynamic load factor is relatively
large (0.45) in the 14-Hz case, and only 0.25 for the stiffer deck. Similar examples can
describe equipment on upper levels of a tower versus equipment at ground level.

Along with rigidity, a unitized frame at the isolators may also be needed to ensure
nearly the same dynamic input at all isolator supports. T effects with foundation
flexibility are shown in Fig. 39.6 versus f/fn for a two-stage compound system having
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FIGURE 39.6 Example:The transmissibility plot of a 2-DOF system showing the first peak at
isolation resonance (5 Hz) and a second peak at basically equipment resonance above the isola-
tors (20 Hz). Peak amplitude varies with damping.



0.1 c/cc and 0.05 c/cc damping. Isolation is at 5 Hz and foundation at 20 Hz in this
example. As the base frequency decreases, the second resonance shifts downward,
closer to the isolation system, and the overall amplification region broadens. Above
the isolators, similar broadening effects can occur if equipment resonance is at rela-
tively low frequency and near the resonance of the isolation system.An isolated sub-
frame can be effectively used to create a 2-DOF system with greater falloff at the
higher frequencies.

If the unit is reasonably stiff and acts as a single mass, the isolation system can
control the movement and acceleration response of the unit in all directions, presum-
ing that it remains stable.The equipment, however, might be an assembly of light and
heavy components, meaning that the lighter members could have greater motion due
to the transmitted forces. Of particular concern in shock, relative motion at adjacent
components can result in local impact and large contact stresses, which cause damage
that is not readily apparent or cannot be examined until the part is removed.

ISOLATION MODEL

Shock and vibration analysis of most isolation systems can be done using a variety of
commercial finite element analysis (FEA) programs. In these, the structural unit
should be drawn dimensionally to represent the rigid mass and the isolators assigned
stiffness values in their principal operating directions at each isolator location. For
simplicity during preliminary design, the unit can be represented as a rigid structure
with distributed concentrated masses; for example, the structure can represent an
enclosure and the total weight including equipment is supported by the frame equally
at the multiple locations. The combined center of gravity of the model should match
the CG of the actual unit. Damping can be neglected. Each mount is assigned a linear
stiffness value and fixed to ground at one end.The other end is attached to the unit at
a node. The model must be restrained and stable. Each mass node is given X, Y, and
Z degrees of freedom. For a dynamic problem, there are as many eigenvalues and
eigenvectors as there are DOF in the model. Each eigenvalue is related to a natural
frequency, and each eigenvector is related to the mode shape at that frequency. For
the usual isolation problem, only the first few natural frequencies are important. For
a well-balanced system, most interest will be in translation modes. Higher frequencies
constitute structural response and are not of concern here, since the structure is not
given much fidelity in the preliminary design. The focus is on the isolation frequen-
cies and modes of the isolation system. Commonly used software in the United States
includes Ansys,Algor, Cosmos, and NEI Nastran. Drawings can be imported directly
from most computer-aided design (CAD) programs.

ERRORS IN MODELING

A model of the equipment and isolation system is useful to predict the effectiveness
of the proposed isolation.This can take a form ranging from simple hand calculations
to complex multi-degree-of-freedom calculations showing displacement, resonant
frequencies, and modes.As with any model, there are issues that can lead to errors in
analysis. Results should be checked with test data. Possible errors are as follows:

1. Overly complicated or poor assumptions. Has the model been checked with sim-
ilar applications from the same manufacturer? Are the mounts stable at large
deflection? What are the effects of combined loads? Where is the actual response
to be measured versus predicted distribution of loads in the model?
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2. Assumption that the equipment is a homogeneous rigid mass. Evaluate the largest
individual masses. If supported by brackets or internal isolators, check that these
do not act as secondary springs and couple with the primary isolation system.

3. Differences in vibration (or shock) at one mount versus another. An example is a
pump mounted on a foundation where the discharge piping at the pump is
attached with a semirigid tubular connection that should have been a flexible bel-
lows connection.This semirigid coupling results in introducing vibrations into the
pump via the piping system from other pumps on the line and changes the
response characteristics of the unit.

4. A wrong interpretation of the manufacturer’s stiffness and damping data. For exam-
ple, are they first-, second-, or third-cycle measurements? Are they average values
versus incremental values, and over what deflection range?

5. Is the applied load axis sensitive? Stiffness is based on free motion of the unit ver-
sus test data obtained under single-axis conditions. For example, mounts tested in
the lab in shear may have been restrained from moving in any other direction. In
actual use, lateral shear movement can also simultaneously compress the mount,
and the effective shear stiffness would be affected (usually decreased).

ISOLATION AND POSSIBLE DAMAGE 

OF EQUIPMENT

The stiffness of the isolator should be matched to the expected level of shock and
vibration.Very low level vibration may not excite the mount. It is important that the
S&V force adequately load the isolator so that it is fully compliant over its operat-
ing range. For instance, in a lightly loaded mount there may be insufficient strain in
the material to overcome internal friction, and the elasticity of the mount would
then be considerably underrated.The mount would appear to be very stiff until load
is applied and the threshold of force is exceeded. This can be seen in nonlinear load
deflection curves and the apparent stiffening at a load point below the manufac-
turer’s static rating. The slope of the hysteresis loop may be stiffer at very small
amplitude of the cycle, becoming shallower (softer) as the amplitude of the loop
increases.

Is the S&V amplitude sufficient to drive the mount and uniformly load its com-
pliant elements? One guideline is to check the expected amplitude ratings and ver-
ify that the stiffness was measured at or near the expected amplitude. For example,
an input of 0.5-g continuous sine vibration at 25 Hz was known to cause fatigue dam-
age in welds. The isolators should therefore be rated below 5 Hz in order to be rea-
sonably effective. Was the stiffness measured at an amplitude of 0.5g. Did the
resonant frequency shift when tested at other levels?

Vibration damage often occurs when allowable fatigue strength is exceeded. This
can be determined from Miner’s equation, which relates the number of stress cycles
and the amplitude of vibration to the number of cycles necessary to cause damage at
each particular amplitude. Results are based on a range of measurements and tests
including sine and random vibration. Even with the benefits of isolation, isolator
damping values can have significant effects on fatigue of the isolator. In vibration,
T and displacement of the mount is a function of f/fn and damping ratio c/cc. Com-
paring two similar isolators having equal stiffness, a simple relationship for time to
failure in vibration is t1/t2 = (1 − ζ1/ζ2)b, where t represents time to failure, ζ designates
c/cc, and b is a material factor.
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Shock damage to equipment often depends on the magnitude of peak accelera-
tion and time duration (effective velocity) and the number of shocks. Damage due
to overstress can occur because of a single impulse or the result of a relatively
small number of shocks. Extensive shock testing has been done to quantify the
damage potential to equipment from the relationship of peak amplitude, pulse
shape, and equivalent drop velocity. Damage boundary curves have been devel-
oped for a variety of equipment, and controlled impact tests have been designed.
Standard test procedures are being developed to relate drop height and impact
surface to shock response spectra in order to characterize shock in terms of allow-
able SRS for different classes and types of equipment. Several methods use con-
trolled drop machines to establish an acceleration and velocity boundary damage
profile of equipment.

H.A. Gaberson, in Ref. 2, describes a series of shock tests indicating that damage
to one class of fans was related to the velocity imposed during shock. Regardless of
the actual peak g’s in shock, damage to the fans was caused when the velocity was
greatest due to the combination of pulse duration, shape of pulse, and duration of
shock. It is inferred that high velocity was the major contributor to shock-induced
damage. There are thought to be several main factors: (1) equipment and structure
vibrate in mode shapes at their modal natural frequencies, (2) damage occurs when
stress exceeds strength, (3) peak modal velocity is proportional to peak stress, (4)
there are absolute limits to modal velocity that equipment can survive, (5) the unit
accepts shock energy only at its modal frequencies, (6) isolation enables maximum
pseudo-velocities to occur below the lowest mode of the equipment at levels less
than that without isolation, and (7) pseudo-velocities more than 100 ips (254 cm/sec)
are dangerous to the equipment and should be avoided.

SRS plots on four-coordinate paper show the frequency range where the shock
can cause high stress and also show the peak shock deflection and the peak acceler-
ation. These plots can also show reduction through isolation and the shift of the
pseudo-velocity range that results. Velocities can be lower because the isolation
effectively shifts the response to the lower part of the frequencies and decreases the
acceleration amplitude at the higher frequencies. Most stress failure theories indi-
cate that multiaxis stresses can be more severe than single-axis stress and unit
strength should be derated when combined loads are involved.

Example 39.1. High velocities (associated with large peak g’s in the 25- to 50-Hz
region) were known to be major contributors to damage of certain types of PC
boards in electronics. Shifting the peaks by means of an isolation system (lower fre-
quency in the SRS) reduced the pseudo-velocity at the unit’s critical frequencies. Dis-
placement was reduced, and bending stress associated with damage was decreased.

Example 39.2. The SRS of a typical shock input to hard-mounted equipment
during the MIL S 901D Heavy Weight barge test is shown in Fig. 39.7. Relatively
high velocities are evident in the range of 14 to 100 Hz. For the purposes of analysis,
damping was set at 0.05 c/cc. Other values can be used in analysis; however, the gen-
eral shape of the SRS curve would be the same but it would have different ampli-
tudes. If the first mode of the equipment was 25 Hz, the velocity value V in this case
would be approximately 120 in./sec (304.8 cm/sec). For a component whose allow-
able stress was based on commercial loads, failure would probably have occurred.
By comparison, Fig. 39.7 shows the SRS of the isolated unit with its isolation cen-
tered at 7 Hz.At 25 Hz (isolated equipment), the velocity is approximately 36 in./sec
(914.4 cm/sec) versus 120 in./sec (304.8 cm/sec), hard mounted. Based on stress as a
function of kinetic energy (1⁄2 mV2) the change is then dependent on the ratio of
velocities (v1/v2)2, meaning that the critical stress in this example has been substan-
tially reduced.
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FIGURE 39.7 (A) The SRS plot of a shock at the input side to the isolation/mass system.The foun-
dation was characterized as a 14-Hz deck. Relatively high velocities are evident in the range of 14 to
100 Hz. (B) The SRS response plot of the isolated unit shows that the velocities over the same fre-
quency range of 14 to 100 Hz are considerably reduced from the input.

SHOCK RESPONSE SPECTRA (SRS)

The shock response spectrum is based on mathematical analysis that describes the
pulse in terms of the calculated response of multiple SDOF systems having specified
damping ratios and gives the maximum acceleration, velocity, and displacement of
each spring system. A candidate isolation system can be considered as being repre-
sented by one or more of the lower-frequency spring modes. The results assume lin-
ear spring systems and superposition are therefore permissible when combining the
peaks of the isolation system and equipment modes so long as they are linear. The
results would have to be modified in the case of nonlinear mounts. Experience has
shown that the greatest portion of response occurs in one or two modes (usually the
predominant modes of the isolation system in the shock direction) and that, in gen-
eral, not more than two to three modes contribute to damage of the equipment.
Modeling isolation from among the SRS lower frequencies can simplify separating
the first few modes so that the peaks can be clearly shown.Adding the peaks of indi-
vidual modes can be done according to analytical methods that are generally con-
servative. An effective isolation system would display an increase in acceleration
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and velocity at the low-frequency end of the SRS plot (compared to a hard-mounted
system) but substantially less acceleration and velocity at the higher frequencies in
the region band where component or part deficiencies such as poor solder joints,
insert pullout, fracture, or other mechanical damage often occur.

UNIVERSE OF ISOLATORS

There are literally many thousands of commercial mounts manufactured and sold
to protect equipment from shock and vibration. Isolators are produced in a variety
of types, sizes, and load ratings to meet standards and specifications for specific and
general use. Specific use, for example, may involve all-terrain and military vehicles;
general use includes entertainment centers and residential comfort equipment. In
addition to standard designs, custom isolators are continually being developed for
special applications. Some sense of the many different mounts can be obtained
from Fig. 39.8 (presentation photos from several manufacturers), showing some of
the different configurations and designs available. Passive isolators are available
worldwide in many designs and resilient materials, sometimes with the addition of
secondary limiters for snubbing purposes. In the United States today, there are well
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FIGURE 39.8 Elastomer and cable mounts are produced in different configurations and designs
from many manufacturers. Other types include pneumatic and steel-spring isolators. Composites and
molded pads are also used for isolation.



over 100 elastomer isolator manufacturers, each offering a range of models in a
variety of synthetic compounds and natural rubber. These are molded products or
products with the elastomer elements captured and retained in a metal housing.
Other companies specialize in steel-spring, pneumatic, helical cable, and other non-
molded isolators as well as composites using elliptical steel leaf springs for stiffness
and polymers for damping.

Manufacturer catalogs usually provide a description of the isolator type, construc-
tion details, load ratings, and applications in which the mount is commonly used. In
general, heavy-duty versions of particular isolators are intended for industrial and
mobile applications; smaller or lighter designs are for commercial and residential
installations. Isolator types are compared in Table 39.4, including characteristics, fea-
tures, and applications.

Given the extensive variety and type of isolators manufactured and sold through-
out the world, it is no surprise that there is little standardization of commercial
mounts. Dimensions, hole patterns, materials of construction, and load capacity may
be different, even among similar-looking mounts. Applications, markets, and usage
have led to preferred types of mounts within a group of industries. For example, heat-
ing, ventilation, and air-conditioning (HVAC) facilities typically use axial vertical
steel-spring mounts with restraint for compressors, air handlers, pumps, and fan coil
units. Piping is often supported with open steel or rubber springs. Seismic design
requires restraint to capture and secure secondary units such as cooling towers in the
event of large displacement.

Other applications such as stamping machinery and punch presses use large-stroke
steel springs for shock reduction. Heavy mobile equipment is frequently installed on
preloaded laterally restrained steel springs and/or cuplike elastomer mounts for mul-
tiaxis S&V protection. Spring-supported concrete inertia pads or steel frames are
often used with stationary rotating equipment. Research facilities may require very
low frequency microamplitude mounts. In many cases, it can be difficult to substitute
one supplier’s product for another, due to differences in mounting design and load
ratings. Stiffness/damping values are usually based on testing to the manufacturer’s
procedures, which are not necessarily standardized industry methods; thus, there can
be differences in results when comparing catalog values among different suppliers.
Properties at temperature extremes, for example, are materials dependent, and the
supplier should be contacted for the best available information. Likewise, due to the
complexity of the resilient materials, particularly elastomers and other polymers, and
their interacting effects from one direction to another, the relationships may not be
fully described in catalogs but can usually be provided by the manufacturer. Com-
parison of mounts only on the basis of dimensional and visual similarity and pub-
lished catalog data can lead to major differences in results.

ISOLATOR TYPES AND CHARACTERISTICS

Isolator types (see Table 39.4) from among widely used commercial mounts are
available from many suppliers. Versions of each type of mount ranging in com-
pression stiffness k, stiffness ratio k vertical/k lateral, and damping ratio c/cc are
usually listed in suppliers’ data sheets. General-use categories are (1) military and
aerospace electronics; (2) industrial, HVAC, manufacturing, and construction
machinery; (3) engine mounts for off-road, marine, and flight vehicles; (4) preci-
sion isolation; (5) engineered and custom facilities; (6) large structures and mobile
equipment; and (7) seismic applications. To achieve greater damping without
change of stiffness, materials have been merged in design—for example, metal
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mesh with elastomers, polymer-coated axial springs, staged damping layers, and
elastomer-impregnated cable mounts.

ELASTOMER ISOLATORS

Spring stiffness and damping are fundamental properties of all shock and vibration
isolators. Most elastomers are usable because of their low modulus of elasticity and
ability to undergo large strains (greater than 100 percent reversibly) in compact
designs. Shear modes are favored. Rubber is essentially incompressible, and
allowance is made for deformation in other directions. Isolator shape factor is
important. Shear modulus is relatively constant for load and configuration but
increases with an increase in hardness of the elastomer.

The newer-generation elastomer mounts have benefited from several factors.
First is the greater availability of compounded elastomer materials including sili-
cone and neoprene, better technical data and testing, and improved analytical mod-
eling using finite element analysis. Second, the geometry of the part, including the
use of composite materials, has enabled greater energy capacity in smaller volumes
than earlier designs. Third, molding techniques have been refined, with greater
awareness of stresses produced during manufacturing and the ability to more care-
fully regulate heat transfer throughout the mount, including the strength of adhe-
sives for bonding the rubber to metal plates. The size, shape, thickness, and
dimensions of the molded part are designed for various load ranges. Full use of geo-
metrical shape in flexure contributes to strain-induced stiffness. Changing elastomer
materials or the ratio of constituents in the compound can vary the stiffness of the
mount. Damping can also be affected. Durometer hardness change by use of fillers
is a means of increasing both stiffness and damping simultaneously. Two-stage pro-
gressive designs involving nonlinear stiffness have been used for vibration isolation
in the presence of intermittent shocks.

The energy capacity of a mount is a function of its elasticity, deflection capability,
and internal energy dissipation. For example, for an isolator to absorb the energy of
a mass dropped from a height, the kinetic energy of the falling mass must be less
than the total strain energy capacity of the mount as it deforms to its maximum
stroke. If not, the mount “bottoms” and very high g’s result. In vibration, resonance
will produce heat due to hysteresis in the mount (damping); the isolator will soften
and the frequency shifts downward, resulting in greater amplitude and eventually
leading to fatigue failure. Stopping a vibration resonance test to allow for the mount
to cool down is not uncommon. It has been noted that although capable of 200 per-
cent to 300 percent elongation, some very low frequency mounts (under 4 Hz) can
become unstable, resulting in set under large load. Standardized tests measure set
after the load has been removed and creep of the mount under constant force. Tests
to evaluate flame resistance, immersion in fluids, and other environmental condi-
tions are also done.

Silicone is widely used for its capabilities to meet extreme temperatures ranging
from −50 to 250°F (−10 to 157°C). Buna N and neoprene are lower-cost materials
but are more limited to wide temperatures. Hydrocarbons and ozone resistance are
better than with natural rubber. Materials literature is extensive and covers elas-
tomer properties in detail. Mechanical properties of rubber are given in Ref. 1, Chap.
33. Compounds of proprietary formulation are used for designated properties such
as greater damping ratio or modest stiffness change with temperature or aging.
Means to moderate the stiffness of rubber include adding metal or composite plates
in a layered arrangement in the molding process. Shear stiffness is increased by
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TABLE 39.4 Comparison of Isolator Types

Isolator Principal Operating 
type Material Reliability Linearity use method Features Issues

High arch Elastomer High Buckling in Shock and Passive Rugged design, Operates as a 
deflection compression, vibration large deflection stiffer mount in 

linear and less in all directions, vibration in the
stiff in roll and wide load range compression
shear direction

All-attitude Elastomer High Linear stiffness Vibration, Passive Rugged design, Can snub in 
cup mount greater in occasional shock versatile shock

compression, orientation
equal and less in 
lateral directions

Center plate Elastomer High Linear, nearly Vibration, all Passive Low profile Deflection 
mount same in all directions limited

directions

Fluidic Elastomer, gel Moderate Linear, stiffer Vibration, rough Passive Very good Not designed for 
elastomer filled in compression road isolation in torsion loads

random vibration

Helical cable Preformed wire High Buckling in Shock and Passive Rugged design, Operates as a 
rope, stainless compression, vibration large deflection stiffer mount in 
steel linear and less in all directions, vibration in the

stiff in roll and wide load range compression 
shear direction
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Axial steel Steel High Linear in vertical Industrial Passive Simple, highly Deflection 
spring direction, can be compressive predictable limited, can 

unstable in loads, machinery require very tall 
lateral directions mounts for  

shock, minimal 
damping

Pneumatic Elastomer Moderate to high Linear, intended Isolation tables Passive, can be Very effective for May leak air
for low-frequency active with servo low-level,
isolation controls low-frequency 

vibrations

Seismic Elastomer High Linear stiffness, Earthquake Passive Large lateral Engineered 
low in lateral deflection application
direction

Elastomer and High Linear stiffness, Earthquake Passive Large lateral Engineered 
lead plug low in lateral deflection application

direction after 
lead plug shears

Friction High Linear stiffness, Earthquake Passive Large lateral Engineered 
pendulum low in lateral deflection application

direction



means of boundary restraint at each plate or by changing the angle of inclination
between vertical and horizontal with respect to the applied load. Methods of
increasing compression stiffness are to restrain lateral bulge deformation and out-
ward expansion. A typical ratio of compression to shear stiffness is 3:1. Tapered
geometry, insertion plates, and ribbed metal construction can reduce the ratio to
nearly 1:1.

Isolators used in sustained vibration should have a generous bend radius at the
metal-to-elastomer interface and at corners, to reduce internal stresses. Deteriora-
tion of rubber bond strength can also be a concern. Attention should also be given
to the length of attachment fasteners that could extend into the body of the mount
if there are large relative deflections. Due to heat buildup, fatigue failure often
begins internal to the mount (where it can’t be seen until the tear propagates to the
outside wall). Precompression of the mount can be used to limit displacement into a
large stress region.

Compounds of natural rubber, neoprene, silicone, and butyl are frequently used
in elastomer isolators. Other materials include butadiene, nitrile, and propylene.
Black rubber is often used as filler. Elastomers can be molded in a variety of sizes
and shapes to fit spaces for which other types, such as shaped metals or composites,
require special machining. Injection and insertion of materials under high pressure
are common production molding methods. Spring equations for several simply
bonded rubber mounts are given in Ref. 3. For the same model, isolator stiffness and
load range are usually controlled by means of durometer hardness (40 to 75 Shore A
scale) of the basic compound. Damping can also be changed, depending on the type
of elastomer. For instance, natural rubber is typically rated at 2 to 3 percent of criti-
cal damping. Silicone and certain proprietary neoprene-based compounds are rated
at 10 to 15 percent c/cc.

The ratio of dynamic stiffness to static stiffness generally exceeds 1.2, depending
on the compound. Allowable creep is 2 to 3 percent of the original height for most
designs and materials under load. The temperature range for a stiffness variation of
20 to 25 percent from nominal ratings for silicone-based compounds is −50 to 250°F
(−10 to 157°C); the range for short-term exposure is greater. Other materials have
narrower operating temperatures over the 20 to 25 percent stiffness variation range.
Some elastomers may creep excessively over time. Continuous strains should not
exceed 10 to 15 percent in compression and tension or 25 to 50 percent in shear.Ten-
sile strengths of many compounded isolators are in the range of 2000 to 3500 lb/in2;
extremes are silicone at 800 lb/in2 and urethane at 8000 lb/in2. The modulus of elas-
ticity for rubber is not constant.There is no precise elastomer yield point until mate-
rial failure occurs in shear and tension.

Elastomer mounts exhibit basically linear stiffness; however, buckling deforma-
tion in high-deflection arch-shaped isolators produces nonlinearity due to the way in
which the elastomer column deforms under axial load. The column (thick rubber
wall) initially compresses, then buckles under load (effective stiffness transition
region), and the body of the mount moves laterally (predominantly outward in
shear) until the walls are fully compressed and snubbing occurs. Damping is the dif-
ference between deforming work and elastic recovery.There is usually full recovery,
and the mount returns to its original position after the load has been removed. The
percentage of damping increases with increased rubber hardness; for example, natu-
ral rubber increases from 6 to 30 percent, meaning that 30 percent of the total energy
impressed on the mount is absorbed in one cycle.With butadiene types, damping val-
ues are higher for soft durometers but nearly the same for harder durometers.
Highly damped rubber can exhibit compression set, resulting in residual deforma-
tion following the removal of severe loads.
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Within the range of isolation mount frequencies (typically 5 to 25 Hz), the
dynamic stiffness is independent of frequency but varies with durometer and com-
pound. The relationship of dynamic to static stiffness is

k dynamic = n ∗ k static (39.2)

where n denotes a dynamic stiffness correction factor.
As a guide, n is typically in the range from 1.2 to 3.0 for 40- to 80-durometer. Spe-

cific values are determined experimentally. Dynamic measurements are usually
made using an electrodynamic shaker and isolated mass to determine resonant fre-
quency in a linear direction. The results are then compared to the natural frequency
calculated from static stiffness determined from the tangency to load deflection
curves at slowly varied loads in the same direction. The relationship to damping is
shown in Fig. 39.9, where the slope of the hysteresis curve is the k value. Addition-
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FIGURE 39.9 Stiffness and damping—the slope of the hysteresis loop (stiffness) changes for a non-
linear elastomer isolator depending on whether the motion is small or large amplitude, and the
amount of damping. The stiffness line is drawn through the endpoints of the hysteresis loop.

ally, the effective slope of the hysteresis loop changes for a nonlinear elastomer iso-
lator depending on whether the motion is small- or large-amplitude and whether
damping is axis-dependent. The slope of the hysteresis loop taken to the expected
maximum deflection is also an indicator of the average stiffness over a large deflec-
tion range of the isolator, as in shock. Damping and stiffness properties are also
affected by temperature. At low temperatures, rubber becomes hard and difficult to
extend. The elasticity decreases (stiffness increases) and damping is increased. A
change in the molecular structure of rubber occurs at −122 to −140°F (−50 to −60°C),
and a freezing point is reached. Here, the structure becomes crystalline, and the
compound becomes brittle but pliable under load. With energy (such as vibration)
supplied, the rubber warms and the elastic properties are recovered. There are four
key temperature change effects:T1, the glass transition point;T2, the turning point in
the curve of the modulus of elasticity, where damping is a maximum and return
resilience is a minimum (maximum strain energy is absorbed); T3, where damping
and hardness begin to decrease; and T4, where the maximum temperature is what the
rubber can sustain without significant loss of properties. Usage is normally in the T3

to T4 region, where damping, hardness, and dynamic modulus are relatively constant.



Elastomer Cup Mounts. The fail-
safe captured design is used with a wide
range of equipment such as electronic
units, operating machinery, avionics, com-
munications racks, compressors, and gen-
erators. Also known as universal or
all-attitude mounts, the housed version
of the isolator is shown in Fig. 39.10.This
type is often used to protect operating
equipment from vibration and occa-
sional shock. It is also used to isolate
vibrations from rotating machinery and
keep them from reaching nearby equip-
ment. It is not suitable for very low 
frequency use. To minimize rotation of
wall-mounted electronic equipment, iso-
lators are often placed above and below
the unit so that their line of action is
nearly through the center of gravity of
the unit. The compliant elastomer ele-
ments contained within dished metal
housings (cups) are retained in the event
of elastomer failure or bond separation.
Loads can be applied to the mount in
any direction; the normal operating fre-
quency range is 12 to 30 Hz. Shock re-
sponse is limited because of the rapid
snubbing of the mount in the available
space between the housings. Generally
used for moderate vibration protection,

this type provides only minimal shock reduction; stiffness typically involves stiffen-
ing increasing over the allowable deflection range and rapidly hardening near the
end of travel, where the rubber is unable to bulge further due to the captured hous-
ing feature. Non-fail-safe versions of the isolator are available (without cup hous-
ings) for greater deflection. Compacted metal mesh isolators of the same form are
available for extreme temperature applications such as jet engine mounts or where
elastomers would degrade or undergo rapid aging due to severe conditions.

The all-attitude mount design is supplied by many manufacturers; the compres-
sion stiffness is approximately twice the lateral stiffness. It allows for nearly 0.40-in.
(1.02-cm) relative deflection, and most designs are shallow profile. Depending on
the size of the mount and type of elastomer, load ratings are generally from 10 to 285
lb in a mobile environment and up to 900 lb for a fixed installation. Also depending
on size and durometer, axial spring rates range from 600 lb/in. to 22,000 lb/in. Very
low profile versions are available without the metal housing. Known as centerplate
or multiplane isolators, these are used with light or small units requiring equal isola-
tion in all directions. Cup mount elastomers include chlorobutyl, natural rubber,
neoprene, and silicone. The operating temperature range is typically 20 to 180°F (−7
to 82°C) for neoprene and −50 to 250°F (−46 to 121°C) for silicone. The axial-to-
radial stiffness ratio is nearly 1.5:1. Stiffness ratings are influenced by temperature
changes. Nitrile may be used for long-term oil and lubricant resistance.

Fluidic Elastomer Mounts. Elastomer mounts incorporating high-density sili-
cone gel fill for moderate- to high-viscous damping are shown in Fig. 39.11. These
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FIGURE 39.10 Housed cup mount—fail-safe
design, captured molded elastomer element,
mildly increasing stiffness in the principal direc-
tions, relative deflection capability less than 0.5
in., various types.



isolators are moderately damped and exhibit stiffening characteristics similar to cup
mounts, but they are intended primarily for axial direction loads, where their inter-
nal spring provides load support resistance. They are intended for protection from
severe road and other vehicle vibrations. Silicones as a class of compounds are nor-
mally used as high-viscosity fluids or gels in this design.

These isolators feature captured inner steel spring for axial load support and sil-
icone gel–filled elastomer body construction, for optimum performance when the
isolators are mounted in compression. Mounting in pure shear or tension mode is
not recommended. Torsion can cause instability and failure of internal spring con-
nections. Mounts are rated for loads ranging from 1 to 30 lb, depending on the
dimensions, size, and orientation of the isolator; the metal-housed version of the
mount is rated for higher loads from 30 to 290 lb. They have vertical resonant fre-
quencies as low as 5 to 6 Hz and maximum transmissibility of 2.5 based on the ratio
of acceleration spectral density input versus output g 2/Hz. They function across a
broad temperature range, from −30 to 180°F (−34 to 82°C).They are capable of long-
term use and continuous vibration. They are intended for attenuation of low-
frequency vibrations generally above 8 to 9 Hz, with 13- to 15-dB attenuation above
50 Hz. The ratio of axial-to-radial stiffness is approximately 1.2:1. Design features
include a thin-wall silicone elastomer body shell that also functions as a resilient ele-
ment, a centered steel spring, internally contained VHDS silicone gel, a 0.2 to 0.25
percent damping ratio, 0.5-in. (1.27-cm) deflection capability, and vibrations dissi-
pated in forced damping of the gel fill, especially effective in attenuating broad
random-vibration energy over the 15- to 200-Hz range.Applications include protec-
tion of electronic equipment mounted on off-road wheeled and tracked vehicles
such as tanks, missile launchers, snowmobiles, and all-terrain vehicles.They also pro-
vide effective isolation in aircraft and helicopter vibration environments.

High-Deflection Elastomer Shock Mounts. High-deflection shock mounts are
usually intended for equipment in severe service/military use; they are moderately
well damped and have excellent energy dissipation over large deflections. One type is
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FIGURE 39.11 Fluid-elastomer mounts are moderately well damped and exhibit stiff-
ening characteristics similar to cup mounts but have limited load ratings and are not fail-
safe except within captured metal housings. They comprise silicone gel–filled elastomer
body and axial spring to support vertical load.



the arch isolator, whose deformation characteristics are designed for nearly constant
force resistance in compression—the direction usually experiencing the greatest shock
for this type of application. The mount is shown in Fig. 39.12. Typical stiffness charac-
teristics of this type reflect its buckling design, which produces bilinear stiffening in
compression over the first third of the stroke and softening over larger-amplitude
deflection. The tension is mainly linear and can exceed twice the compression deflec-
tion limits. C-like and half-arch designs with similar characteristics are also manufac-
tured. Vibration isolation is achieved by operating the mount over a small motion
region having relatively constant stiffness for well-defined resonant frequency re-
sponse.The basic design is a balanced symmetrical geometry, 7 in. (17.78 cm) high, with
a load range 125 to 200 lb per mount, stiffness related to the durometer of the elas-
tomer compound, four load increments, high stroke efficiency of 0.55 (defined as the
ratio of maximum free displacement to isolator height), damping ratio c/cc = 0.2 to
0.25, operating temperature range 30 to 180°F (−1 to 82°C), and a nominal 10-year
service life, and it is rated at 5- to 8-Hz shock response frequency. Mounts can be ori-
ented and positioned to support the unit in any direction. Compression and buckling
of the elastomer arch produces lateral deformation in the outward direction approxi-
mately one-half of vertical deflection. The walls bulge out, forming a butterfly shape.
Spacers are sometimes used at the top of the mount to allow for greater rattle space
and unobstructed movement. Other versions and sizes of the mount have shifted stiff-
ness characteristics and general lateral resistance.
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FIGURE 39.12 Typical stiffness characteristics of high-deflection elastomer arch mount (buckling-
type design) resulting in bilinear stiffening in compression and shallow stiffness slope over the greater
part of its allowable stroke in roll and shear.

The compression-to-shear stiffness ratio is approximately 2:1.Tension is nearly lin-
ear to 200 to 250 percent extension, then yields but at an undefined value. Large com-
pression and buckling the mount result in nonlinear softening characteristics with the
knee of the load deflection curve beginning at approximately 0.5 to 1.0-in. (1.27- to
2.54-cm) deflection or 20 to 25 percent of available stroke. The entire stroke can be
represented as having a trilinear stiffness rate. Designs have been developed that fea-
ture a snap-through effect similar to Bellville springs. Variations of the contour and
wall geometry of the arch mount produce different stiffness rates.An oblique load will
produce combined axial and lateral deformation, thereby possibly affecting the stabil-



ity of the mount by shifting greater load to a smaller region of its elastomer body and
increasing distortion.

Figure 39.13 shows the benefits of large deflection in shock.To an input of slightly
more than 60g peak, the response was reduced to 24.2g. Applications include U.S.
Navy shipboard installations, mobile environments and off-road vehicles, military
shelters and field-deployed enclosures, equipment and operating machinery in blast
environments, and construction sites. For shipboard shock applications, an isolation
system of this type is designed to operate at 5 to 10 Hz in vibration and to reduce
shock by approximately 60 to 70 percent from deck foundation accelerations in the
vertical direction and 40 to 50 percent in the lateral direction.
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FIGURE 39.13 Comparison of shock response versus shock input to an isolated system. Both plots
filtered at 250 Hz. Considerable reduction of peak acceleration is evident, showing the benefits of
low-frequency isolation.4



Pneumatic Isolators. Also known as air mounts, these are particularly effective
when low-frequency, small-amplitude vibrations are the problem disturbance. They
are considered to be a type of elastomer isolator. This mount, shown in Fig. 39.14, is
often used to protect precision equipment such as semiconductor and quality control
(QC) instruments where very low frequency isolators are needed that have reso-
nance frequencies in the range of 0.5 to 2.0 Hz. Due to the limits of their height-to-
width ratio, very soft compliant-axial spring and elastomer mounts are unstable at
these low frequencies. For example, conventional linear springs would require more
than 3 in. (7.62 cm) of static deflection at less than 2 Hz. It is possible to force nonlin-
ear softening mounts to operate over a shallow stiffness portion of their load deflec-
tion curve; however, position control is very difficult to maintain.

Basic types of commercial pneumatic mounts include (1) bellows, with one to
multiple convolutions; (2) pneumatic-elastomeric mounts, with thick solid walls; and
(3) air mounts, with adjustable and/or automatic height control. The elastomer body
contributes damping due to strain of the rubber under load. The vertical stiffness of
standard air mounts exceeds the horizontal stiffness by a factor of 2 to 3, and added
lateral stiffness may be required to ensure stability. That can be included as an inte-
gral part of the shaped bellows wall design or constructed as a part of the mount
using secondary support such as a metal housing with flexible seal. Damping for the
air mount is added with the use of surge tanks.

Low-frequency and zero-static deflection is a feature of the mount. The multiple
staged bellows type enables large deflection in shock even without servo control. A
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FIGURE 39.14 Pneumatic servo isolators and bellows convolution section.



characteristic of pneumatic mounts is that damping can be moderate to large at res-
onance but small at high frequencies, with rapid roll-off and very good to excellent
isolation response. The load deflection curve in compression is initially stiff, then
softening to nearly flat (constant force), and rapidly stiffening near to maximum
deflection. Basic equations are as follows:

Stiffness: k = p mg A/Vo (39.3)

Resonant frequency: fn = [1/(2π)(pgAVo)^0.5] (39.4)

where k = stiffness
m = mass
p = ratio of specific heat
A = load supporting area of the air mount
Vo = air cavity volume
g = acceleration

Constructed of reinforced rubber, the convoluted bellows is sealed except for an
air entry port through which pressurized air is admitted. The pressure maintained
within the bellows and the size of the unit determine its load capacity.The axial stiff-
ness is dependent on the number of convolutions and thickness of the wall, as well
as the ratio of diameter to height of a convolution. Manufacturers’ data provides
axial and lateral stiffness information for pressure, load, and height. The axial stiff-
ness is determined from the change in height for a given change in load at constant
pressure. In a typical design, the axial stiffness is approximately twice the lateral
stiffness for a single bellows and nearly three times that for a dual bellows. The bel-
lows design has variable volume and low hysteretic damping. Restraints may be
required to ensure lateral stability under large horizontal forces.

The pneumatic-elastomeric mount design involves an elastomeric thick-walled
cylindrical sleeve with fixed base and compliant upper support section.Air is supplied
through an air valve. The vertical load is supported by the pressurized air column in
the upper section. By changing the amount of pressure, the effective stiffness of the
air column can be adjusted to compensate for variation in load. Vibration character-
istics of the mount are operating natural frequency of 3 to 5.5 Hz, depending on the
pressure needed to support the load. The axial-to-lateral stiffness ratio is nearly 1:1.
The thick elastomer wall acts as an ordinary passive isolator in the absence of the air.

Due to the small amount of deflection at the upper surface when inflated, it is dif-
ficult to physically inspect the mount to know that air pressure is being maintained.
Because of the closed structural design of the rubber body, there is only a very small
difference in height from the air-filled to the deflated state. It is also difficult to
inspect the degree of compliance at the upper surface (at the underside of the table
or unit). Damping is low and dependent on the properties of the rubber material.
Snubbing in the vertical direction into the body of the mount can occur if the deflec-
tion of the compliant upper surface is exceeded. The mount can be used as a shock
isolator in the vertical direction; however, it is difficult to determine the stiffness
characteristics of the rubber body and air column in a shock condition, and high g’s
can result due to bottoming.

The pneumatic mount with height control is frequently used with optical research
tables to maintain precision functions. Automatic height control incorporates a sen-
sor device to control the air supply, typically via a servo valve; when the load is
increased, air is supplied to the mount. Constant height is maintained by releasing
air from the mount when the load is decreased. Under variable loads such as fluctu-
ating vibration, shifting the mass, or adding mass on the table, the height can be kept
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constant, resulting in an operating frequency of nearly 1 Hz for low-frequency con-
trol. Simpler designs without a supplementary air source are self-contained and
capable of nearly 2- to 3-Hz natural frequency. Due to the air control, the natural fre-
quency of the mount can be kept constant at the low-frequency level by maintaining
constant height despite changes in load. A change in pressure is associated with a
change in volume.An adjustable damping rate can also be incorporated. Regardless
of the operating load, the stiffness of the mount depends only on the height of the
mount. The ratio of k/m can be kept constant (as the effective m changes), and the
natural frequency of the mount also remains constant in accordance with the general
equation. The effective mass is the rigid-body mass plus the change in load in real
time due to vibration. In the event of air failure, the body of the mount can support
the mass as if it were a non-air-filled mount; however, it is less effective as an isola-
tor. It is important to ensure that all air mounts used in a system are properly oper-
ating at constant height and that the table is level.

METAL AND COMPOSITE ISOLATORS

Isolators whose compliant elements are made of metal or composite materials are
often used in severe service and military applications where environmental condi-
tions can degrade many elastomers. Extreme temperature and long-term exposure
highlight the features and performance stability of these types of mounts regardless
of the environmental changes that occur. Deformation under load, stiffness rate, and
damping properties are dependent on the materials selected and the structural
design of the flexible elements. Because metal and composite properties are con-
stant over the range of interest, it’s possible to accurately determine deflection and
damping over wide temperatures. In some cases, metal isolators are considered “life
of equipment,” requiring no maintenance or replacement in the event of aging. Ele-
ments that predictably bend under load can produce precise stiffness rates. The ele-
ments themselves are not elastic. Controlling the end restraints and shaping these
elements influences the amount of deflection and the form of the stiffness curves in
each axis. For extremely light loads and very small displacements, negative stiffness
mounts can be used whose resonance is in the region below 0.75 Hz and providing
isolation below 1.0 Hz where air mounts may not be effective.

Helical Cable Mounts (Preformed Wire Rope). Formed in an arrangement of
continuously wound spiral loops, the stiffness of the mount is a function of the diam-
eter of the loop, the tightness of the cable, the height-to-width ratio of its oval loop,
and the thickness and pattern of the cable used. The isolator shown in Fig. 39.15
exhibits a preformed wire rope design wound in a progressive spiral, having multiple
loops of cable along its length. Preformed means that the strands are permanently
shaped (before winding) into a helical form. The terms wire rope and cable are used
interchangeably. The mount uses multiple loops of wire rope in bending and torsion
to resist applied loads. Each direction of the isolator has unique stiffness properties.
Cable isolators exhibit nonlinear softening stiffness in compression and nearly lin-
ear stiffness in roll and shear. Characteristics generally fall into two load ranges:
small amplitude and relatively large amplitude displacement. Damping is a combi-
nation of frictional interaction of sliding wire strands within the cable loop (coulomb
damping) and viscous effects dependent on the relative velocity across the mount. T
at small displacement is characterized as 3–3.5:1 (12 to 15 percent c/cc). Damping can
be increased by realigning the strands for greater friction force and contact area.
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Isolators are usually constructed of 6-×-19 or 6-×-25 cable with inner core. These
terms describe the number of strands and wires in each strand. Stainless steel 302 is
the preferred type of cable, for its flexibility and corrosion resistance. Stainless steel
316 is also used.The wire rope diameter ranges from 1⁄8 to 23⁄4 in. (0.32 to 7 cm), includ-
ing 7-×-19 aircraft cable (1⁄8 to 3⁄8 in. diameter, per Mil-W-83420) and 6-×-19 or 6-×-25
hoisting cable (above 3⁄8-in. size).The dynamic-to-static stiffness ratio is 1.0 to 1.1.The
compression stiffness is typically three to four times the shear or roll stiffness. The
isolator is basically a buckling type, with high initial compression stiffness, then soft-
ening over larger deflections and becoming very stiff at the bottoming–retainer bar
contact. Loops can have a preferred direction of shear movement depending on the
direction of the wire wound spiral. The temperature range is −200 to 350°F (−129 to
177°C), but these isolators can be used at greater extremes for short durations.These
isolators are nonflammable and can be degreased. The compression-to-height ratio
is typically 0.6 to 0.65.
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FIGURE 39.15 Two types of cable mounts: helical and multical isolators. Also showing a typical
cross section of typical 6-×-19 wire rope.



Deflection is directly related to the load diameter of the cable and the radius of
the loop to an exponent ranging from 1.75 to 3.0. Mounts are normally wound in a
helical design; the angle of inclination of the loops can be varied for greater (or less)
shear stiffness (axial direction of the mount). Designs are also available in the flat
where the cables flex as multiple straight cantilever beams. Spherical-like arrange-
ments having nearly equal stiffness in all directions are also made. These are known
as multical or polycal mounts. The axial-to-lateral stiffness ratio of this type is
approximately 1.5 to 1.

The basic elements of the helical isolator are loops of wire rope embedded in
slotted bars in which the cable is captured. The rope is constructed by layering sev-
eral strands around a core, usually of fiber or metal materials. A metal core is pre-
ferred for high-temperature use. The strands themselves have a center wire that is
the axial member, around which the individual metal wires are wrapped. The major
portion of the load acting on the isolator is carried by the strands. Frictional damp-
ing is a function of strand tightness and, to a lesser degree, the lubricant used in man-
ufacturing the cable. Damping is due partly to coulomb friction (sliding between
adjacent wires in the cables), and also to the fact that the hysteresis curves may not
be symmetric about the origin as a result of the technique by which the isolators
were constructed and wound such that the cables have either a left-hand or a right-
hand rotational twist. Isolators have different stiffness for upward (tension) and
downward (compression) motion. The same is true for lateral motions whereby the
cable tightens and loosens; there is splaying and separation of cables as the isolator
deforms.The amount of splaying (also known as bird caging) is a function of isolator
movement and orientation.

The amount of damping generally increases with an increase in relative amplitude.
In very small motions, there is little frictional effect; cable strands barely slide over one
another, but tend to untwist. In larger motions, sliding is more pronounced and high
points of adjacent strands rub against one another as the sliding occurs. Rotation-
resistant cable is sometimes used to resist the twist of an isolator in nonsymmetrical
loading. Plastic-filled wire rope has been used for greater shock energy dissipation and
increased damping. In a buckling mode, the load deflection characteristics of the heli-
cal isolator are similar in form to the high-deflection elastomer arch type.

Steel-Spring Axial Isolators. Rugged and reliable, advantages of axial spring
mounts include a wide range of stiffness, availability from many manufacturers, very
long-term use without maintenance, ease of examination, linear stiffness rate in com-
pression/tension, and resistance to creep or set. The mount shown in Fig. 39.16 com-
prises a steel spring and an outer metal housing for centering the spring. Featuring
all-steel construction except for secondary elements, the mount is temperature insen-
sitive and unaffected by most environmental conditions. The principal disadvantage
is low inherent damping, generally intended for use in the compression/extension
direction, although some displacement in the lateral axes can be accommodated for
alignment and relative movement to multiaxis vibration. Steel construction may be
susceptible to corrosion. Normally installed under the unit in line with direct com-
pressive loads in the axial direction, heavy-duty applications involve stamping, punch
press, and crushing machinery. These isolators can also be used in tension as, for
example, for pipe isolation and spring hangers. The wide load range of these mounts
is dependent on the steel wire diameter, the overall coil diameter, the type of steel
used, and the number of coils that carry load. Excessive force may cause the isolator
to bottom. Oblique loads should be avoided and can decrease the amount of free rat-
tle space. Spring materials include high-carbon steel, alloy steel ASTM 231, stainless
steel 302/304, and high-temperature A286 alloy.
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FIGURE 39.16 Open steel-spring mounts and concrete-filled framed inertia base.Also spring
design parameters and photo of housed spring mount. Vertical up and down travel stops are
incorporated in some housings. Side snubbers at the spring can be positioned using the hori-
zontal adjustment bolts. To reduce high-frequency vibrations that may be transmitted through
the steel spring, layers of ribbed or waffle embossed rubber pads are often installed under the
base of the housing.



Widely used throughout building, HVAC, and industrial facilities including out-
door installations, cooling tower, and rooftop units, rugged isolator designs feature
open and housed steel springs, sometimes with adjustable lateral snubbers for
motion control. Housings can be cast iron or weldments. In multiple-spring assem-
blies, upper loads of 26,000 lb (or more) can be supported. Up to 2 in. (5.08 cm) of
static deflection can be allowed. Greater loads and deflections may be required for
severe shock applications such as crushing operations. Damping is often provided
using compacted knitted metal mesh pads inserted within the spring. The com-
pressed pads are additionally loaded when the spring moves in the vertical up or
down direction, resulting in internal friction of the mesh. Springs have weakened
and should be considered defective if the mount does not return to within allowable
limits of its original position when the load is removed. Marine engines mounted on
constrained spring isolators are routinely checked for set of the spring and reduction
of free height. Designs may use axial steel springs combined with inclined rubber
elements, precompressed for a small deflection range between unloaded and loaded
conditions. If compression springs are too long, instability may result due to column
action under load. Design equations for springs are given in Ref. 5.

Conventional practice within the building industries is to list spring rate based on
the static deflection at a 1-g load. Vertical resonant frequency is then simply a func-
tion of static deflection:

fn = 3.13�1/λ� (39.5)

where λ = static deflection

Tension/compression loads are applied in the axial direction of the spring coils; the
stiffness rate is linear for the allowable stroke. The commonly used deflection for-
mula is

λ = 8 P D3η/G d4 (39.6)

where λ = deflection
P = load
D = coil diameter
d = wire diameter
η = number of coils in the active spring
G = shear modulus of elasticity

Very repeatable, these springs return to their original position even after severe
use; however, fatigue of the spring or weakening of the material can result in set and
a lower height. More than a 1 to 2 percent change in height indicates degradation of
the spring. Instability can occur because of the relatively low shear stiffness of the
mount in the lateral direction. Coil springs can be described by their height-to-width
ratio and curvature. Load eccentricity should be avoided; spring restraints may be
needed. Lacking frictional effects, the damping ratio is 0.01 to 0.02 c/cc. Metal mesh or
other deformable materials are sometimes embedded inside the body of the mount
to increase its damping, typically to .07 to 0.10 c/cc. Tapered springs that are wider at
the base exhibit improved lateral stability. Variable spaced coils are designed in one
type of compression isolator to maintain constant frequency by means of uniform
load-to-deflection ratio. Cross section of the coil bar can be round, square, or rect-
angular; each produces a different stiffness rate for the same area because of differ-
ences in the moment of inertia and bending effects. Steel-spring isolators are often
used in extremely severe environments, and corrosion protection should be applied
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to the wire. Deposited coatings provide reasonably uniform protection and good
visual appearance. Painting has sometimes been used for low-cost, large-volume pro-
duction of spring mounts. Steel springs can also be used for lateral restraint or in the
opposing inclined direction for greater stability.

SEISMIC ISOLATION MOUNTS

Advances have occurred in the last decade in the commercialization of vibration iso-
lation devices for buildings, structures, and seismic control. These include improved
means for energy dissipation at structural elements such as frictional and viscous
fluid dampers, active mass actuators, and adjustable stiffness and flexural beam
plates.While all of these can be broadly grouped as vibration control, isolation com-
monly refers to bearing mounts of different types that support the structure (build-
ing) and achieve effective separation of the building’s natural frequency from the
predominant frequencies of an earthquake. The most widely installed design is the
elastomeric bearing type, including lead-rubber and high-damped rubber mounts.
Low-frequency sliding bearings have also been successfully used.

The design must accomplish four basic objectives. First, it must provide for flexi-
ble mounting at seismic loads so that the frequency of vibration of the total system is
decreased and decouples from the driving frequency of the earthquake in order to
reduce the force response of the structure. Because of the large size and mass of most
structures, the mounts are usually arranged to evenly distribute the load for proper
support. Second, damping must be added to the mount, or as a supplementary device,
so that the relative deflections between structure and ground can be controlled and
limited.Third, there must be adequate rigidity in the mount so that conventional ser-
vice loads such as severe storms are within the capability of the mount to resist with-
out maintenance of the isolators or their compliant elements. The mount must be
capable of supporting the vertical loads at the earthquake-induced displacements
with a safety factor to account for variations in seismic intensity and character. Dur-
ing a seismic event, the mount, in its deformed condition, can be subjected to an
increase in static load at nearly the same time it experiences horizontal forces and
large relative displacement between the mass that it supports and the foundation.

Elastomeric Seismic Bearings. Lead-filled elastomeric bearings (lead-rubber
type) and high-damped elastomer mounts are widely used base isolators for seismic
protection.As shown in Fig. 39.17, the elastomer layers are constrained by the inter-
mediate plates; this maintains compression stiffness under vertical load while still
enabling large lateral movement exceeding as much as 14.7 in. (37.5 cm) for some
designs. Bearing mounts that are 40 in. (101.6 cm) in diameter, for example, have
demonstrated 24 in. (61.0 cm) of shear displacement in test. Other designs include
low-frequency sliding plates and friction pendulum bearings. Energy dissipation in
the lead-rubber mount occurs in the lead core.The lead plugs shear when horizontal
forces exceed a specified amount, and the elastomer body of the mount is then rela-
tively free to move and deform in the lateral or shear direction as the ground moves
at the underside of the isolator. The mount undergoes relatively large strain. Its top
plate is attached to the structural mass at a support. In the high-damping rubber
mount, special-purpose filler embedded in the elastomer compound increases the
mount’s hysteresis and provides its energy dissipation characteristics.The equivalent
viscous damping in the high-damped bearing is a material property and typically
varies from 0.10 to 0.15 c/cc. The natural frequency of the isolation mount system is
0.75 to 1.5 Hz.
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Similar to bridge bearings, high-damped mounts are usually constructed by bond-
ing sheets of rubber to thin steel plates. The steel reinforcement increases the verti-
cal compressive stiffness of the isolator while maintaining its desired low horizontal
stiffness. Failure in laminated bearings usually occurs due to internal rupture caused
by tensile stresses on shearing layers as they tilt and slide with respect to one
another. The strain is within the capabilities of the basic rubber but can exceed
allowable strength of the lamination. Due to the complicated sliding action, a layer
is in compression at one side and tension on the other side. Severe tension can lead
to bond failure between steel plates and molded elastomer elements.All seismic iso-
lation mounts should be carefully inspected after an earthquake for signs of degra-
dation or damage. Routine inspections should be carried out to validate the integrity
of the elastomer mount to support the load over long-term use and temperature
extremes.

Horizontal stiffness kh of the mount (after shearing of the lead plug) depends on
the modulus of the rubber and physical size of the elastomer body:

kh = AG/�t (39.7)

where A = bonded area of the rubber layers modified for plug 
yielding factors

G = shear modulus of the elastomer
�t = sum of the thicknesses of the individual rubber layers

The rubber modulus is usually about 75 to 150 lb/in2 at 100 percent shear strain at
normal temperature conditions. The yield stress of the lead core is approximately
1200 lb/in2. The vertical stiffness general equation is
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FIGURE 39.17 Seismic elastomer bearing mount with multiple layers and internal lead plug that
shears under horizontal load, allowing the rubber layers to move by means of controlled deformation.



kv = (AEc)/�t) (39.8)

An approximate expression for the compression modulus Ec is

Ec = [(1/6GS2F) + (4/3B]−1 (39.9)

where S = shape factor A/AP
A = area of rubber free to bulge for a single layer
B = bulk modulus
F = factor based on solid circular versus internal hole type

Sliding Seismic Bearings—Friction Pendulum System. The friction pendu-
lum system (FPS) seismic isolator is a steel connection assembly that consists of an
articulated friction slider that moves along a spherical concave surface. A schematic
cross section is shown in Fig. 39.18. The contoured surface results in a small-
amplitude pendulum motion of the supported structure. Once the threshold friction
force of the bearing material is exceeded in the earthquake, the FPS connections
shift the stiffness and frequency of the structure. Composed of two main parts, the
upper section attached to the building structure (also known as the spherical sliding
bearing) slides relative to the lower shallow dish section that is attached to the
ground. Movement begins once the friction force level is exceeded. The degree of
curvature of the fixed-in-place curved dish sets the natural frequency of the isolation
system (the pendulum effect) while controlling lateral movement to within allow-
able limits.
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FIGURE 39.18 Seismic friction pendulum system (FPS) isolator showing the spherical sliding
bearing—schematic.

The natural frequency of the FPS isolation system is 0.5 to 1.0 Hz. The lateral
stiffness is directly proportional to weight, and the frequency is independent of the
mass. The articulated slider within the bearing moves along the concave surface,
causing the supported structure to move with a slight pendulum motion. Damping is
a result of friction force between the bearing and the concave surface. The bearing



material of the articulated slider is a high-strength self-lubricated composite. The
natural period (1/frequency) of the FPS isolator is

τ = 2π�(R/g)� (39.10)

The bearing stiffness of the FPS is

k = W/R (39.11)

where W = weight of the structure
τ = period

R = radius of curvature
g = acceleration of gravity

A different sliding bearing design uses a disc-type bearing and elastomer spring
to provide the restoring force. The sliding interface is a flat controlled friction sur-
face plate for carrying the vertical load and providing damping.

ACTIVE AND SEMIACTIVE ISOLATION

Passive, semiactive, and active isolation (in order of complexity) are the three fun-
damental methods of vibration and shock control. These are modeled in Fig. 39.19,
also showing the variable force actuator for the active case. Active and semiactive
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FIGURE 39.19 Isolation control models also showing the adjustable damper C and adjustable
force actuator F. Hard mounted is with the mass Xm directly attached to the foundation Xf, no isola-
tion. Passive isolation is essentially open-loop-dependent only on stiffness K and damping C.



systems generally exhibit well-defined, more precise control than passive isolation.
Active designs can be especially effective over a broad frequency range. However,
due to cost, high power requirements, and reliability concerns, they are not com-
monly used in large structural applications requiring direct force. In commercial
applications, controlled-force actuators and variable dampers are widely used for
seat suspension, manufacturing processes, measurements, and similar systems. A
variety of electronic controls and active components are available from suppliers,
and products are supported with engineering documentation and technical assis-
tance. Active isolation opposes and cancels the disturbing force acting on the mass.
Varying the stiffness and damping gain increases or decreases the amount of actua-
tor force, thereby improving the operating performance of the isolation system as
the disturbance changes. Passive isolator control depends on inherent stiffness and
damping properties of the isolator and is basically an open-loop system. Semiactive
isolation works in conjunction with a variable damping or stiffness device.

ACTIVE ISOLATION CONTROL

Active isolation systems operate by means of external force actuators programmed
to oppose the disturbing force and hold the isolated mass nearly motionless. The
applied force counteracts the response of the mass. Force actuation, directed by a
controller/processor in the feedback loop, avoids the need for supplementary stiff-
ness or damping adjustment. Because substantial external force may be required,
operating control problems can result in adding energy (rather than canceling it)
and cause the system to become unstable. Semiactive isolation systems are consid-
erably less complicated, and operating performance has been shown to be very
effective, nearly matching active isolation results.

Control methods are usually based on response measurements but can also be
based on input variables at the equipment where the input is unknown and undeter-
mined but anticipated before the control forces are applied. Other techniques simul-
taneously compare input and response and adjust gains accordingly. In each case, the
controller/processor then drives the force actuator in accordance with the control
process. Semiactive methods use the features of variable stiffness and/or (more
often) fluid damping devices to provide increased force resistance in response to
signals at the unit or at the disturbance.

Depending on the application, performance objectives may involve adjusting con-
trol gains so that the isolator is critically damped for maximum transmissibility less
than 1.0 at or near resonance, −4-dB isolation at the transition frequency of �2� fn, and
continuous roll-off at 20 dB/decade. Gains are also sometimes based on allowable
vibration limits of the equipment over a critical frequency region, separate from
resonance, and incremental damping is necessary. In the “skyhook” technique, vari-
able settings are programmed at the controller and the disturbing force is directly
applied to the mass through the spring. There is no damping, and the actuator con-
trol force is a function of the absolute velocity of the mass; reference is made to an
inertial frame that remains stationary. The skyhook technique can be used both in
active and semiactive systems; the difference is mainly in the use of the force actu-
ator at the mass in active control and a damping force in semiactive control. The
force exerted by the actuator is designed to be proportional to the absolute velocity
with respect to the inertial frame system; its results can be approached by control
based on relative velocity between the movable mass and the foundation. The same
technique is used in semiactive control except that a damping variable is continually
adjusted to moderate the amount of damping force applied at the movable mass.
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For the single-degree-of-freedom model without damping, the transmissibility in
Laplace terms is

T = [(M/k)s2 + (G/k)s + 1]−1 (39.12)

With damping, T changes to

T = [(k + cs)]/[Ms2 + (G + c)s + k] (39.13)

or, in a slightly different form,

T = [2ζωns + ω2
n]/[s2 + 2ζωns + ω2

n] (39.14)

where k = stiffness
G = control gain
ω2

n = k/M
2ζωn = c/M

ζ = damping ratio
M = mass

s = jω
fd = disturbing force
ω = frequency

In frequency terms, neglecting relative displacement, the effect of damping gain
can be seen:

T = ��� (39.15)

where T = transmissibility
W = frequency, Hz
wn = natural frequency, Hz

c/cc = damping ratio

at resonance w = wn, and the equation becomes

T = 1/(2c/cc) (39.16)

By making the gain factor G a function of c, the equation is

T = 1/(2G/cc) (39.17)

The gain factor is a variable and is adjusted as a percentage of critical damping.
When G/c equals 0.5 or more, T equals 1.0 or less, for example,

G/cc = 0.5 T = 1/(2 ∗ 0.5) = 1.0

G/cc = 0.6 T = 1/(2 ∗ 0.6) = 0.83

Fig. 39.20 shows an example of the transmissibility-versus-frequency ratio for two
damping gain ratios, 0.2 and 0.5, comparing an active versus a passive system and
steady-state response. In this example, T of the active system is dependent on the
frequency ratio (w/wn)2, while the passive system is a function of (w/wn). The equa-
tion for T is given in Ref. 1, Chap. 32, Eq. (32.30).

T = ���� (39.18)

where G1/mwn and G2/cc are relative displacement gain and velocity gain.

(G1/mw3
n)2 + (w/wn)2

�����
(w/wn − w3/w3

n)2 + [G1/mw3
n − 2(G2/cc)(w2/w2

n)]2

1
����
1 − (w/wn)2 + [2(c/cc)(w/wn)]2
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There is zero displacement gain and positive damping gain assigned to the pas-
sive system in Fig. 39.20, constant displacement gain and positive damping in the
active system. Both have positive damping gain. In this example, at higher frequen-
cies beyond resonance, T for the active system declines more rapidly than for the
passive system, where the falloff is entirely a function of (w/wn). By means of vari-
able stiffness and damping gain controls, it is possible to adjust the amplitude of
response displacement and shift to lower frequencies (for greater isolation) at the
same time. The velocity gain controls the damping force; displacement gain controls
the spring force.As shown by Preumont in another example,6 high-frequency roll-off
with damping is not as rapid as with the force actuator alone, and the damper can be
removed from the active system. The active system becomes more effective at the
higher frequencies without damping.This is evident also in the T curves for a passive
system; the high-frequency rolloff after resonance increases more rapidly as damp-
ing decreases.

Isolation control objectives in shock and vibration active systems (Ref. 1, Chap. 32)
are usually to maintain position of the isolated mass regardless of the disturbance and
control T at system resonance. As noted, control techniques mainly involve compar-
ative methods based on the response of the mass versus the input at the disturbance,
or a combination of the two. To limit displacement using active control, an opposing
force is applied to the mass by means of a force actuator that drives the mass in a
counter direction.This effectiveness of the closed-loop system is then a function of the
driving force and the gain signal from the controller/processor. There is extensive lit-
erature on power-driven actuators and devices for motion control. Substantial power
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FIGURE 39.20 These examples compare transmissibility for active versus passive isolation (vari-
able damping and relative displacement gains—active systems; constant damping—passive systems).
Reference Eq. (32.30) in the 5th edition of this handbook. At higher frequencies beyond resonance,
transmissibility for the active system declines more rapidly as a function of W 2/Wn

2 than for the pas-
sive isolation, where the falloff is dependent on W/Wn.



may be required to drive the actuator in a constant (always-on) operational mode.The
amount of force can also be applied in a proportionate or off/on way, based on the rel-
ative deflection and/or rate of relative deflection of the mass. Measurements can
involve comparing acceleration, position, or velocity between the disturbance and the
mass or using a single sensor at an intermediate location to measure changes of the
mass from its set position.Velocity and displacement are considered to be more effec-
tive control than acceleration.

Variable scaling functions for setting the counterforce are calculated, and the out-
put gain is determined. The output gain will continue to be adjusted if displacement
is different from that intended; this is generally the set or zero position. The rate of
change of relative motion can be monitored in order to avoid overshoot.The applied
force then increases in either a negative or a positive direction in order to return the
mass to position. The actuator is always in an operational state, and power to drive it
must be continuously available. Other adjustable devices producing counterforces
include servo mechanisms, spring linkages, pneumatic air mounts with servo valves,
and tunable fluid dampers. Variable stiffness is more complex. A threshold level of
motion is sometimes programmed to trigger initiation of control forces.

Proportional-integral-derivative (PID) control methods measure the error
between the acceleration or velocity (or position) of the isolated unit and its set
value by calculating the difference on a real-time basis and then correcting by means
of an actuator and/or damper. Adjusting spring stiffness is more difficult. Three dif-
ferent control actions and gain factors are involved and dependent on the response
of the unit. Proportional methods determine the response to the error and change at
the unit. Instability may result in the case of overshoot. Integral methods involve the
processing of cumulative errors in a specified time interval. The response error
varies with time as forces are adjusted and input vibration or shock changes.A deriv-
ative technique is used to determine the rate of change of the error signal. The cal-
culated factors then become a net output gain that readjusts the force developed at
one or more of the control devices. There is a transfer function associated with each
factor and the combination of variables. Tuning methods are used for setting gain
factors. Control can also be achieved in a simple way, using a proportional integral
technique known as a PI process. Proportional derivative (PD) control exhibits a rel-
atively slow rise. In Laplace terms, the transfer function between the displacement
X(s) and the input force F(s) is as follows:

Proportional (P): X(s)/F(s) = [Gp/(s2 + (c)s + (k + Gp)] (39.19)

Proportional derivative (PD):
X(s)/F(s) = [(Gd + Gp)/(s2 + (c + Gd)s + (k + Gp)] (39.20)

Proportional integral (PI):
X(s)/F(s) = [(Gps + Gi)/(s2 + (c)s2 + (k + Gp)s + Gi)i] (39.21)

Proportional integral derivative (PID):
X(s)/F(s) = [(Gas2 + Gps + Gi)/(s2 + (c)s2 + (k + Gp)s + Gi)] (39.22)

where Gp = proportional control gain
c = damping

Gd = derivative control gain
k = stiffness

Gi = integral control gain
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The major difference is the influence of each gain factor on rise time, overshoot,
and the number and rate of cycles to zero change of the response. For example, to a
unit step input, proportional (P) control reduces the rise time and control error com-
pared to an open-loop system; it increases overshoot and decreases return time to a
constant value. Derivative (PD) control reduces overshoot with fewer cycles. Pro-
portional integral (PI) control decreases overshoot and cycles even more. PID con-
trol achieves fastest rise time, least error, and essentially no overshoot, and can
provide the most accurate control. Figure 39.21 shows the nondimensional output
variable versus time to a unit step input for different values of integral gain Gi. With
increased gain, the response decays more rapidly with less overshoot. In this exam-
ple, the variable is force and the input is a force step, then held constant at 1.0. Gp

and Gd gains are constant throughout. Gi ranges from 0.5 to 2. Different gains or
combinations of gain factors will shift peak values and rise times.
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FIGURE 39.21 Response to unit step input for different damping gain values; stiff-
ness, mass, and frequency held constant.

SEMIACTIVE (SA) ISOLATION CONTROL

Semiactive isolation systems use variable stiffness or damping to achieve very low
transmissibility at resonance, switching to rapid roll-off at higher frequencies. Exter-
nal force actuators are not required.The variable device with its controller and elec-
tronics can be mounted separately or used with passive isolators to operate as an
integrated assembly.Two types of fluid dampers, magnetorheological (MR) and elec-
trorheological (ER), are the variable devices used most often and are based on
developing control forces that oppose the relative velocity between the mass and the
disturbing source. Fluid valves operate as the variable damper element to provide
controlled resistance force in response to programmed levels.



MR and ER devices are extremely fast switching control valves functioning in
response to the magnetic field operated on by variable signal gains from the con-
troller. There is extensive literature on MR/ER fluid properties and fluid valve
designs.The viscosity of the fluid is regulated by the strength of an applied magnetic
field, which changes based on the control signal. Damping rate change is in millisec-
onds. Dampers can be operated in a plus or minus (+/−) direction for linear motion
or camlike to minimize rotary oscillation. They require only battery power to regu-
late the solid/liquid state of the fluid. Variable damper force can be adjusted using
off/on control or designed for more gradual change. ER devices operate using high-
intensity electric fields requiring very large voltages, while MR fluids operate with
small voltages and currents. MR fluids are manufactured by suspending ferromag-
netic particles in a carrier liquid. Other metals have been investigated. R&D is active
in the selection of materials, particle size, and carrier fluid.

Resistance of the variable damper, using feedback control, is generally based on
relative velocity between the mass and the foundation. Proportional or limit settings in
accordance with minimum/maximum values are the usual parameters. Damper prop-
erties are changeable in a real-time continuous mode for the period in which power is
applied. Compared to active isolation, SA control requires only low external power
(can be battery operated), provides passive control if the fluid device fails, and has
inherent stability. SA isolation approaches the effectiveness of active control in reduc-
ing low-frequency vibrations and also offers reduced cost through the use of relatively
simple fluid dampers, or with the combination of passive isolation and dampers.

Similar designs can also be used in shock with the preset damper acting on relative
position and the passive mount (in combination) providing routine shock control
through deformation of its compliant elements. It has been noted that using only vari-
able stiffness devices for dissipating energy in shock as opposed to damping devices
may be an advantage in that large damping forces are not transmitted to the isolated
unit. That is, high velocities can create large forces in variable dampers as a function
of the rapid viscosity changes and limit the rate of high-frequency roll-off. In the case
of variable stiffness devices (no damping), the force is a function of only relative dis-
placement and stiffness rate. Damping forces are not generated, and roll-off can be
more rapid.

As in active isolation, the choice of control techniques involves narrowband ver-
sus broadband control, design of a control algorithm, the cost of the electronics, and
the availability of appropriate devices. A common technique switches the damper
off whenever the isolated mass and nonisolated foundation move in the same direc-
tion and the foundation has the greater velocity.There is extensive literature on con-
trol techniques and applications.Also, as in active isolation, control methods include
PID, PI, and PD techniques. Nearly as effective as active control, research is wide-
spread in low-cost control of flexible members, tuned structural damping of large
structures, and very low frequency precision isolation.

In one type of modified open-loop method, the variable damper operates in an
on/off mode without feedback. The fluid valve can be regulated so as not to exceed
preset limits of the isolated unit. For example, at the resonant frequency, it could be
important to have a high damping coefficient for minimum T, with peak acceleration
specified as a limit. The control variable in the isolation model would be set to 1.0.
Beyond the resonant frequency, the control gain would be set to zero for minimum
damping and rapid falloff of T. Applications for this type of control include tuned
viscous elastomer mounts for shock restraint and hybrid designs of passive mounts
with fluid dampers.

Feedback. The control force is intended to approach the effectiveness of the sky-
hook method but using relative velocities for setting the damping coefficient. For
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example, the damper control force is applied as a function of relative velocity when
the signs of the relative and absolute velocities are the same.

Fd = G(νm) if (νm) ∗ (νm − νf) > 0 otherwise = 0 (39.23)

where Fd = damper force
νm = mass velocity
νf = foundation velocity
G = control gain

The literature notes that semiactive control emulating the skyhook damper
appears to work well for narrowband disturbances but tends to be less effective for
wideband vibrations.

On/Off Control. The control variable is switched between minimum and maxi-
mum values, while the damping coefficient also switches from minimum to maxi-
mum according to the sign of the relative velocity. This relatively simple method
requires only a rapid-switching on/off device instead of a modulated valve.The max-
imum value could be represented as having a preset upper damping level to reduce
T at resonance. Minimum might then represent a lightly damped mount operating
over higher critical frequencies of the unit.

Clipped/On/Off Control. This approach uses a preset damper control force to
achieve equivalent results to an active control actuator. A clipping controller in
the control loop, reacting to the motion of the mass, is used to drive the semiactive
damper in way that reproduces the actuator force that would have been produced
by active control.

When the relative velocity across the damper and mass have the same sign, a
damping force proportional to Vm is applied; otherwise, there is zero damping.

MR and ER Fluid Dampers. The versatile operational features of magnetorheo-
logical devices have made them extremely useful for a wide range of motion control.
They require minimal power, produce high-resistance force, and are completely
reversible and fail-safe, reverting to the passive mode if power is lost or disrupted.
The passive mode involves reliance on the passive isolator completely and the
absence of magnetic field effects on the viscosity of the damping fluid. MR fluids are
suspensions of small iron particles in a base fluid such as mineral or silicone oil and
are able to rapidly change in milliseconds from free-flowing, linear viscous liquids to
semisolids having considerable yield strength under a magnetic field and exhibiting
plastic-like effects. Yield stress increases as the strength of the magnetic field
increases. In a magnetic field, the particles form linear chains parallel to the applied
field and can impede the flow as the fluid solidifies. Most variable devices using con-
trollable fluids are from among the three types shown in Fig. 39.22. MR fluid control
can simplify mechanical dampers by replacing valves and eliminate complex orifice
design with precise magnetic field action on the fluid. The basic design is inherently
reliable. If there is electrical failure, the damper reverts to a passive device. Carrier
fluids have included silicone and synthetic oil. High-temperature effects on fluid vis-
cosity can be a concern. The ideal force versus velocity characteristics of the fluid
damper can be described as having a region of adjustable values instead of a force
(constant slope) increasing from nearly zero at low velocity to maximum at high
velocity. With MR design, the force can be increased to a maximum almost immedi-
ately after motion begins. The force is a function of control gain and current, which
affects the strength of the magnetic field, and not velocity.
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Valve, Direct Shear, and Squeeze Mode. Examples of valve mode devices
include servo valves, dampers, and shock absorbers. Direct shear devices include
clutches, brakes, and latching and locking mechanisms. The magnetic field in each
mode is perpendicular to the opposing metal surfaces, and the flow of the fluid is
parallel to the surfaces. In shear mode, the two opposing surfaces in contact with the
fluid can move relative to one another (one surface remains fixed), creating a shear
stress in the fluid that can be varied by applying different levels of magnetic field
strength. The fluid is pressurized in the valve mode to flow between the two fixed
surfaces. The squeeze mode involves bringing the opposing surfaces toward one
another to develop fluid pressure.

Flow rate and fluid pressure are adjusted by varying the magnetic field. The fluid
is contained within a small magnetic flux area of the actuator, and the damper oper-
ates on the resistance of the contained fluid as its state of viscosity changes. Figure
39.23 shows a commercially available MR damper and seat suspension assembly.

Electrorheological fluids have also been extensively described in the literature
and exhibit reversible properties similar to those of magnetorheological fluids. ER
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FIGURE 39.22 Models of MR fluid damper techniques showing the shear, valve, and squeeze
modes for controlled movement.



commercial development has been limited because of the high power requirements
for effective use. ER devices require high voltage at low current, while MR devices
require higher current only at a low voltage. MR fluids can also be energized by
permanent magnets with no steady-state power requirement. Like MR fluids, ER
fluids are noncolloidal suspensions of particles only a few microns in size that can be
made to line up in a columnar arrangement, changing the apparent viscosity of flow
as the strength of the field increases.The flow motion of the ER damper can be sim-
ilarly classified as shear, valve, or squeeze mode. Reliability and simplicity appear to
be less than with MR devices.
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CHAPTER 40
EQUIPMENT DESIGN

Karl A. Sweitzer

Charles A. Hull

Allan G. Piersol

INTRODUCTION

Equipment is defined here as any assembly of parts that form a single functional unit
for the purposes of manufacturing, maintenance, and/or recordkeeping, e.g., an elec-
tronic package or a gearbox. Designing equipment for shock and vibration environ-
ments is a process that requires attention to many details. Frequently, competing
requirements must be balanced to arrive at an acceptable design. This chapter
guides the equipment designer through the various phases of a design process, start-
ing with a clear definition of the requirements and proceeding through final testing,
as illustrated in Fig. 40.1.

ENVIRONMENTS AND REQUIREMENTS

The critical first step in the design of any equipment is to understand and clearly define
where the equipment will be used and what it is expected to do.The principal environ-
ments of interest in this handbook are shock and vibration (dynamic excitations), but
the equipment typically will be exposed to many other environments (see Table 18.1).
These other environments may occur in sequence or simultaneously with the dynamic
environments. In either case, they can adversely affect the dynamic performance of the
materials used in a design. For example, a thermal environment can directly affect the
strength, stiffness, and damping properties of materials. Other environments can also
indirectly affect the dynamic performance of an equipment design. For example, ther-
mal environments can produce differential expansions and contractions that may suf-
ficiently prestress critical structural elements to make the equipment more susceptible
to failure under dynamic loading.

The preceding example illustrates the need to understand all of the design
requirements, not just the dynamic requirements. A comprehensive set of require-
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FIGURE 40.1 Steps in equipment design procedure for shock and vibration environments.



ments (or equipment specifications) must be developed so that no aspect of the
design’s performance is left uncontrolled. Unfortunately, different types of require-
ments often lead to difficult design tradeoffs that must be resolved. Priorities must
be established in these situations. For example, a low-cost weak material may be pre-
ferred over a more expensive stronger material if the operational stresses can be
kept low. This example reflects the fact that many requirements are not purely tech-
nical. Cost, schedule, and safety issues are additional requirements that are always
on the mind of project management. Still other requirements can be more emotional
(e.g., aesthetic appeal).

The approach to equipment design presented in this chapter is the systems engi-
neering concept of minimizing the life cycle cost, where the life cycle is defined as all
activities associated with the equipment from its initial design through its final dis-
posal after service use. Stated simply, the design process should consider and mini-
mize the costs incurred over the complete life of the equipment. Extra effort put
forth early in the design phase can often have a large payoff later in the life of the
equipment. For example, the cost of correcting a problem in manufacturing can be
many times greater than the cost of making the correction during the design phase.
Additional costs, such as disposal and recycling of the equipment after it has passed
its useful life, can be minimized with proper attention early in the design phase.

DYNAMIC ENVIRONMENTS

Shock and/or vibration (dynamic) environments cover a wide range of frequencies
from quasi-static to ultrasonic. Examples of different dynamic environments and the
frequency ranges over which they typically occur are detailed in the various chapters
and references listed in Table 23.1.The classification of vibration sources and details
on how measured and predicted data should be quantified are presented in Chap. 19.
From a design viewpoint, dynamic excitations can be grouped as follows.

Quasi-Static Acceleration. Quasi-static acceleration includes pure static acceler-
ation (e.g., the acceleration due to gravity) as well as low-frequency excitations. The
range of frequencies that can be considered quasi-static is a function of the first nor-
mal mode of vibration of the equipment (see Chap. 21).Any dynamic excitation at a
frequency less than about 20 percent of the lowest normal mode (natural) frequency
of the equipment can be considered quasi-static. For example, an earthquake excita-
tion that could cause severe dynamic damage to a building could be considered
quasi-static to an automobile radio.

Shock and Transient Excitations. Shock (or transient) excitations are character-
ized as having a relatively high magnitude over a short duration. Many shock exci-
tations have enough high-frequency content to excite at least the first normal mode
of the equipment structure, and thus produce substantial dynamic response (see
Chap. 8). The transient nature of a shock excitation limits the number of response
cycles experienced by the structure, but these few cycles can result in large displace-
ments that could cause snubbing, yielding, or tensile failures if the magnitude of the
excitation is sufficiently large. Frequent transients can also result in low-cycle fatigue
failures (see Chap. 33).

Periodic Excitations. Periodic excitations are of greatest concern when they
drive a structure to respond at a normal mode frequency where the motions can be
dramatically amplified (see Chap. 2). Of particular concern is the repetitive nature
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of the response that can accumulate enough cycles to cause fatigue failures at exci-
tation levels less than those required to cause immediate yielding or fracture. The
most basic form of a periodic excitation is the sinusoidal excitation caused by rotat-
ing equipment. However, other periodic excitations may include strong harmonics
that might be damaging, e.g., the vibrations produced by reciprocating engines
and gearboxes (see Chap. 37). All harmonics of the periodic excitation must be 
considered.

Random Excitations. Random excitations occur typically in environments that
are related to turbulence phenomena (e.g., wave and wind actions, and aerodynamic
and jet noise). Random excitations are of concern because they typically cover a
wide frequency range. All natural frequencies of the structure within the frequency
bandwidth of a random excitation will respond simultaneously. Assuming the struc-
ture is linear, the response will be approximately gaussian, as defined in Chap. 19,
meaning that large instantaneous displacements, as well as damaging fatigue
stresses, may occur.

Mixed Periodic and Random Excitations. Mixed excitations typically occur
when rotating equipment induces periodic excitations that are combined with exci-
tations from some flow-induced source. An example would be a propeller airplane,
where the periodic excitation due to the propeller is superimposed on the random
excitation due to the airflow over the fuselage (see Chap. 30). It is important to
compute the stresses in the equipment due to both excitations applied simultane-
ously. The same is true of shock excitations that may occur during the vibration
exposure.

OTHER ENVIRONMENTS

Other environments may have an effect on material properties and/or help define
what materials and finishes can be used during the design and construction of the
equipment. The more important environments that should be considered are as
follows.

Temperature. Material properties can change dramatically with temperature. Of
particular concern for dynamic design are the material stiffness changes, especially
in nonmetallic materials such as composites (see Chap. 34). Many nonmetallic mate-
rials show a dramatic reduction in stiffness at higher temperatures. Material strength
and failure modes will also change with temperature. Some metals will exhibit high-
strength ductile behavior at room temperature, and then shift to low-strength brittle
behavior at low temperatures (see Chap. 33). Thermal strains can also induce
stresses and deformations in structures that need to be considered as part of the
design process. A thorough understanding of the expected operating and nonoper-
ating temperatures, plus the amount of exposure time in each temperature range, is
required when designing equipment structures for dynamic environments.

Humidity. Humidity can have an effect on material properties, especially plastics,
adhesives, and elastomers (see Chap. 33). Some nonmetallic materials can swell in
humid environments, resulting in changes in stiffness, strength, and mass. Humid
environments can also lead to corrosion in some materials that ultimately reduce
strengths.
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Salt/Corrosion. Ocean and coastal environments are of particular concern
because the corrosion they commonly produce can lower the strength of a material.
Corrosion and oxidation can also cause clogging or binding in flexible joints. Protec-
tive finishes, seals, and naturally corrosive resistant materials are needed when
equipment is designed to withstand long durations in ocean and coastal environ-
ments. Corrosive environments can also occur in power plants and chemical pro-
cessing industries.

Other. Other environments might affect the dynamic performance of equipment.
Two such examples are vacuum and electromagnetic fields. Vacuum environments
(e.g., space vehicles or aircraft at high altitudes) can cause pressure differentials in
sealed structures, which produce static stresses that are superimposed on the stresses
due to dynamic responses.Vacuum environments also lack the damping provided by
the interaction of the structure with the air. Electromagnetic fields can interfere with
the functional performance of electronic subassemblies, and sometimes induce
vibration of steel panels.

LIFE-CYCLE ANALYSIS

Dynamic design typically concentrates on the service environment, but there are
other conditions during the life of a product that may require special consideration.
The definition of all of the different conditions (environment magnitudes and dura-
tion) that the equipment will be exposed to during its total life, from manufacture to
disposal, is commonly referred to as a life-cycle analysis.

Manufacturing Conditions. The life of equipment typically begins when it is
manufactured. Manufacturing-induced residual stresses and strains due to plastic
deformations, excessive cutting speeds, elevated adhesive cure temperatures, or
welding can adversely affect the initial strength of materials. Understanding the
material properties after manufacturing-induced excitations (and possible rework)
is a critical first step in a life-cycle analysis.

Test Conditions. Equipment often undergoes factory acceptance or environmen-
tal stress screening tests (see Chap. 18) before it is put into service. These test envi-
ronments can induce initial stresses and strains that reduce the resultant strength.
An example is a pull test of a wire bond. The test should produce failure in a poor
bond, but may also cause permanent plastic deformation in the ductile wire. When
predicting the overall fatigue life of an item of equipment, any initial tests must be
considered as excitations that will accumulate damage.

As discussed in Chap. 18, at least one sample item of any new equipment must
pass a qualification test to verify that it can survive and function correctly during its
anticipated shock and/or vibration environments. This qualification test generally
represents the most severe dynamic environment the equipment will experience,
and hence the equipment must be designed for this test environment. However,
since the sample item used for the qualification test is not delivered for service use,
the qualification test does not have to be included in the life-cycle analysis.

Shipping and Transportation. Once an equipment item is manufactured, it
probably will be transported to its operating destination. This transportation envi-
ronment can often induce excitations that will not be seen in service use. Examples



include shock excitations from handling between shipping phases (e.g., dropped
packages when unloading a truck), and low-frequency vibration excitations induced
by repeated roadway imperfections as seen by a ground transportation vehicle. Spe-
cial features may need to be added to the equipment, such as additional support
parts, to help it survive shipping excitations. One example is a temporary part that is
installed between two assemblies that would normally be vibration-isolated in use.
The temporary part eliminates excessive displacements due to large low-frequency
shipping excitations. Once the system arrives at its destination, the temporary part is
removed so the two assemblies can then move freely.

In some cases, the transportation environments may be so much more severe
than the service environment that special shipping containers need to be designed to
attenuate the transportation excitations. Vibration-isolated shipping containers are
often used when transporting sensitive equipment (see Chap. 39).

Service Conditions. The most obvious condition to understand is the service
environment of the equipment.A significant portion of the design process should be
devoted to accurately determining the dynamic environments under which the
equipment must operate. A thorough understanding of the service dynamic envi-
ronments will help to ensure that the equipment will function both properly and
economically. Standard dynamic environments that have been developed for vari-
ous commercial and military applications may be used to help determine the service
excitations (see Chap. 17). These standards, however, should be used with care
because they often provide conservative shock and/or vibration estimates that may
result in equipment that is overdesigned and more costly than necessary.

When the equipment is to be used in multiple locations, a larger set of dynamic
environments must be considered. For each environment, the type, magnitude, dura-
tion, and other conditions (e.g., temperature range) should be itemized. For items of
equipment that will be produced in large quantities, a statistical approach that
groups the dynamic environments into histograms should be considered (see Chap.
18). While the specification of service environment magnitudes and durations is
often the responsibility of another organization, the designer must review the
desired requirement thoroughly and often request additional information.

DYNAMIC RESPONSE CONSTRAINTS AND FAILURE CRITERIA

Important requirements that need to be defined before equipment is designed are
the allowable dynamic responses and failure criteria. Often there will be multiple
constraints that need to be satisfied.

Displacement. Displacements due to dynamic excitations must always be consid-
ered when the equipment is made up of several subassemblies. The overall motion
(or sway space) of an equipment item must also be considered when it will be
mounted near other structures.This is often a concern with vibration-isolated equip-
ment. Displacements can also be a concern for position-sensitive equipment such as
printing, placement, optical, and measurement devices.

Velocity. Velocity response is of concern for all structures, because the modal (rel-
ative) velocity of the structural response at a normal mode is directly proportional
to modal stress.1 This fact can be used to estimate the stress due to the response of a
structure at any given normal mode frequency, as will be detailed later.
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Acceleration. Some products are most susceptible to acceleration responses. For
example, an electrical relay or switch may unlatch when the acceleration acting on
the mass of the contact is large enough to cause it to change state. Furthermore,
quasi-static acceleration excitations are proportional to stress in the equipment
structure.

Permanent Deformation and Factors of Safety. A critical part of the require-
ments definition process for dynamic environments is to clearly state the allowable
amount of permanent deformation that the equipment will tolerate. Some equip-
ment can still function acceptably after being subjected to brief, high-excitation con-
ditions that cause some plastic deformation. Other equipment may not tolerate any
yielding that could cause misalignment or interference. Some customers may specify
factors of safety that must be met as part of a development specification. These are
typically calculated based on stresses relative to the allowable material yield and/or
tensile strengths.

Fracture, Fatigue, and Reliability. Equipment intended for use over a relatively
long-exposure duration should carry with it some clearly defined fatigue and/or reli-
ability requirement.The equipment design team should establish a reliability goal in
terms of fatigue life. This is of particular concern when a premature failure of the
equipment can result in severe economic damage or personal injury.

STRUCTURAL REQUIREMENTS

Structural and physical requirements must be defined before the start of a design.
For equipment that will be used as part of a larger system, the physical requirements
may be negotiable, especially in terms of mounting points and final geometry. These
requirements are typically specified as part of an interface agreement, often called
an interface control document (ICD), between the product development teams.

Volume. The overall volume requirement for an equipment item is an obvious
requirement, but it may necessitate some design study. One example would be a
combination of a minimum natural frequency and a radiating thermal environment
requirement. A smaller design typically has a higher natural frequency due to the
stiffness vs. length cubed effect in bending (see Chap. 1). However, this is contrary to
the need for a large surface area to facilitate radiation heat transfer. As with most
design problems, these effects need to be balanced within the allowable volume.The
volume should also include allowances for any displacements that may occur over
the life of the equipment.

Mass. Mass or weight requirements can conflict with other equipment require-
ments. For example, equipment that has a maximum mass requirement may also
have a shock and/or vibration-isolation requirement (see Chaps. 38 and 39). The
resulting equipment will need to be designed with a low-stiffness isolation system
such that the required level of isolation can be reached while still meeting the max-
imum mass requirement. Other conflicting requirements are minimizing mass while
maximizing stiffness and conduction heat transfer. When a mass needs to be con-
trolled accurately, care should be given to the control of both the density and geom-
etry of the parts, especially when the materials used are alloys of high-density metals
or composites.
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Materials. High-strength, low-density metals are typically the materials of choice
for equipment that is exposed to dynamic environments. While this is usually a wise
choice, other factors should be considered. In many cost- and time-conscious indus-
tries, procurement organizations limit the number of materials from which a product
can be made. This is a practice that can save money and limit inventories of expen-
sive specialty materials. The designer needs to understand this situation and learn 
to work with the available choices of materials.A second concern is that these mate-
rials must often be selected in certain stock thicknesses and shapes. One benefit of
these measures is that the physical properties of standard materials are often well
documented. If not, the designer should strive to work toward a common material
property database that can be linked to the available material choices.

Damping properties can be measured for polymers, elastomers, and adhesives
using the procedures detailed in Chap. 36. The damping properties of adhesives are
an important factor to consider when choosing between options.Adhesives that join
lightly damped members can significantly reduce the overall response of the equip-
ment assembly. Fatigue (or fracture) properties for most common materials can be
found in Chaps. 33 and 34, as well as Refs. 2 to 4.

Finally, the designer should review the other required environmental conditions
that may cause further constraints on the available choices of materials. When feasi-
ble, the designer should use common materials that have well-defined properties.
Materials that are more exotic should be considered only when they are essential
and their properties are well-documented and controlled.

OTHER REQUIREMENTS

It is important to consider other requirements that can adversely affect the finished
equipment if not considered early in the design process.

Safety. For those items of equipment where a failure or malfunction during ser-
vice use might result in severe economic damage or personal injury, safety must be a
primary concern. Safety issues should also receive top priority during all other life
cycle phases, including manufacturing, handling, and transportation. A qualified
safety engineer should be involved in all phases of the design process.

Cost and Schedule. Cost is an important concern that must be considered by
every designer developing new equipment. Of particular importance is the life cycle
cost of the equipment. It is often less expensive overall to spend time early in the
design phase to define and understand the equipment requirements. This can often
reduce costly changes to the design further along in its development. However, as
previously discussed, safety requirements must always receive careful consideration
in making cost and schedule decisions.

Disposal/Recycle. Disposal and recycling requirements should always be consid-
ered in the design. Some markets now require that the final disposal of an equip-
ment item include recycling of its materials. Products may also be remanufactured,
that is, some types of equipment that have completed their service life might be
refurbished, with worn parts repaired or replaced, and then returned to service.

Other. The designer should be aware that equipment needs to function well in
ways other than its prime task. Additional features that will help other groups work
with the equipment should be considered early in the design phase. Included here
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are such features as handles, additional holes for lifting equipment, modular design,
and adjustable interfaces. When conflicting requirements make a straightforward
design difficult, it is sometimes desirable to convene a design team comprised of
engineers in such disciplines as systems operation analysis and testing, electromag-
netic compatibility, high-reliability parts, cost control, manufacturing, and thermal
analysis, as well as shock and vibration.

METHODS OF CONSTRUCTION

Equipment designed to withstand shock and/or vibration excitations must typically
be stronger than equipment that only has to withstand gravity or static acceleration
loads. This dictates that the equipment have a well-defined primary structure that
can withstand the dynamic excitations, as well as carry the additional excitations that
might be internally generated. Basic construction methods should be considered
early in the design process to facilitate the modeling and analysis procedures dis-
cussed later.

PRIMARY STRUCTURE

Primary structures are those that carry the greatest loads and support the secondary
structures and subassemblies. The design and analysis of any product should start
with particular attention to primary structure.The primary structural elements often
have to be designed early in the product development cycle to allow for long lead-
time material and tooling acquisition. Simple lumped-parameter (see Chap. 2) or
beam/plate finite element models (see Chap. 23) can be used to perform initial stiff-
ness and natural frequency calculations for primary structures.There are many ways
to build primary structures.

Machined Parts. Machined parts are often used for primary structures. The
machining operations can be customized to place holes and attachment points for
secondary structures where needed. For economic reasons, machine operations can
be used to remove unnecessary material or allow thicker sections where needed.
Machined parts are typically used for low-volume production. Unfortunately,
machining operations can also reduce the strength of the parent material by intro-
ducing microcracks that might lead to fatigue or fracture. Machined parts may need
to be heat-treated after machining to develop the necessary strength and ductility
for the intended use.

Castings/Forging. Casting or forged parts are typically used for high-production-
volume structural elements because they usually can be formed in near-final shapes
that reduce the need for machining operations. Cast materials typically have lower
strength and ductility than wrought or forged materials (see Chap. 33). Cast mate-
rials also can suffer from various manufacturing defects, such as porosity and shrink-
age, which can increase part variability. This variability should be factored into the
stress and strength analysis of the part.

Forged parts typically have higher strengths than cast and wrought materials.The
forging process can shape material grain and orient the strength along specific part
directions. Forged parts are used when the very highest strengths are needed to
resist high excitations, e.g., in aircraft landing gear and construction equipment link-
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ages. The forging process does tend to be expensive because of the hard tooling that
is needed to form parts under high temperatures and pressures.

Plates/Sheet Metal. Sheet and plate parts are often used for primary structures,
especially when they are formed into more rigid three-dimensional shapes. Sheet
and plate material can often be bent, cut, and then joined to other parts to give
strength and stiffness where needed. Automobile bodies are excellent examples
of how sheet metal can be used to form rigid and reliable structures. Modern
computer-controlled laser and water-jet cutting techniques can be used to form
complicated sheet or plate metal geometries economically for even low-volume
production. The important thing to remember with sheet or plate metal construc-
tion is that parts need to be stiffened in the out-of-plane (normal to the surface)
direction. Care should also be given to minimizing large unsupported areas that can
vibrate, especially with acoustic excitation.

Beam Frames. Beam and tube construction is a very efficient way to make pri-
mary structures that span large distances, especially when built into trusses or
frames. Beams and tubes also have the advantage of high material strength because
of the manufacturing processes, such as extrusions, that form them into their contin-
uous cross sections. The most difficult part of designing a beam or tube structure is
determining the best way to join the pieces.Welding can often reduce the strength of
the material at the joints, requiring additional fittings or gussets to maintain the nec-
essary overall strength. Care should also be given to locating any holes or secondary
attachment points at low-stress locations on the beams.

Composite Structures. Composite structures have proven to be efficient pri-
mary structures, especially when high strength and low weight are prime concerns.
Composite materials can be laid up into plate, beam, and large thin-wall structures.
Boat hulls and filament-wound pressure vessels are good examples of large com-
posite thin-wall structures. Composite materials can be mixed, taking advantage of
different strength, stiffness, thermal conductivity, and thermal expansion properties
for each layer. However, care is required when designing joints for composite struc-
tures. See Chap. 34 for details on the properties of composite materials.

SECONDARY STRUCTURES

Secondary structures are those structures used to attach subassemblies to primary
structures. Secondary structures typically do not have the more stringent strength
and stiffness requirements of the primary structures, so they can be designed later 
in the development cycle, often allowing changes in geometry to accommodate
changes in subassemblies. Secondary structures can also evolve as more cost-
efficient materials or manufacturing processes are developed.

Plates/Sheet Metal. Plate and sheet metal parts are often used for nonstructural
members such as covers. In this case, the products need only to support their own
weight or some minor additional weight due to cables, sensors, or other secondary
assemblies. As with all plate structures, care should be given to minimizing large
unsupported areas.

Composite Structures. Composite structures can also be used for secondary
structures.Their high strength-to-weight ratios make them attractive options for cov-
ers and other molded thin-wall sections that need to support some subassemblies.
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Plastic Parts. Plastic parts can be used for both primary and secondary structures.
Plastics can form adequate primary structures, especially for smaller, low-weight
consumer products that are not subjected to extreme conditions. When combined
with other materials, such as metal stiffeners in selected areas, plastics can be used
effectively for even larger products. The wide range of colors, finishes, and shapes
make plastic materials a common choice for secondary structures that are visible to
the consumer. They also make excellent low-cost parts when they do not need to be
exposed to intense shock and/or vibration excitations.

INTERFACES AND JOINTS

Interfaces are the junctions between the various structural elements that form the
equipment. The manner in which the structural elements are jointed together at
interfaces is very important in the construction of equipment because the interface
friction at joints is the primary source of the damping (energy dissipation) in the
equipment that restricts its dynamic response to vibration and, to a lesser degree,
shock excitations. There are five basic devices used to make joints in the construc-
tion of equipment, namely, (a) continuous welds, (b) spot welds, (c) rivets, (d) bolts,
and (e) adhesives.Typical values of the damping ratio in fabricated equipment using
these various types of interface joints are summarized in Table 40.1.

Welded Joints. Welded joints must be well designed, and effective quality con-
trol must be imposed upon the welding conditions. The most common defect is
excessive stress concentration which leads to low fatigue strength and, consequently,
to inferior capability of withstanding shock and vibration. Stress concentration can
be minimized in design by reducing the number of welded lengths in intermittent
welding. Internal crevices can be eliminated only by careful quality control to ensure
full-depth welds with good fusion at the bottom of the welds. Welds of adequate
quality can be made by either the electric arc or gas flame process. Subsequent heat-
treatment to relieve residual stress tends to increase the fatigue strength. See Refs.
5 and 6 for further information on welded joints.

Spot-Welded Joints. Spot welding is quick, easy, and economical but should be
used only with caution when the welded structure may be subjected to shock and
vibration. Basic strength members supporting relatively heavy components should
not rely upon spot welding. However, spot welds can be used successfully to fasten a
metal skin or covering to the structural framework. Even though improvements in
spot welding techniques have increased the strength and fatigue properties, spot
welds tend to be inherently weak because a high stress concentration exists in the
junction between the two bonded materials when a tension stress exists at the weld.

TABLE 40.1 Typical Damping Ratios for Equipment with
Various Types of Joints

Method of Typical damping ratio
construction for equipment

Welded and spot-welded 0.01
Riveted 0.025
Bolted 0.05
Bonded 0.01 to 0.05*

* Heavily dependent on the type of adhesive and its thickness.



Spot-welded joints are satisfactory only if frequent tests are conducted to show that
proper welding conditions exist. Quality can deteriorate rapidly with a change from
proved welding methods, and such deterioration is difficult to detect by observation.
However, accepted quality-control methods are available and should be followed
stringently for all spot welding. See Refs. 5 and 6 for further information on spot-
welded joints.

Riveted Joints. Riveting is an acceptable method of joining structural members
when riveted joints are properly designed and constructed. Rivets should be driven
hot to avoid excessive residual stress concentration at the formed head and to
ensure that the riveted members are tightly in contact. Cold-driven rivets are not
suitable for use in structures subjected to shock and vibration, particularly rivets
that are set by a single stroke of a press as contrasted to a peening operation. Cold-
driven rivets have a relatively high probability of failure in tension because of resid-
ual stress concentration, and tend to spread between the riveted members with
consequent lack of tightness in the joint. Joints in which slip develops exhibit a rel-
atively low fatigue strength. See Refs. 5 and 6 for further information on riveted
joints.

Bolted Joints. Except for the welded joints of principal structures, the bolted
joint is the most common type of joint. A bolted joint is readily detachable for
changes in construction, and may be effected or modified with only a drill press and
wrenches as equipment. However, bolts tend to loosen and require a means to main-
tain tightness. Furthermore, bolts are not effective in maintaining alignment because
slippage may occur at the joint; this can be prevented by using shear pins in con-
junction with bolts or by precision fitting the bolts; i.e., fitting the bolts tightly in the
holes of the bolted members. See Refs. 5 and 6 for further information on bolted
joints.

Adhesives. Adhesives are gaining increased usage as a method of attaching
structural elements. When stringent manufacturing controls are used to ensure
consistent material properties and area coverage, adhesives can be used in most
joints between structures. Adhesives have an advantage over other types of joints
when some flexibility and damping is needed in the joint. Adhesives are also good
at filling uneven gaps in parts manufactured to wider tolerances. See Ref. 6 for
details.

SUBASSEMBLIES

Most types of equipment, especially large items, require subassemblies to perform
various functions to satisfy the overall function of the equipment. These subassem-
blies must be supported on the primary or secondary structures in a way that ensures
they will function correctly. Subassemblies can often be treated as lumped masses,
but they may need additional dynamic analysis when they are large or sensitive to
dynamic effects. Subassemblies and their support structures often need to have their
own requirements allocated to them. Examples are given below.

Electronic Assemblies. Many equipment items include one or more electronic
assemblies. The designer must ensure that the environment seen by the electronic
assembly is low enough for it to function correctly for the intended duration. Often,
electronic assemblies will be purchased with specific dynamic requirements that, if
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exceeded, may cause malfunction or permanent damage. The design of support
structures for the electronic assembly must ensure that the input dynamic environ-
ment to the assembly is within the specified dynamic requirements. Otherwise, the
assembly must be mounted to the equipment through shock or vibration isolators
(see Chap. 39).

When it is necessary to design new electronic assemblies, several specific proce-
dures need to be followed. First, the designer should establish a dynamic require-
ment for the assembly, as discussed earlier. Then, parts that can withstand this
requirement must be selected. If some parts cannot be procured (at a reasonable
cost) to withstand these levels, then isolation of a subassembly or the whole assem-
bly must be considered. Finally, the design of the electronic circuit boards to which
parts will be mounted requires specific attention.

Electronic circuit boards, also called printed wiring boards (PWBs) or printed
wiring assemblies (PWAs), are often constructed of laminated fiberglass or other
composite materials. These boards form a flexible plate that, if not supported ade-
quately, can deflect easily and deform or break sensitive electrical part connection
leads. Frequent attachment points, stiffening ribs, heat sinks, and plates should be
considered early in the design of the electronics. It is often desirable to take advan-
tage of the damping characteristics of adhesives used to bond stiffeners and heat
sinks to boards to reduce dynamic deflection. See Ref. 7 for details on the design of
electronic equipment for vibration environments.

Mechanical Assemblies. Mechanical assemblies require special attention when
they deliver dynamic excitations to the structures that support them. Mechanical
items, such as hydraulic cylinders or electrical motors, can induce large dynamic exci-
tations to their support structures. Structural fittings need to withstand these excita-
tions and often allow removal or adjustment of the mechanical assembly after its
original manufacture. Dynamic excitations can also affect the performance of
mechanical assemblies. For example, dynamic accelerations can act on imbalanced
masses in rotating equipment to cause additional shaft displacement or speed errors.
These disturbances need to be either limited or isolated.

Optical Assemblies. Optical assemblies need special consideration when used in
dynamic environments. Optics must often be mounted using strain-free exact con-
straints. Overly constrained mounts are statically indeterminate, causing unpre-
dictable and unwanted deformations. The dynamic parameters of the optical
elements by themselves must also be well understood so that the effects of any
dynamic excitations can be kept to an acceptable level. Of considerable concern is
the lightly damped and brittle nature of glass optics.

SHOCK AND VIBRATION CONTROL SYSTEMS

As mentioned in several of the previous sections, many systems need to be designed
to provide some sort of vibration isolation for sensitive assemblies contained within
them. Shock and/or vibration isolation is typically achieved by what is essentially a
low-pass mechanical filter (see Chaps. 38 and 39).These isolation systems can be very
effective and should be considered early in the equipment design cycle, but are often
considered later as a fix for a poor design. Passive shock and vibration control can
also be achieved by careful attention to the damping characteristics of the materials
used in the construction of the structure (see Chap. 35). Finally, applied damping
treatments can be used to suppress unwanted dynamic responses (see Chap. 36).
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DESIGN CRITERIA

Based upon a thorough evaluation of the environments and requirements summa-
rized in the preceding section, specific design criteria must now be formulated.These
criteria may cover any or all of the environments previously summarized, but it is the
shock and vibration (dynamic excitations) environments that are of concern in this
handbook. The dynamic environments are usually specified as motion excitations
(commonly acceleration) at the mounting points of the equipment to its supporting
structure. However, there may be situations where the equipment is directly exposed
to fluid flow, wind, or aeroacoustic loads, which cause fluctuating pressure excita-
tions over its exterior surfaces that can produce a significant contribution to the
dynamic response of the equipment. An example would be a relatively light item of
equipment with a large exterior surface area mounted in a space vehicle during
launch. In this case, the dynamic excitation design criteria must also include pressure
excitations over the exterior surface of the equipment, as detailed in Chap. 32. Nev-
ertheless, attention here is restricted to dynamic inputs in the form of motion excita-
tions at the mounting points of the equipment. It is assumed these dynamic
excitations will be described by an appropriate frequency spectrum, as summarized
in Table 18.2.

DESIGN EXCITATION MAGNITUDE

The procedures for deriving the magnitude of the dynamic excitations for design
purposes are essentially the same as those used to derive qualification test levels in
Chap. 18. The principal steps in the procedure are as follows.

Determination of Excitation Levels. When the structural system to which the
equipment is to be mounted is available, the shock and vibration levels should be
directly measured in terms of an appropriate frequency spectrum (see Table 18.2) at
or near all locations where the equipment might be mounted. If the structural sys-
tem is not available, the shock and vibration levels must be predicted in terms of an
appropriate frequency spectrum at or near all locations where the equipment might
be mounted using one or more of the prediction procedures detailed in other chap-
ters of this handbook and summarized in Chap. 18. These measurements or predic-
tions should be made separately for the shock and/or vibration environments during
each of the life-cycle phases discussed in the previous section.

Determination of Maximum Expected Environments. For each life-cycle
phase, the measurements or predictions of the shock and/or vibration environments
made at all locations at or near the mounting points of the equipment to its sup-
porting structure should be grouped together. Often design criteria are derived for
two or more equipment items in a similar structural region. Hence, a dozen or more
measurements or predictions may be involved in each grouping of data (called a
zone in Chap. 18). A limiting (maximum) value of the spectra for the measured or
predicted shock and/or vibration data at all frequencies is then determined, usually
by computing a statistical tolerance limit defined in Eq. (18.2). The statistical toler-
ance limit given by Eq. (18.2) provides the spectral value at each frequency that will
exceed the values of the shock and/or vibration spectra at that frequency for a
defined portion β of all points in the structural region with a defined confidence
coefficient γ. This limiting spectrum is called the maximum expected environment
(MEE) for the life-cycle phase considered.
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The MEE will generally be different for each life-cycle phase. From a design
viewpoint, since the equipment response is heavily dependent on the frequency of
the excitation, it is the largest MEE at each frequency (that is, the envelope of the
MEEs for all life-cycle phases) that is important.This envelope of the MEEs is called
the maximax environment. This same concept of a maximax spectrum is commonly
used to reduce the time-varying spectra for nonstationary vibration environments,
as defined in Chap. 19, to a single stationary spectrum that represents the maximum
spectral values at all times and frequencies.

Equipment Loading Effects. The shock and/or vibration measurements or pre-
dictions used to compute the maximax excitation spectral levels at the mounting
points of the equipment are commonly made without the equipment present on the
mounting structure. Even when the equipment is present for the measurements or
modeled for the predictions, the computations required to determine MEEs and the
final maximax spectrum smooth the detailed variations in the spectral level with fre-
quency. However, if the equipment is relatively heavy compared to its mounting
structure, then when the equipment is actually mounted on the structure, the shock
and/or vibration levels at the equipment mounting points are modified. This is par-
ticularly true at the normal mode frequencies of the equipment where it acts like a
dynamic absorber, as detailed in Chap. 6. The result is a spectrum for the input exci-
tation from the supporting structure that may be substantially reduced in level at the
normal mode frequencies of the equipment. If this effect is ignored, the maximax
spectrum might cause a severe overdesign of the equipment.

The equipment excitation problem can be addressed in two ways. First, if there is
a sufficient knowledge of the details of the supporting structure, the input excitation
spectra at the equipment mounting points can be analytically corrected using the
mechanical impedance concepts detailed in Chap. 9. Specifically, let Zs( f ) and Ze( f )
denote the mounting point impedance of the supporting structure and the driving
point impedance of the equipment, respectively. Then for a periodic vibration

Lc( f ) = (40.1a)

where Lc( f ) and Lr( f ) are the line spectra, as defined in Eq. (19.5), for the response
of the equipment mounting structure with and without the equipment present,
respectively. For a random vibration,

Wcc( f ) = (40.1b)

where Wcc( f ) and Wrr( f ) are the power spectra, as defined in Eq. (19.13), for the
response of the equipment mounting structure with and without the equipment
present, respectively. For those situations where the driving point impedance of the
equipment is small compared to the mounting point impedance of the structure, that
is, Ze( f ) << Zs( f ), it is seen from Eq. (40.1) that the vibration response of the equip-
ment mounting structure is only slightly altered when the equipment is attached.
However, if Ze( f ) approaches Zs( f ), as it often will at the normal mode frequencies
of equipment mounted on relatively flexible structures, then the vibration of the
mounting structure will be significantly modified by the presence of the equipment,
and a correction of the design levels for the equipment loading will be required.
Again assuming there is a sufficient knowledge of the details of the supporting struc-
ture, a second way to correct for the equipment loading problem is to include at least

Wrr( f)
���
|1 + [Ze( f )/Zs( f )]|2

Lr( f )
��
|1 + [Ze( f )/Zs( f )]|
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a portion of the supporting structure in the equipment model that will be used for
the equipment response analysis to be discussed later.

DESIGN LIFE

For equipment that is designed for a long service life, the potential for a time-
dependent failure (e.g., fatigue damage) is generally of primary concern. Hence, the
total duration of the dynamic excitation exposure during all of the life-cycle phases
must be determined. For shock environments, the problem reduces to simply esti-
mating the total number of shocks that will occur during each of the life-cycle
phases. For vibration environments, however, an equivalent duration for the vibra-
tion excitations during each life-cycle phase must be computed. If the vibration envi-
ronment during a life-cycle phase were stationary, the task would be simple.
However, vibration environments during life-cycle phases are often nonstationary
(see Chap. 19). A common approach in this case is to assume any time-dependent
failure of the equipment follows the inverse power law given by Eq. (18.6), where a
value of b = 8 is often assumed for metal structures with no stress concentrations,
and b = 4 is commonly assumed for electrical and electronic equipment, as well as
metal structures with substantial stress concentrations. Using Eq. (18.6), vibration
environments of different magnitudes and durations can be collapsed to a single sta-
tionary vibration environment with an equivalent damaging potential using Eqs.
(18.7) and (18.8), as illustrated for automotive equipment in Table 18.4. In addition,
this procedure is often used to collapse the vibration environments during each of
the life-cycle phases into a single spectrum with an equivalent total duration for
design purposes.

DESIGN MARGINS

Given the maximax spectra for the shock and/or vibration excitations at the mount-
ing points of the equipment, perhaps with a correction for the loading effects of the
equipment on its supporting structure, it is common to further increase the levels to
allow for uncertainties in the derived maximax levels. This increase in the levels is
called the design margin, and is commonly selected to be between +3 dB and +6 dB.
For a periodic vibration described by a line spectrum, as defined in Eq. (19.5), or a
shock described by a shock response spectrum, as defined in Eq. (20.33), +3 dB and
+6 dB correspond to a multiplication of the spectral values by �2� and 2, respectively.
For a random vibration described by a power spectrum, as defined in Eq. (19.8),
+3 dB and +6 dB correspond to a multiplication of the spectral values by 2 and 
4, respectively. Of course, other design margins, either larger or smaller, might be
selected depending on the designer’s confidence in the derived maximax spectrum.
In any case, the maximax spectrum plus the design margin gives the final shock
and/or vibration design magnitudes.

METHODS OF ANALYSIS

The analysis of structures for design purposes must involve an analytical model.This
section outlines the different types of analysis methods and gives advice on how to
use them for the design of equipment.
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MODELING

Modeling is an essential part of the design process. Models allow designers to under-
stand the dynamic behavior of the equipment and conduct trade-off studies and
experiments without committing to hardware. Options range from the single-degree-
of-freedom model (SDOF) (see Chap. 2) to finite element method (FEM) models
with thousands of degrees of freedom (DOF) (see Chap. 23). Modern computers
allow very large numerical analysis models to be created. In the limit, every detail of
a structure can be analyzed. However, the economic wisdom of such a pursuit is ques-
tionable.

The decision of how much detail to incorporate into a model should be driven by
a clearly defined objective related to a specific design requirement or constraint.The
designer must determine the required output of the modeling effort and ensure
appropriate design features are adequately represented in the model. For example,
the model format and size will depend upon the need for stress results. In general,
much less detail is required for displacement models than for stress models. Stress
concentration resolution generally requires extensive modeling detail.

Sometimes multiple models are appropriate. For example, lumped-parameter
models may be sufficient in preliminary design and for conducting system sway space
budget exercises.A beam model may be appropriate for a shock or vibration isolation
system and excitation path design. In most cases, a finite element model is necessary
to resolve stresses in detailed features. Engineering judgment must be applied to
assess the need for modeling nonlinear properties and detailed features. Planning and
data management are also important elements of the modeling process.The designer
should consider all of the potential uses of the model prior to model construction.

Lumped-Parameter Models. The simplest type of dynamic model is the single-
degree-of-freedom system, for which tabulated and charted solutions are widely
available (see Chaps. 1 and 2). Lumped-parameter models can be used to accurately
represent many mechanical structures. These include structures in which one struc-
tural element is much more flexible than the remaining structure. In such a case, the
rigid portion of the structure may be adequately represented as a lumped mass con-
nected to the equivalent spring stiffness of the flexible element. The behavior of
complex structures often can be represented by very simple dynamic models.
Designers should seek to recognize and exploit such simplifications wherever possi-
ble, as is illustrated later.

Distributed-Parameter Models. Sometimes the mass of a structure is evenly dis-
tributed over a large span of the structure. In these cases, a lumped-parameter model
may require a very large number of degrees of freedom, and a distributed modeling
approach is preferred. Distributed-parameter models are on the next level of com-
plexity in the hierarchy of modeling tools. Classical beam, plate, and shell theory
provide the basis for such modeling. Poles, wings, frames, and the leads of electronic
devices may be considered as beams, while printed circuit boards, panels, covers, and
doors may be viewed as plates. Modeling techniques for distributed systems are pro-
vided in Chaps. 1 and 7.

Finite Element Method Models. Systems with multiple distributed-parameter
components become difficult to solve as geometry becomes even modestly complex.
Fortunately, user-friendly software tools exist which enable designers to obtain com-
puter solutions to distributed-parameter models using the finite element method of
analysis. See Chap. 23, for details on FEM models.
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FEM models can vary widely in complexity depending on the desired results.
Because FEM models can place substantial demands on computer and human
resources, it is important not to make the model any more complex than needed for
the application. Relatively simple models that involve only a few hundred degrees of
freedom are often adequate to compute estimates for the first few normal modes of
a structure. On the other hand, models involving several orders of magnitude more
DOF are often required to obtain accurate stress predictions, particularly if the
structure has nonlinear characteristics. This variation in the complexity of an FEM
model for different applications is illustrated in Fig. 40.2. A drawing of a ground-

based radar unit in a stowed position for
transportation is shown in Fig. 40.2A. A
simple (400-DOF) beam approximation
for the structure, which is adequate to
estimate the first few normal mode fre-
quencies of the equipment, is illustrated
in Fig. 40.2B. In contrast, a complex
(10,000+-DOF) model used for stress
analysis is depicted in Fig. 40.2C. Con-
struction and execution times of the two
models are vastly different. The simple
model in Fig. 40.2B was constructed in a
day or so, and can be executed on the
computer in a few seconds. Hence, it can
be very useful in preliminary design
where numerous analyses can be made
with various different structural con-
figurations to select a basic structural
design that will have certain desired
normal mode characteristics. On the
other hand, the complex model, which
includes nonlinear features, may take
weeks of effort to construct and require
much more computer time to execute,
making it practical only for final design.
Model architectures must be carefully
planned for specific objectives.

Statistical Energy Analysis Models.
Even the most detailed FEM model
becomes increasingly inaccurate at fre-
quencies above about the 50th normal
mode frequency of the structure. For
equipment that is exposed to relatively
high frequency dynamic excitations, such
as aeroacoustic excitations (see Chap. 32)
or pyroshock excitations (see Chap. 28),
FEM analysis procedures usually be-
come costly and ineffective. In such cases,
statistical energy analysis (SEA) proce-
dures become attractive (see Chap. 24).
However, SEA procedures have three
important limitations, as follows:
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FIGURE 40.2 Illustration of FEM models for
ground-based radar unit: (A) diagram of unit;
(B) simple FEM model; (C) complex FEM
model. (Courtesy of Lockheed Martin Corpora-
tion.)



1. They provide a vibration response averaged over a structural region, rather than
at specific locations on the structure.

2. They provide a vibration response averaged over frequency bandwidths that
each cover several normal modes of the structure (commonly 1⁄3-octave band-
widths), rather than at specific frequencies.

3. They provide accurate results only when there are at least five normal modes of
the structure in the frequency bandwidth used for the analysis.

The above limitations make it difficult to translate SEA results into stresses at spe-
cific locations on the equipment structure. Nevertheless, SEA can yield valuable
descriptions of the average shock and/or vibration response of structural elements in
the equipment as a coarse function of frequency. Furthermore, since SEA models do
not require structural details, they can be used effectively during the preliminary
design phase.

PRELIMINARY DESIGN PROCEDURES

Based upon all the considerations and requirements discussed earlier, an initial
design for the equipment should be made, perhaps with the assistance of a standard
design handbook (e.g., Ref. 6), relevant reference books (e.g., Refs. 7 and 8), and/or
specialized reference documents.This initial design should be modeled by any of the
procedures discussed earlier, although finite element method and statistical energy
analysis models are preferred.A simple FEM model can be used to estimate the first
few normal modes of the equipment, as well as the maximum displacements, veloci-
ties, and accelerations induced by the design shock and/or vibration excitations at
frequencies up through the first few normal mode frequencies. An SEA model can
be used to estimate the average accelerations of various elements of the equipment
induced by the design shock and/or vibration excitations at the higher frequencies
where there are at least several normal modes of the equipment in the SEA analysis
bandwidths (usually 1⁄3-octave bandwidths). In either case, all of these responses can
be evaluated by executing the model(s) for various different structural configura-
tions.

Of particular concern early in the design process is the identification of the
potential for excessive stresses in the equipment structure due to the design shock
and/or vibration excitations. Since the maximum stresses in equipment structures
exposed to shock and/or vibration excitations are generally due to the responses of
the normal modes of the equipment, preliminary estimates of stress can be made
using the relationship between maximum modal bending stress and maximum
modal (relative) velocity given by1,9

σm ≈ CEvm/c ≈ Cvm �Eρ� (40.2)

where σm = maximum modal bending stress in the structure
vm = maximum modal velocity of the structural response

c = speed of sound (longitudinal wavespeed) in the structural material
E = Young’s modulus of the structural material
ρ = mass density of the structural material
C = constant of proportionality

The coefficient C in Eq. (40.2) is C ≈ 2 for all normal modes of homogeneous plates
and beams,9 but can vary widely for complex equipment structures depending on the

EQUIPMENT DESIGN 40.19



geometric details and the specific normal mode of the response.10 Nevertheless, a
value of C in the range 4 < C < 8 is often assumed for the first normal mode response
of typical equipment designs.11 The first normal mode frequency of the equipment
can be estimated early in the design using a simple FEM model, as illustrated in Fig.
40.3B. Equation (40.2) can then be applied to estimate the maximum stress in the
response of any arbitrary equipment structure by assuming the following:

1. The maximum stress in the basic structure of the equipment occurs due to the
response of the equipment at its first normal mode frequency.

2. The response of the equipment at its first normal mode frequency can be mod-
eled by a base-excited single-degree-of-freedom system (oscillator), as detailed
in Chap. 3.

It is emphasized that this approach provides only crude estimates for maximum
stress that are intended to provide guidance on desirable natural frequencies and
damping ratios for the equipment design, and the possible need for a shock or vibra-
tion isolation system in the final design. Furthermore, it does not provide any infor-
mation concerning the possibility of functional failures in electrical, electronic, or
optical subassemblies in the equipment.

Shock Excitations. Consider a shock environment where the design excitation is
described by a relative displacement shock response spectrum (SRS), as given by the
maximum value of Eq. (20.32), which is denoted here as δm( fn,ζ) where fn is the nat-
ural frequency and ζ is the damping ratio of the single-degree-of-freedom system.
Since the SRS is defined as the maximum response of an SDOF system as a function
of its natural frequency and damping ratio, it can be used directly with Eq. (40.2) to
predict the maximum stress in the structure of equipment due to a response at its
first normal mode frequency, specifically,

σm = CE(2πfn)δm( fn,ζ)/c (40.3)

where all terms are as defined in Eq. (40.2) and the (2πfn) term is needed to convert
the relative displacement SRS to an approximate relative velocity SRS, commonly
referred to as a pseudo-velocity shock response spectrum because it is an exact rela-
tive velocity SRS only for ζ = 0. From Chaps. 8 and 20, for simple pulse-type tran-
sients, the SRS values vary only slightly with damping ratio for ζ ≤ 0.05. Hence, for
such transients, the value of the damping ratio used to compute the SRS is not of
major importance. However, for more complex transients like pyroshocks (see
Chap. 28), the assumed damping ratio has a greater influence on the SRS value and,
hence, must be more accurately defined.

For example, assume an item of equipment must be designed to survive the U.S.
Navy high-intensity shock test for lightweight equipment, i.e., a weight of less than
350 lb (159 kg), which constitutes one of the most severe shock environments any
equipment would experience in a service environment. The test machine is dia-
grammed in Fig. 27.6, and the SRS for the shock computed with a damping ratio of
about ζ = 0.01 is shown in Fig. 27.7. Further assume the equipment is to be con-
structed from a high-quality aluminum alloy, such as 2024-T3, that has a yield and
ultimate strength of 50,000 lb/in2 (345 MPa) and 70,000 lb/in2 (483 MPa), respec-
tively.2 For aluminum, E ≈ 10 × 106 lb/in2 (6.9 × 104 MPa) and c ≈ 2 × 105 in/s (5100
m/sec). From Fig. 27.7, if the first normal mode of the equipment were at 100 Hz,
the velocity SRS value [2π(100)δm) would be about 400 in/s (10 m/s). Hence, from
Eq. (40.3), even assuming an optimistic value of C = 4 and adding no design margin,
the maximum stress in the equipment structure would be about σm = 80,000 lb/in2
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(552 MPa). Although this stress is in the nonlinear region of the material, it proba-
bly would cause a structural failure. It follows that the designer should proceed
assuming a shock isolation system (see Chap. 39) will be needed in the final design.
On the other hand, if the first normal mode frequency of the equipment were above
400 Hz where the velocity SRS value from Fig. 27.7 is 180 in/s (4.6 m/s), then the
maximum stress would be about 36,000 lb/in2 (248 MPa) and the equipment might
survive without a shock isolation system. However, it would be difficult to design
equipment with a first normal mode frequency above 400 Hz unless the equipment
is relatively small.

Periodic Vibration Excitation. Consider a periodic vibration environment where
the design excitation is described by a line spectrum, La( f ), with the units of g
(acceleration in gravity units) versus frequency in Hz, as defined in Eq. (19.5). In the
unlikely case where the fundamental frequency f1 of the excitation is fixed, then the
stress in the equipment response can be suppressed simply by pursuing a design with
no normal modes of the equipment at frequencies near f1, or any significant har-
monics thereof. In many cases, however, the fundamental frequency of periodic
vibration environments varies with time, e.g., rotating machinery and reciprocating
engines that produce periodic vibration environments often operate at various dif-
ferent rpms. Hence, the designer must usually assume that at least one of the har-
monic frequencies of the periodic excitation will correspond to a normal mode
frequency of the equipment, at least on some occasions. From Eqs. (2.41) and (40.2),
and assuming a damping ratio of ζ < 0.1, the maximum stress in the equipment struc-
ture for a periodic excitation at the equipment natural frequency is given by

σm = (40.4)

where gLa( fn)/(2πfn) converts the periodic excitation in gravity units to velocity, and
all other terms are as defined in Eq. (40.2).

For example, assume an item of equipment must be designed to survive a peri-
odic excitation with an amplitude of 5g and a frequency, at least on some occasions,
of 100 Hz. Further assume the equipment has a fundamental normal mode at fn = 100
Hz with a damping ratio of ζ = 0.025, and the equipment structure is a steel alloy
where E = 30 × 106 lb/in2 (2.1 × 105 MPa) and c = 2 × 105 in/s (5100 m/s). Using an
average value of C = 6, the maximum stress in the equipment structure is approxi-
mated by Eq. (40.4) as σm = 55,000 lb/in2 (380 MPa). A maximum stress of this mag-
nitude would probably not cause an immediate fracture of a high-quality steel alloy,
but it might ultimately lead to a fatigue failure.A preliminary estimate of the poten-
tial for a fatigue failure could be evaluated by estimating the number of cycles dur-
ing the design life when the periodic component is at the normal mode frequency of
the equipment, and then making a prediction of the fatigue life using the procedures
detailed in Chap. 33.

Equation (40.4) provides important guidance to the designer of equipment that
will be exposed to a periodic excitation at its fundamental normal mode frequency.
Specifically, the maximum stress in the equipment structure is inversely proportional
to the damping ratio of the structure. Hence, unlike pulse-type shock excitations,
applied damping treatments (see Chap. 36) constitute a powerful design tool for
reducing the maximum stress levels induced by periodic excitations.

Random Vibration Excitation. Consider a random vibration environment where
the design excitation magnitude is described by a power spectrum, Waa( f ), with the

CEgLa( fn)/c
��

4πfnζ
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units of g 2/Hz versus frequency in Hz, as defined in Eq. (19.8). Assume the random
excitation has a frequency bandwidth that covers at least the fundamental normal
mode frequency of the equipment. From Eqs. (23.6) and (40.2), and assuming a
damping ratio of ζ < 0.1, the rms value of the maximum stress in the equipment
structure due to its response at the first normal mode frequency is approximated by

σrms = �� (40.5)

where g 2Waa( fn)/(2πfn)2 converts the power spectrum from g 2/Hz to v2/Hz, where v
is velocity in in/s (m/s) and all other terms are as defined in Eq. (40.2).

As an illustration, assume an item of equipment must be designed to survive a
random vibration excitation with a magnitude (including a design margin) of
0.2g 2/Hz at its fundamental normal mode frequency. Further assume the equipment
has a fundamental normal mode at fn = 50 Hz with a damping ratio of ζ = 0.025, and
the equipment structure is an aluminum alloy where E = 10 × 106 lb/in2 (6.9 × 104

MPa) and c = 2 × 105 in/s (5100 m/s). Using a conservative value of C = 8, the maxi-
mum rms stress in the equipment structure is approximated by Eq. (40.5) as 
σm = 8,700 lb/in2 (60 MPa). However, this is an rms stress. The maximum stress must
be estimated in terms of a probability function. From Ref. 12, the maximum stress
level that will be exceeded at least once during an exposure duration of T sec with a
probability of P(T) is estimated by

σm = σrms�2 ln ���� (40.6)

where ln [ ] is the natural logarithm of [ ]. For example, if the total exposure duration
at the design magnitude is T = 5 h (18,000 s), the stress level that might be exceeded
with a probability of P(T) = 5 percent would be about 50,000 lb/in2 (345 MPa). This
maximum stress probably would not cause an instantaneous fracture of the struc-
ture, assuming it is fabricated from a high-quality aluminum alloy such as 2024-T3
that has an ultimate strength of 70,000 lb/in2 (483 MPa),2 but it might cause a fatigue
failure over a sufficiently long exposure time.

It should be noted that Eq. (40.6) is unbounded; that is, there is no limit on the
maximum stress as the duration T increases. However, experience suggests that this
equation yields reasonable results for durations up to the equivalent of about 1 × 106

cycles, assuming the structural response is linear. For longer-duration environments,
the potential for a structural failure should be evaluated using the fatigue prediction
procedures detailed in Chap. 33.

Equation (40.5) provides important guidance to the designer of equipment that
will be exposed to a random vibration excitation at its fundamental normal mode
frequency. Specifically, the maximum stress in the equipment structure is inversely
proportional to the square root of the damping ratio of the structure, rather than the
first power of the damping ratio, as for periodic vibrations in Eq. (40.4). Hence,
applied damping treatments (see Chap. 36) do not provide as powerful a design tool
for reducing the maximum stress levels induced by random excitations.

FINAL DESIGN PROCEDURES

The final design of equipment for shock and/or vibration excitations is best accom-
plished using a detailed finite element method model, as illustrated in Fig. 40.3C. By
applying the design excitations to the FEM model, the stresses at critical locations

fnT�
P(T)

g 2Waa(fn)��πfnζ
CE
�
4c
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on the equipment structure, as well as the displacements and accelerations at those
locations where equipment motions are critical, can be predicted for any modeled
structural configuration. The designer can simply modify various elements of the
structure to minimize the stress, displacement, and/or acceleration responses at all
locations of concern to arrive at a final design. Specialized computer programs are
available to facilitate these final design procedures (see Chap. 23). Of course, all of
the environments and requirements discussed earlier must be integrated into the
design. In particular, the effects of the temperature environment on the strength and
stiffness of all elements of the design that are temperature-sensitive must be care-
fully incorporated into the structural properties.

Fatigue Damage. For equipment being designed for a long service life, a primary
step in the final design process is a fatigue life prediction. This can be accomplished
in one of two ways, as follows:

1. For either periodic or random vibration excitations, the design excitation can be
applied to the FEM model, and a sample time history for the stress response at
any location of concern can be computed. This sample time history can then be
used to predict the fatigue life using the procedures given for metals in Chap. 33
or composites in Chap. 34.

2. For random vibration excitations, the design excitation can be applied to the
FEM model and the spectrum for the stress response at any location of concern
can be computed.This spectrum can then be used to make a statistical prediction
for the fatigue life using the procedures given in Ref. 13.

Higher-Order Response Modes. Some design shock and/or vibration excitations
may have substantial energy in the frequency range of the higher-order normal
modes of the equipment. Examples include motions of the equipment mounting
structure induced by pyroshocks (see Chap. 28) and aeroacoustic excitations (see
Chap. 32). In these cases, statistical energy analysis models can provide valuable sup-
port to the design process, starting in preliminary design. Specifically, the SEA
model can be used much like an FEM model to modify structural elements so as to
minimize the motion response of the structure at any location of interest. As previ-
ously mentioned, it is difficult to obtain accurate stress predictions using an SEA
model. However, the primary source of shock- and/or vibration-induced stresses in
structural elements is usually due to the structural response in its lower-order
modes. Hence, the FEM model will generally provide all the required stress data
needed for a proper design.

Other Sources of Information. There are many specialized technical handbooks
that cover the design of equipment for dynamic excitations that address specific
equipment applications or specific types of equipment. For example, Ref. 14 is the
NASA Technical Handbook that covers the design and testing of equipment for
space vehicle shock and vibration environments. When available, such specialized
handbooks should be consulted to support the equipment design process for shock
and/or vibration environments.

DESIGN REVIEWS

Following both the preliminary and final design activities, there should be a thor-
ough review of the design details. Following preliminary design, the review should
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include a study of all considerations that went into the design, including the assumed
environments and requirements, the formulation of the design criteria, the planned
methods of construction, the preliminary design analysis, and the planned final
design analysis. Following final design, the final design analysis procedures and
results should be carefully checked. These reviews should be performed by an inde-
pendent group of engineers that were not directly involved in the design process. In
smaller organizations, employing an independent contractor for the design review
should be considered. This is particularly desirable if a failure or malfunction of the
equipment during its service use could result in major economic damage or personal
injury.

DESIGN VERIFICATION

Uncertainty is always present in the modeling and analysis of any dynamic system.
By necessity, simplifying assumptions are introduced to make the analysis tractable.
Naturally, unmodeled and unexpected phenomena will be present in a given equip-
ment design. The significance of these effects is uncertain. Testing is often the only
way to confidently confirm compliance with requirements. Furthermore, testing may
also be used as a design tool for structures lacking suitable models, such as those
with highly nonlinear response characteristics.

As in other phases of the equipment development, testing should be performed
with a clear set of objectives. Since hardware testing can be expensive, careful plan-
ning is important to maximize benefits and efficiency. Some organizations separate
testing activities from the design functions. Nevertheless, the designer should partic-
ipate in determining the verification tests that will be performed. Shock and vibra-
tion test facilities are expensive to maintain and not available to many small
companies and agencies. Commercial test facilities are available for such organiza-
tions. Chapter 17 describes general shock and vibration standards and Chap. 18 dis-
cusses the derivation of shock and vibration test criteria from measured or predicted
excitation data.

MODEL-TEST CORRELATION

Dynamic testing often begins at low excitation levels in order to preview structural
behavior and ensure proper instrumentation and test control without causing signif-
icant damage to the equipment (see “Development Testing” in Chap. 18). Data col-
lected in the early phases of testing can be used to validate or refute models that may
have been used to make design decisions. Full dynamic excitation tests also yield
data useful for model correlation purposes, for example, the detection of nonlinear
properties that were not modeled.

Frequency response functions, as defined in Chap. 21, are particularly well suited
for model-test correlation purposes. In general terms, frequency response functions
show input-output relationships. They are useful in relating inputs, such as force or
motion, to outputs such as motion or strain. Frequency response functions can be
experimentally generated from a variety of tests, including modal hammer impact
tests and laboratory vibration tests. When properly determined, frequency response
functions provide the modal parameters of the equipment, namely, natural frequen-
cies (eigenvalues), mode shapes (eigenvectors), and damping ratios. Chapter 21
describes experimental modal analysis and modal parameter estimation techniques.
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The frequency response functions for a printed wiring assembly computed
using a simple FEM model (a few hundred degrees of freedom) and measured in
a laboratory vibration test are compared in Fig. 40.3. A drawing of the printed
wiring assembly is shown in Fig. 40.3A, and the frequency response functions com-
puted using the FEM model and the laboratory vibration test are presented in Fig.
40.3B. The comparison shows good agreement for the lower-frequency modes,
although the correlation degrades with increasing mode number. A more complex
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FIGURE 40.3 Comparison of FEM-computed and laboratory-measured
frequency response functions for a printed wiring assembly: (A) diagram of
assembly; (B) comparison of FEM and test data. (Courtesy of Lockheed
Martin Corporation.)

(A)

(B)



FEM model would provide better agreement for the higher-frequency modes, but
often a confirmation of the first few modes is adequate for model verification pur-
poses.

QUALIFICATION TESTING

A qualification test, as defined in Chap. 18, gives the designer and the customer con-
fidence that the equipment will function properly in its expected service environ-
ment. It is usually a contractual requirement and commonly involves the application
of all environments the equipment will experience in service, applied either in
sequence or simultaneously. In particular, for equipment that will experience tem-
perature extremes in service, a temperature test is often performed simultaneously
with a vibration test using a combined temperature-vibration test facility. In any
case, shock and/or vibration qualification tests occur too late in the design process to
allow the cost-effective implementation of design changes. Thus, it is common prac-
tice to perform preliminary qualification-like tests before the design phase is com-
pleted to ensure the design will pass the qualification test requirement.

Qualification testing requires more than just the structural survival of the equip-
ment within acceptable damage limits. A structure can survive the environment, but
be rendered operationally useless by dynamic disturbances. Sometimes operational
performance is restored when the dynamic excitation is removed, e.g., electrical cir-
cuitry can malfunction under dynamic excitation, intermittent problems can occur as
gaps open and close, disruptive electrical noise can be generated, optical surfaces
can be distorted, and servo-positioning systems can become unstable. The opera-
tional performance of the equipment must be closely monitored during the qualifi-
cation test to identify any such malfunctions.

RELIABILITY GROWTH TESTING

A reliability growth test, as defined in Chap. 18, involves the following steps:

1. Assuming a sample item of equipment has passed the specified qualification test
with no failures or malfunctions, increase the magnitude of the test level by some
increment, usually 3 dB, and repeat the test.

2. If the equipment item again passes the test at this higher level, increase the mag-
nitude of the test level again by the same increment and repeat the test.

3. Continue repeating the test at step-wise increased test levels until a failure or
malfunction occurs.

4. If possible, repair the equipment to function properly and continue the testing at
piece-wise increased test levels until another failure occurs.

5. Again, if possible, repair the equipment and continue the testing at piece-wise
increased test levels until it is no longer feasible to make repairs that will allow
the equipment to function correctly.

6. Report to the designer the details of all failures identified by the testing that
could be repaired. Often simple changes in the design can be made that will sup-
press or eliminate the failures revealed by the tests.

The theory behind a reliability enhancement test described above is as follows.
Even if the equipment is adequately designed to function properly during the qual-
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ification test, which represents a conservative simulation of the anticipated service
shock and/or vibration environment, increasing the ability of the equipment to func-
tion properly during more extreme dynamic excitations will improve the reliability
of the equipment in its service environment. Furthermore, by establishing the maxi-
mum shock and/or vibration excitations that the equipment can endure, it may be
possible to use the equipment at a later time for another application involving more
severe shock and/or vibration excitations without the need for a redesign and new
qualification testing.
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CHAPTER 41
HUMAN RESPONSE TO
SHOCK AND VIBRATION

Anthony J. Brammer

INTRODUCTION

This chapter considers: (1) the structure and properties of the human body
regarded as a mechanical as well as a biological system, (2) the effects of mechan-
ical shock and vibration forces on this system, (3) tolerance criteria for shock and
for vibration exposure, and (4) means for protection. Man, as a mechanical system,
is extremely complex and his mechanical properties readily undergo change.There
is limited reliable information on the magnitude of the forces required to produce
mechanical damage to the human body. To avoid damage to humans while obtain-
ing such data, it is necessary to use simulations for most studies on mechanical
injury. Occasionally it is possible to obtain useful information from situations
involving accidental injuries to man, but while the damage often can be assessed,
the forces producing the damage usually cannot, and so only rarely are useful data
obtained in this way.

For general background material on the effects of shock and of vibration on
humans, see Refs. 1 through 4.

CHARACTERIZATION OF FORCES

Forces may be transmitted to the body through a gas, liquid, or solid. They may be
diffuse or concentrated over a small area. They may vary from tangential to normal
and may be applied in more than one direction.The shape of a solid body impinging
on the surface of the human is as important as the position or shape of the human
body itself. All these factors must be taken into account in comparing injuries pro-
duced by vehicle crashes, explosions, blows, vibration, etc. Laboratory studies often
permit fairly accurate control of force application, but field situations are apt to be
extremely complex. Therefore, it is often difficult to predict what will happen in the
field on the basis of laboratory studies. It is equally difficult to interpret field obser-
vations without the benefit of laboratory studies.
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SHOCK

The term shock is used differently in biology and medicine than in engineering. In
this chapter the term shock is used in its engineering sense as defined in Chap. 1 of
this handbook, that is, for a nonperiodic excitation characterized by suddenness and
severity. In general, forces reaching peak values in less than a few tenths of a second
and of not more than a few seconds’ duration may be considered as shock forces in
relation to the human system.

The term impact (i.e., a blow) refers to a force applied when the human body
comes into sudden contact with a solid body and when the momentum transfer is
considerable, as in rapid deceleration in a vehicle crash or when a rapidly moving
solid body strikes a human body.

VIBRATION

Biological systems may be influenced by vibration at all frequencies if the amplitude
is sufficiently great. This chapter is concerned primarily with the frequency range
from about 1 Hz to 1 kHz.

METHODS AND INSTRUMENTATION

Most quantitative investigations of the effects of shock and vibration on humans
are conducted in the laboratory in controlled environments. Meaningful results
can be obtained from such tests only if measurement methods and instrumentation
are adapted to the particular properties of the biological system under investiga-
tion to ensure noninterference of the measurement with the system’s behavior.This
behavior may be physical, physiological, and psychological although these parame-
ters should be studied separately if possible. The complexity of a living organism
makes such separation, even assuming independent parameters, only an approxi-
mation at best. In many cases if extreme care is not exercised in planning and con-
ducting the experiment, uncontrolled interaction between these parameters can
lead to erroneous results. For example, the dynamic elasticity of tissue of a certain
area of the body may depend on the simultaneous vibration excitation of other
parts of the body; or the elasticity may change with the duration of the measure-
ment since the subject’s physiological response varies; or the elasticity may be
influenced by the subject’s psychological reaction to the test or to the measurement
equipment.

Control of, and compensation for, the nonuniformity of living systems is essen-
tial because of the variation in size, shape, sensitivity, and responsiveness of people
and because these factors, for a single subject, vary with time, experience, and
motivation. The use of adequate statistical experimental design is necessary and
almost always requires a large number of observations and carefully arranged 
controls.

A range of mechanical and hydraulic vibration exciters have been developed
specifically for human laboratory experiments with extensive safety systems. Simi-
larly, acceleration and deceleration sleds have been developed for use in impact
tests with human subjects.
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HUMAN RESPONSE TO SHOCK AND VIBRATION 41.3

FIGURE 41.1 Amplitude change due to accelerometers of different mass m and size which are
attached to a body surface over soft tissue of human subject exposed to vibration.The graph gives
the ratio AL/AF of the response of the loaded to the unloaded surface for accelerometers having
three different radii r. (Values calculated from unpublished mechanical surface impedance data of
E. K. Franke and H. E. von Gierke.)

PHYSICAL MEASUREMENTS

In determining the effects of shock and vibration on humans, the mechanical force
environment to which the human body is exposed must be clearly defined. Force and
vibration amplitudes should be specified for the area of contact with the body. Vibra-
tion measurements of the body’s response should be made whenever possible by non-
contact methods. X-ray methods can be used to measure the displacement of internal
organs. Optical, cinematographic, and stroboscopic observation can give the displace-
ment amplitudes of parts of the body. If vibration pickups in contact with the body are
used, they must be small and lightweight so as not to introduce an excessive mechani-
cal load. This usually places a weight limitation on the pickup of a few grams or less,
depending on the frequency range of interest and the effective mass to which the
pickup is attached. Figure 41.1 illustrates the effect of mass and size on the response of
accelerometers attached to the skin overlying soft tissue. The mechanical impedance
of a sitting, standing, or supine subject is extremely useful for calculating the vibratory
energy transmitted to the body by the vibrating structure. The mechanical impedance
of small areas of the body surface can be measured in different ways (see Chap. 9), for
example, by vibrating pistons, resonating rods, and acoustical impedance tubes.

SUBSTITUTES FOR LIVE HUMAN SUBJECTS

The establishment of limits of human tolerance to mechanical forces, and the
explanation of injuries produced when these limits are exceeded, frequently



requires experimentation at various degrees of potential hazard. To avoid unnec-
essary risks to humans, animals are used first for detailed physiological studies. As
a result of these studies, levels may be determined which are, with reasonable
probability, safe for human subjects. However, such comparative experiments have
obvious limitations. The different structure, size, and weight of most animals shift
their response curves to mechanical forces into other frequency ranges and to
other levels than those observed on humans. These differences must be considered
in addition to the general and partially known physiological differences between
species. For example, the natural frequency of the thorax-abdomen system of a
human subject is between 3 and 4 Hz; for a mouse the same resonance occurs
between 18 and 25 Hz. Therefore, maximum effect and maximum damage occur at
different vibration frequencies and different shock-time patterns in a mouse than
in a human.

Many kinematic processes, physical loadings, and gross destructive anatomical
effects can be studied on dummies which approximate a human being in size, form,
mobility, total weight, and weight distribution in body segments. In contrast to those
used only for load purposes, dummies simulating basic static and dynamic proper-
ties of the human body are called anthropometric or anthropomorphic dummies.
Several such dummies have been designed for specific simulations.5 For automobile
frontal collisions, the Hybrid III dummy has become the de facto standard to simu-
late occupants in crash tests and tests of safety restraint systems. The original
dummy was constructed to correspond to a 50th-percentile North American male.
It possesses a metal “skeleton” covered with a vinyl skin and foam to produce the
appropriate external shape, with a rubber lumbar spine curved to mimic a sitting
posture, and a shoulder structure capable of supporting safety belt loads. The head,
neck, chest, and knee responses of the Hybrid III are designed to mimic human
responses, namely, the head acceleration resulting from forehead and side-of-the-
head impacts, the fore-and-aft and lateral bending of the neck, the deflection of the
chest to distributed forces on the sternum, and impacts on the knee.4 Hybrid III
dummies are now available representing adult-sized small (5th-percentile) females
and large (95th-percentile) males, as well as infants and children.A related dummy,
the Side-Impact Dummy (SID), is available for automobile side collisions together
with dummies developed for this purpose in Europe. Another advanced dummy,
Advanced Dynamic Anthropomorphic Manikin (ADAM), has been developed for
use in aircraft ejection seats, helicopter seats, and parachute tests. In addition to
modeling body segments, surface contours, weights, centers of gravity, moments of
inertia, and joint center locations, ADAM replicates human joint motion and the
biodynamic response of the spine to vertical accelerations for both small-amplitude
vibration and large impacts.5

Plastic head forms, conforming to standard head measurements, are designed to
fracture in the same energy range as that established for the human head. A cranial
vault may be provided to house instrumentation as well as, in some cases, a simu-
lated brain mass with comparable weight and consistency (e.g., a mixture of glyc-
erin, ethylene glycol, etc.). The static properties of the skin and scalp tissue are
simulated with polyvinyl foam.

The static and dynamic breaking strength of bones, ligaments, and muscles and
the forces producing fractures in rapid decelerations have been studied frequently
on cadaver material. Extreme caution must be exercised in applying elastic and
strength properties obtained in this way to a situation involving the living organism.
The differences observed between properties of wet, dry, and embalmed materials
are considerable; changes in these properties also result in changes in the force dis-
tribution of a composite structure. Thus, the biofidelity of the surrogate must be
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considered for each specific situation in which the use of animals, dummies, or
cadavers as substitutes for live human subjects is planned.6

MECHANICAL CHARACTERISTICS OF THE BODY

PHYSICAL DATA

Most physical characteristics of the human body presented in this section (except
for the strength data) have been derived from the analysis of experimental data 
in which it is assumed that the body is a linear, passive mechanical system. This 

is an idealization which holds only 
for very small amplitudes. Therefore,
these data may not apply in analyses of
mechanical injury to tissue. There is
considerable nonlinearity of response
well below amplitudes required for the
production of damage.This is illustrated
by the data in Fig. 41.2, which shows
how the mechanical stiffness and resis-
tance of soft tissue vary with static
deflection. Bone behaves more or less
like a normal solid; however, soft elastic
tissues such as muscle, tendon, and con-
nective tissue resemble elastomers with
respect to their Young’s modulus and S-
shaped stress-strain relation.4 Hence,
soft tissue can be described phenome-
nologically as a viscoelastic medium;
plastic deformation need be considered
only if injury occurs. Physical proper-
ties of human body tissue are summa-
rized in Table 41.1 for frequencies less
than 100 kHz.

The fatigue life of bone and soft tis-
sue in response to cyclic dynamic stress
at frequencies between 0.5 and 4 Hz 
is summarized in Fig. 41.3. In this dia-
gram, the number of cycles to failure N

of in vitro preparations is expressed as a function of the ratio of the applied
dynamic stress to the ultimate static stress σ/σu. The straight lines in Fig. 41.3 rep-
resent the functions N = (σ/σu)−x, where the value of the index x in the relationship
is indicated.

The combination of soft tissue and bone in the structure of the body together
with the body’s geometric dimensions results in a system which exhibits different
types of response to vibratory energy depending on the frequency range:At low fre-
quencies (below approximately 100 Hz), the body can be described for most pur-
poses as a lumped-parameter system; resonances occur due to the interaction of
tissue masses with purely elastic structures. At higher frequencies, through the
audio-frequency range and up to about 100 kHz, the body behaves more as a com-
plex distributed-parameter system—the type of wave propagation (shear waves, sur-
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FIGURE 41.2 Mechanical stiffness and resis-
tance of soft tissue as a function of surface in-
dentation of a 2-cm-diameter area (i.e., static
loading), for two human subjects. (After Franke:
USAF Tech. Rept. 6469, 1959.)
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FIGURE 41.3 Fatigue failure of human tissue.The number of cycles of repeated stress
N to failure of in vitro preparations is shown as a function of the ratio of the applied
dynamic stress to the ultimate static stress σ/σu. (von Gierke.8)

TABLE 41.1 Typical Physical Properties of Human Tissues

Soft tissues Bone (wet) Bone (dry)

Density (kg/m3) 1–1.2 × 103 1.9–2.3 × 103 1.9 × 103

Young’s modulus (Pa) — 1.6–2.3 × 1010 1.8 × 1010

Shear modulus* (Pa) 2.5 × 103† 2.9–3.4 × 109 7.1 × 109

Bulk modulus (Pa) 2.6 × 109† — 1.3 × 1010

Shear viscosity (Pa·sec) 15† — —
Sound velocity (m/sec) 1.5–1.6 × 103 3.4 × 103 —
Acoustic impedance (Pa·sec/m) 1.7 × 106 6 × 106 6 × 106

Tensile strength (Pa)
cortical bone — 1.3–1.6 × 108 1.8 × 108

cartilage 5–40 × 106

skin 2–16 × 106

ligament 13–38 × 106

tendon 3–5.5 × 107

Compressive strength (Pa)
cortical bone — 1.5–2.1 × 108 —
trabecular bone (vertebrae) — 0.4–7.7 × 106 —

Shear strength (Pa)
cortical bone — 7.0–8.1 × 107 —

*Lamé constant
†from soft tissue model. (von Gierke et al.7)
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FIGURE 41.4 Lumped-parameter biodynamic model of the standing and sitting human body
for calculating motion of body parts and some physiological and subjective responses to verti-
cal vibration.The approximate resonance frequencies of various subsystems are indicated by fo.
(von Gierke.8)

face waves, or compressional waves) being strongly influenced by boundaries and
geometrical configurations.

LOW-FREQUENCY RANGE

Simple mechanical systems, such as the one shown in Fig. 41.4 for a standing and sit-
ting man, are usually sufficient to describe and understand the important features of
the response of the human body to low-frequency vibrations.8,9 Nevertheless, it is dif-
ficult to assign numerical values to the elements of the model, since they depend crit-
ically on the kind of excitation, the body type of the subject, and his posture and
muscle tone. Large intersubject variability is therefore to be expected and is
observed. Of the various factors influencing whole-body biodynamic responses, a
reduction in intersubject variability can often be obtained by normalizing measured
values by a subject’s static mass.1

Subject Exposed to Vibrations in the Longitudinal Direction. Below approxi-
mately 2 Hz, the body acts as a unit mass. For the sitting man, the first resonance 
is between 4 and 6 Hz; for the standing man, resonance peaks occur at about 6 and 
12 Hz. The numerical value of the impedance together with its phase angle provides
data for the calculation of the total energy transmitted to the subject.



The resonances between 4 and 6 Hz and between 10 and 14 Hz are suggestive of
mass-spring combinations of (1) the entire torso with the lower spine and pelvis and
(2) the upper torso with forward flexion movements of the upper vertebral column,
respectively. The expectation that flexion of the upper vertebral column occurs is sup-
ported by observations of the transient response of the body to vertical impact loads
and associated compression fractures. The greatest loads occur in the region of the
twelfth thoracic to the second lumbar vertebra, which therefore can be assumed as
the hinge area for flexion of the upper torso. Since the center of gravity of the upper
torso is considerably forward of the spine, flexion movement will occur even if the
force is applied parallel to the axis of the spine. Changing the direction of the force so
that it is applied at an angle with respect to the spine (for example, by tilting the torso
forward) influences this effect considerably. Similarly the center of gravity of the
head can be considerably in front of the neck joint which permits forward-backward
motion. This situation results in forward-backward rotation of the head instead of
pure vertical motion.

Between 20 and 30 Hz the head exhibits a mechanical resonance. When subject
to vibration in this range, the head displacement amplitude can exceed the shoulder
amplitude by a factor of 3. This resonance is of importance in connection with the
deterioration of visual acuity under the influence of vibration. Another frequency
range of disturbances between 60 and 90 Hz suggests an eyeball resonance.

Typical values of mechanical impedance and seat-to-head transmissibility; that is,
the ratio of the response amplitude and phase of the head to steady-state forced
vibration of a seated person at that frequency are described in an international stan-
dard.10 They are based on a synthesis of measured values from different experimen-
tal studies, each of which was conducted under controlled measurement conditions
and involved a number of male subjects. The need for precise definition of measure-
ment conditions, and hence the restricted applicability of the results, stems from the
dependence of the biodynamic responses on body shapes (e.g., mass and height), pos-
ture, support (i.e., of buttocks, back, and/or feet), and state of ankle and knee joints.
The remaining unexplained differences between the results of these studies, a situa-
tion commonly encountered in biodynamic experiments, led to the specification of
the most probable values for the impedance and transmissibility as a function of fre-
quency by an upper and lower envelope that encompasses the mean values of all data
sets. The envelopes, which are shown by the thick continuous lines in Figs. 41.5 and
41.6, define a range of idealized values that characterize the biodynamic response of
a seated person when the back is unsupported and the feet are resting on a surface
supporting a rigid seat. Note that data from some individuals will fall outside the
range between the two envelopes, as a consequence of their definition. The mean
value of all data sets is shown by the thin continuous line in these diagrams, and
serves as a target for applications, such as mechanical simulation of the response of
the seated human body to vertical vibration, or the development of seats for reducing
vibration transmitted to the body.Also shown by the dotted lines in Figs. 41.5 and 41.6
are values calculated using the biodynamic model illustrated in Fig. 41.7.10 The com-
ponents of the model do not correspond to those of identifiable body parts, though
the motion of mass m2 is taken to represent that of the head for the calculation of
seat-to-head transmissibility.

The mechanical impedance of the human body, lying on its back on a rigid surface
and vibrating in the direction of its longitudinal axis, has been determined in con-
nection with ballistocardiograph studies. For tangential vibration, the total mass of
the body behaves as a simple mass-spring system with the elasticity and resistance of
the skin. For the average subject the resonance frequency is between 3 and 3.5 Hz,
and the Q of the system is about 3. If the subject’s motion is restricted by clamping
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the body at the feet and at the shoulders between plates connected to the table, the
resonance is shifted to approximately 9 Hz and the Q is about 2.5.

One of the most important subsystems of the body, which is excited in the stand-
ing and sitting positions as well as in the lying position, is the thorax-abdomen sys-
tem. The abdominal viscera have a high mobility due to the very low stiffness of the
diaphragm and the air volume of the lungs and the chest wall behind it. Under the
influence of both longitudinal and transverse vibration of the torso, the abdominal
mass vibrates in and out of the thoracic cage.Vibrations take place in other than the
(longitudinal) direction of excitation; during the phase of the cycle when the abdom-
inal contents swing toward the hips, the abdominal wall is stretched outward and 
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FIGURE 41.5 Driving-point mechanical impedance of the seated human
body in the vertical direction (Z-direction of Fig. 41.12). Maximum and mini-
mum envelopes of mean values from data sets are shown by thick lines: mean
of all data sets—thin continuous line; response of three-degree-of-freedom bio-
dynamic model—dashed line. (ISO 5982.10)



the abdomen appears larger in volume; at the same time, the downward deflection
of the diaphragm causes a decrease of the chest circumference. At the other end of
the cycle the abdominal wall is pressed inward, the diaphragm upward, and the chest
wall is expanded. This periodic displacement of the abdominal viscera has a sharp
resonance between 3 and 3.5 Hz.The oscillations of the abdominal mass are coupled
with the air oscillations of the mouth-chest system. The abdominal wall has a maxi-
mum response between 5 and 8 Hz; the anterior chest wall between 7 and 11 Hz.
Vibration of the abdominal system resulting from exposure of a sitting or standing
subject is detected clearly as modulation of the airflow velocity through the mouth.
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FIGURE 41.6 Seat-to-head transmissibility of the seated human body in the
vertical direction (Z-direction of Fig. 41.12), expressed as magnitude and phase.
Maximum and minimum envelopes of mean values from the studies included in
the data synthesis are shown by thick continuous lines, while the mean of these
data sets is shown by the thin continuous line.The response of a three-degree-of-
freedom biodynamic model is shown by the dashed line. (ISO 5982.10)



Therefore, at large amplitudes of vibration, speech can be modulated at the expo-
sure frequency.A lumped-parameter model of the thorax-abdomen-airway system is
used successfully to explain and predict these detailed physiological responses.9 The
same model can also be used, when appropriately excited, to describe the effects of
blast, infrasound, and chest impact and to derive curves of equal injury potential, i.e.,
tolerance curves.

Subject Exposed to Vibrations in the Transverse Direction. The physical
response of the body to transverse vibration—i.e., horizontal in the normal upright
position—is quite different from that for vertical vibration. Instead of thrust forces
acting primarily along the line of action of the force of gravity on the human body,
they act at right angles to this line. Therefore, the distribution of the body masses is
of the utmost importance. There is a greater difference in response between sitting
and standing positions for transverse vibration than for vertical vibration where the
supporting structure of the skeleton and the spine are designed for vertical loading.

For a standing subject, the displacement amplitudes of vibration of the hip, shoul-
der, and head are about 20 to 30 percent of the table amplitude at 1 Hz and decrease
with increasing frequency.The sitting subject exhibits amplification of the hip (1.5 Hz)
and head (2 Hz) amplitudes. All critical resonant frequencies are between 1 and 
3 Hz. The transverse vibration patterns of the body can be described as standing
waves, i.e., as a rough approximation one can compare the body with a rod in which
transverse flexural waves are excited. Therefore, there are nodal points on the body
which become closer to the feet as the frequency of excitation increases, since the
phase shift between all body parts and the table increases continuously with increas-
ing frequency.At the first resonant frequency (1.5 Hz), the head of the standing sub-
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FIGURE 41.7 Three-degree-of-freedom biodynamic model
for the driving-point mechanical impedance, apparent mass,
and seat-to-head transmissibility of the seated human body in
the vertical direction (Z-direction of Fig. 41.12). The model is
driven at its base (x0). The parameters of this model do not
possess direct anatomical correlates. (ISO 5982.10)



ject has a 180° phase shift with respect to the table; between 2 and 3 Hz this phase
shift is 360°.

There are longitudinal head motions excited by the transverse vibration in addi-
tion to the transverse head motions.The head performs a nodding motion due to the
anatomy of the upper vertebrae and the location of the head’s center of gravity.
Above 5 Hz, the head motion for sitting and standing subjects is predominantly ver-
tical (about 10 to 30 percent of the horizontal table motion).

Vibrations Coupled to the Hand. The mechanical impedance of the hand-arm
system measured at a hand grip under conditions representative of those associated
with power-tool operation is shown in Fig. 41.8 for vibration directed essentially
along the long axis of the forearm, that is, approximately in the direction of thrust.
The precise direction is the Z component of the standardized coordinate system for
the hand shown in Fig. 41.12, Zh. Typical values of impedance have again been
defined by a synthesis of measured values from different experimental studies, as
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FIGURE 41.8 Driving-point mechanical impedance of the hand-
arm system in the Zh direction (see Fig. 41.12). Maximum and mini-
mum envelopes of the mean values from data sets are shown by thick
lines: mean of all data sets—thin continuous line; response of four-
degree-of-freedom biodynamic model—dashed line. (ISO 10068.11)



described previously for whole-body impedance and transmissibility.The most prob-
able values of impedance magnitude and phase are specified by an upper and lower
envelope (the continuous lines in Fig. 41.8) and define a range of idealized imped-
ances.11 The mean of the data sets is shown by the thin continuous line. Also shown
in the diagram are impedance values calculated by a four-degree-of-freedom biody-
namic model. Equivalent data are available for the two orthogonal directions of the
hand-arm coordinate system not shown in Fig. 41.8 (Xh and Yh). It should be noted
that the parameters of these biodynamic models do not possess direct anatomical
correlates. Together with the idealized impedances, they are intended to facilitate
the development of devices for reducing vibration transmitted to the hands and of
test rigs with which to measure power-tool handle vibration.

The mechanical impedance of the hand-arm system generally increases in mag-
nitude with frequency, with a maximum at a frequency from 20 to 70 Hz. The model
values suggest that resonances occur in structures within the hand, resulting in rela-
tive motion between tissue layers, and between tissue and the bone. The coupled
mass in contact with the handle and subject to the vibration input is typically less
than 20 grams.

It is important to distinguish between the various forces introduced when a hand
holds a handle. In general, the grip force has balancing components radial to the cylin-
drical axis of a handle that distinguish it from the feed, or thrust, force which is the
translational force exerted to control the action of a tool on a workpiece. The rela-
tionships between these component forces, which together form the contact force, is
dependent on the shape and size of the handle.12 The biodynamic force at the inter-
face between the hand and a vibrating surface results from the dynamic response of
the hand-arm system to vibration. It may be calculated from the impedance of the
hand-arm system and the velocity of the vibrating surface, or measured by high-pass
filtering of the output of a force sensor positioned at the interface (>5 Hz). Small
increases in the magnitude of the mechanical impedance are observed with increases
in contact force (from the value of 25 N used for the data synthesis), consistent with
tissue stiffening from skin compression (see Fig. 41.2).

Vibration entering the fingers is absorbed at frequencies above 50 Hz, while
lower frequencies are transmitted up the hand-arm system.13 Frequencies in the
range from 25 to 50 Hz are primarily absorbed in the wrist, arm, and shoulder.

Skull Vibrations. The vibration pattern of the skull is approximately the same as
that of a spherical elastic shell. The nodal lines observed suggest that the fundamen-
tal resonance frequency is between 300 and 400 Hz and that resonances for the higher
modes are around 600 and 900 Hz.The observed frequency ratio between the modes
for the skull is approximately 1.7, while the theoretical ratio for a sphere is 1.5. From
the observed resonances, the calculated value of the elasticity of skull bone (a value
of Young’s modulus = 1.4 × 109 Pa) agrees reasonably well with static test results on
dry skull preparations but is somewhat lower than the static test data obtained on
bone. Mechanical impedances of small areas on the skull over the mastoid area have
been measured to provide information for bone-conduction hearing.

Vibration of the lower jaw with respect to the skull can be explained by a simple
mass-spring system, which has a resonance, relative to the skull, between 100 and
200 Hz.

Biodynamic Models. Both simple and complex mathematical models have been
developed for the whole body,4,5,9 and for subsystems such as the spine,14,15 the head
and neck,4,16 the skull,4 and the hand and arm.17 Examples of simple models are to
be found in Figs. 41.7 and 41.10A.
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ATB and MADYMO Models. The Articulated Total Body (ATB) and the
MAthematical DYnamical MOdel (MADYMO) are widely used, multielement,
whole-body, lumped-parameter models. The models represent rigid bodies, joints,
springs, and dampers with values designed to enable the prediction of selected
human properties, or in some cases manikin properties.The predictions can include
the effects of an environment surrounding the model using different routines for
contact with external surfaces, the effect of gravity, body restraints (e.g., seat belt),
and wind forces (to model pilot ejection from aircraft). The models are used exten-
sively to simulate the body’s response to shocks and impacts.

Finite Element (FE) Models. Internal stresses and motions within body parts
may be determined from finite element (FE) models. In some models, the FEs can
interact with multibody model elements. Examples of human body subsystems that
have been modeled with FEs include the spine, to predict the injury potential of
vertebral compression and torsional loads,18 and the head and neck, to predict rota-
tion of the head and neck loads.16

Artificial Neural Network Models. The nonlinear response of the spine to
vertical accelerations has been modeled by an artificial neural network.15 The
model was trained on repeated shocks with peak amplitudes from 10 m/sec2 to 40
m/sec2 applied to a seated person (back unsupported) in the vertical direction (Z
direction of Fig. 41.12), and so is applicable to shocks and impacts in this direction
and with this range of accelerations.

HIGH-FREQUENCY RANGE

Mechanical Impedance of Soft Human Tissue. Mechanical impedance mea-
surements of small areas (1 to 17 cm2) over soft human body tissue have been made
with vibrating pistons between 10 Hz and 20 kHz. At low frequencies (<20 Hz) this
impedance is a large elastic reactance. With increasing frequency the reactance
decreases, becomes zero at a resonance frequency, and becomes a mass reactance
with a further increase in frequency.7 These results cannot be explained by a simple
lumped-parameter model, but require a distributed-parameter system including a
viscoelastic medium—such as the tissue constitutes for this frequency range.The high
viscosity of the medium makes possible the use of simplified theoretical assumptions,
such as a homogeneous isotropic infinite medium and a vibrating sphere instead of a
circular piston.The results of such a theory agree well with the measured characteris-
tics (Fig. 41.9). As a consequence, it is possible to assign absolute values to the shear
viscosity and the shear elasticity of soft tissue (Table 41.1). The theory together with
the measurements show that, over the audio-frequency range, most of the vibratory
energy is propagated through the tissue in the form of transverse shear waves—not
in the form of longitudinal compression waves. The velocity of the shear waves is
about 20 m/sec at 200 Hz and increases approximately with the square root of the fre-
quency. Some energy is propagated along the body surface in the form of surface
waves which have been observed optically. Their velocity is of the same order as the
velocity of shear waves.

Above several hundred thousand hertz, in the ultrasound range, most of the vibra-
tory energy is propagated through tissue in the form of compressional waves; for these
conditions, geometrical acoustics offers a good approximation for the description of
their path. Since the tissue dimensions under consideration are almost always large
compared to the wavelength (about 1.5 mm at 1 MHz), the mechanical impedance of
tissue is equal to the characteristic acoustic impedance, i.e., sound velocity times den-
sity.This value for soft tissue differs only slightly from the characteristic impedance of
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water. The most important factor in this frequency range is the tissue viscosity, which
brings about an increase in energy absorption with increasing frequency.

At very high frequencies this viscosity also generates shear waves at the bound-
aries of the medium, at the boundary of the acoustic beam, and in the areas of wave
transmission to media with somewhat different properties (e.g., boundary of muscle
to fat tissue, or soft tissue to bone).These shear waves are attenuated so rapidly that
they are of no importance for energy transport but are noticeable as increased local
absorption, i.e., heating.

EFFECTS OF SHOCK AND OF VIBRATION

EFFECTS OF VIBRATION

Mechanical Damage. Damage is produced when the accelerative forces are of
sufficient magnitude. Postmortem examination of animals usually shows lung dam-
age, often heart damage, and occasionally brain injury. The injuries to heart and
lungs probably result from the beating of these organs against each other and
against the rib cage. The brain injury, which is a superficial hemorrhage, may be due
to relative motion of the brain within the skull, to mechanical action involving the
blood vessels or sinuses directly, or to secondary mechanical effects.
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FIGURE 41.9 Resistance and reactance of soft tissue (2-cm
diameter) as a function of frequency: measured values, reactance—
crosses, resistance—circles. Curves for 2-cm sphere vibrating in
A—viscoelastic medium with properties of soft tissue (see Table
41.1); B—frictionless compressible fluid, and C—incompressible
viscous fluid. (von Gierke et al.7)



An increase in body temperature is also observed after exposure to intense vibra-
tion. Since this effect also occurs in dead animals, it is probably mechanical in origin.
Estimates of energy dissipation from body mechanical impedance data suggest that
appreciable heat can be generated at large vibration amplitudes.

In humans, mechanical damage to the heart and lungs, injury to the brain, tearing
of membranes in the abdominal and chest cavities, as well as intestinal injury are
possible, in principle. However, equinoxious contours of whole-body acceleration as
a function of frequency have not been established for any of these phenomena,
owing to an almost complete lack of data.Any effects would be expected to occur at
lower frequencies than those in animals owing to the increased human visceral
masses. Exposure for 15 minutes to an acceleration of 6g has been reported to cause
gastrointestinal bleeding that persisted for several days in one subject.1

Chronic injuries may be produced by vibration exposure of long duration at levels
which produce no acute effects.1,2 There is epidemiological evidence that occupations
with exposure to whole-body vibration are at greater risk of low back pain, sciatic
pain, and herniated lumbar disc when compared with control groups not exposed to
vibration.19 There is also an increased risk of developing degenerative changes in the
spine, including lumbar intervertebral disc disorders, for crane operators, tractor driv-
ers, and drivers in the transportation industry. Nevertheless, it is difficult to differen-
tiate between the relative roles of whole-body vibration and ergonomic risk factors,
such as posture and awkward back movements, though both are clearly cofactors in
the development of the observed pathology.20 Exposure to repeated random jolts (in
contrast to sinusoidal motion), such as the buffeting that occurs in aircraft, in small
craft on rough water, or in off-road vehicles is also associated with the chronic injuries
described.

Chronic injuries may be produced when the hand is exposed to intense vibration,
such as occurs during occupational use of some power tools (e.g., pneumatic drills and
hammers, grinders, chain saws, and riveting guns).1–3 Symptoms of numbness or pares-
thesias in the fingers are common and may be accompanied by episodes of finger
blanching. Reduced grip strength and muscular weakness may also be experienced.
The vascular, nerve, and muscular disorders associated with the use of handheld
vibrating power tools are known as the hand-arm vibration syndrome (HAVS). Patho-
logical changes have been observed in the structure of the nerves and walls of the
blood vessels in the fingers.3 Changes in tactile function have been linked to changes
in acuity of specific types of mechanoreceptive nerve endings at the fingertips.21

Few exposure-response relationships have been derived from epidemiological
data for any sign, or symptom, of HAVS resulting from occupational use of hand-
held power tools or industrial processes. For groups of workers who perform similar
tasks throughout the workday, the latency—that is, the duration of exposure (in
years) prior to the onset of episodes of finger blanching—and prevalence, may be
predicted from the acceleration of a surface in contact with the hand.22 These rela-
tionships serve as the basis for occupational exposure criteria (see “Human Toler-
ance Criteria”).

The tendons, tendon sheaths, muscles, ligaments, joints, and nerves in the hand
and arm can also be damaged by repeated movement of the hand relative to the
arm. These soft tissue and nerve injuries occur among blue- and white-collar work-
ers performing tasks involving repeated hand-wrist flexure (e.g., keyboard opera-
tors) and are termed repetitive strain injuries (RSI).23 Nerve compression may result
from changes in the contents of restricted nerve passageways (e.g., the carpal tunnel
at the wrist—carpal tunnel syndrome). Pain and paresthesias in the hand and arm
are common symptoms.
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Physiological Responses. Vibration can induce physiological responses in the
cardiovascular, respiratory, skeletal, endocrine, and metabolic systems and in mus-
cles and nerves. The cardiovascular changes in response to intense vertical vibration
are similar to those accompanying moderate exercise: increased heart rate, respira-
tion rate, cardiac output, and blood pressure. Vibration of sufficient intensity will
cause mechanical pumping of the respiratory system, as already noted, but is
unlikely to produce significantly increased ventilation or oxygen uptake. Changes in
blood and urine constituents are commonly used as indicators of generalized body
stress and may, in consequence, be observed in persons exposed to vibration. It is 
difficult if not impossible, however, to relate specific endocrine and metabolic
responses to a given vibration stimulus. Vibration can stimulate a tonic reflex con-
traction in muscles, which is a response to the stretching force (the tonic vibration
reflex), disturb postural stability, and lead to body sway. Extremely low frequency
whole-body vibration, such as occurs in many transportation vehicles and ships, may
also cause motion sickness (kinetosis).1

Vibration of the hand may cause peripheral vascular, neurological, and muscular
responses.3 Blood flow within the fingers may be reduced during stimulation, and
tingling and paresthesias in the hands may be reported after exposure. Somatosen-
sory perception and tactile function may be temporarily decreased. Grip strength
may also be affected. Extremely low frequency, large-amplitude motions, which are
usually described as repetitive movements of the hand (and frequently involve
repeated wrist rotation), may lead to tendon and muscle fatigue and to transitory
parathesias or numbness.

Therapeutic applications of vibration include cardiac and circulatory assist
devices and the control of spastic muscle. Ultrasonic frequencies are used in medical
diagnosis, for soft tissue visualization, and for therapy. A common therapeutic use is
to promote the return of limb function in rehabilitation medicine.

Subjective Responses. Feelings of discomfort and apprehension may be associ-
ated with exposure to whole-body and hand-arm vibration once the stimulus has
been perceived. The extent of the discomfort depends on the magnitude, frequency,
direction and duration of the exposure, and the posture and orientation of the body,
as well as the point of contact with the stimulus. The response is also influenced by
the environment in which the motion is experienced (e.g., floor motion in hospital
versus aircraft). The range in response of different individuals to a given stimulus is
large. In some circumstances, whole-body vibration may be exhilarating (e.g., a fair-
ground ride) or soothing (e.g., rocking a baby in a cradle or a rocking chair).

In general, subjective responses to vibration may be subdivided into three broad
categories: the threshold of perception, the onset of unpleasant sensations, and the
limit of tolerance. The specification of acceptable vibration environments is dis-
cussed later in this chapter.

Once detected, the growth in sensation follows a Stevens’ power law function
with index k, in which the psychophysical magnitude of a stimulus ψ is related to its
physical magnitude φ by

ψ = constant{φ k} (41.1)

For discomfort associated with whole-body vibration, k ≈ 1. Frequency contours of
equal sensation magnitude depend principally on the direction in which vibration
enters the body and whether the person is standing, seated, or recumbent.1 Contours
which summarize current knowledge may be inferred from the frequency-weighting
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functions employed in the international standard for whole-body vibration (i.e., by
reciprocal curves to those shown in Fig. 41.11). The effect of the duration of expo-
sure t on subjective responses to suprathreshold vibration is often found to follow a
power law relationship of the form

φnt = constant (41.2)

where the magnitude of the index n is from 2 to 4. For situations in which the per-
ception of vibration is judged unacceptable, the boundary between acceptable and
unacceptable exposures will be related to the physical magnitude of the stimulus
corresponding to the threshold of perception, and will not depend on the duration of
exposure. There is an extensive literature discussing the comfort/discomfort of pas-
sengers in road and rail vehicles, aircraft, and ships.1

EFFECTS OF SHOCK AND IMPACT

This type of force is experienced in falls, in motor vehicle or aircraft crashes, in
parachute openings, in seat ejections for escape from high-speed military aircraft,
and in many other situations. Interest in the body’s responses to these forces cen-
ters on mechanical stress limits. Accident statistics from the United States (from
1979 to 1986) indicate that serious injuries to occupants of automobiles involved in
frontal impacts, and who were wearing seat belts, were most commonly to the head
(approximately 35 percent), followed by the thorax (including abdomen), and
lower extremities (approximately 25 percent each). The distribution of injuries in
fatal accidents involving military helicopters and pilot ejections from fixed-wing
aircraft is similar to that of the automobile statistics cited with, in addition, injuries
to the spine in approximately 13 percent of cases.5 For crewmen who survived seat
ejection from military aircraft, the most common injury was to the spine, while for
passengers surviving civil air transport accidents the most common injury remained
to the head.4

Serious injuries to the head usually involve brain injury, either with or, commonly,
without skull fracture.The brain may suffer either diffuse or focal injuries.The former
consists of brain swelling, concussion, and diffuse axonal injury, that is, mechanical
disruption of the nerve fibers; the latter consists of localized internal bleeding and
contusions (coup and contrecoup). Concussion is the most common brain injury.

The most common neck and spinal injury is caused by rearward flexion and for-
ward extension of the neck, such as commonly occurs in rear-end motor vehicle col-
lisions (“whiplash”), and results in localized pain in the neck and shoulders, and even
cord injuries.The motion can also result in dislocation or fracture of the first and sec-
ond vertebral joints, and may lead to the spinal cord being crushed or severed. Both
neck and spine may be injured by vertical accelerations directed from the head or
buttocks. The nature and degree of injury is critically dependent on the body posi-
tion at impact.

The chest encloses important organs—the heart, lungs, trachea, esophagus, and
major blood vessels—and so injuries may be divided into those affecting the organs,
and those affecting the rib cage. Injuries to the internal organs include ruptures of the
heart, of the lung, and of the arteries connected to the heart, while injuries to the rib
cage involve fractures of the ribs and sternum, and sometimes dislocations and frac-
tures of the thoracic vertebrae. Compound rib fractures may, if sufficiently displaced,
also result in puncturing of internal organs. Organs within the abdomen (especially
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liver, kidneys, and spleen) are also subject to injury by external trauma involving
transverse (e.g., front-to-back or side-to-side) accelerations.

Common injuries to the lower extremities involve fractures of the long bones and
injuries to the joints.

Force Duration. The correlation between the response of the body system to con-
tinuous vibration and to spike and step-force functions may be used to guide and
interpret exposures. The tissue areas stressed to maximum relative displacement at
the various frequencies during steady-state excitation are preferred target areas for
injury under shock and impact load if the force-time functions have appreciable
energy in these frequency bands. If the exposure times are shorter, stress tolerance
limits increase; if exposure times decrease to hundredths or thousandths of a second,
the response becomes more and more limited and localized to the point of applica-
tion of the force (blow). Elastic compression or injury will depend on the load dis-
tribution over the application area, i.e., the pressure, to which tissues are subjected.
If tissue destruction or bone fracture occurs close to the area of application of the
force, these will absorb additional energy and protect deeper-seated tissues by
reducing the peak force and spreading it over a longer period of time.An example is
the fracture of foot and ankle of men standing on the deck of warships when an
explosion occurs beneath. The support may be thrown upward with great momen-
tum; however, the energy absorption by the fracture protects structures of the body
which are higher up.

If the force functions contain extremely high frequencies, the compression effects
spread from the area of force application throughout the body as compression waves.
If these are of sufficient amplitude, they may cause considerable tissue disruption.
Such compression waves are observed from the impact of high-velocity missiles.

If the exposure to the accelerating forces lasts long enough so that (as in most
applications of interest) the whole body is displaced, exact measurement of the force
applied to the body and of the direction and contact areas of application becomes of
extreme importance. In studies of seat ejection, for example, a knowledge of seat
acceleration alone is not sufficient for estimating responses. One must know the
forces in those structures or restraining harnesses through which acceleration forces
are transmitted. The location of the center of gravity of the various body parts such
as arms, head, and upper torso must be known over the time of force application so
that the resulting body motion and deformation can be analyzed and controlled for
protection purposes. In addition to the primary displacements of body parts and
organs, there are secondary forces from decelerations if, due to the large amplitudes,
the motions of parts of the body are stopped suddenly by hitting other body parts.
Examples occur in linear deceleration where, depending on the restraint, the head
may be thrown forward until it hits the chest or, if only a lap belt is used, the upper
torso may jackknife and the chest may hit the knees. There is always the additional
possibility that the body may strike nearby objects (e.g., automobile dashboard or
doorpost), thus initiating a new impact deceleration history.

Longitudinal Acceleration. The study of positive longitudinal (headward) acceler-
ation of short duration is connected closely with the development of upward ejection
seats for escape from aircraft. Since the necessary ejection velocity of approximately
18 m/sec and the available distance for the catapult guide rails of about 1 m are deter-
mined by the aircraft, the minimum acceleration required (step function) is approxi-
mately 18.6g. The high jolt of the instantaneous acceleration increase is undesirable
because of the high dynamic load factor in this direction for the frequency range of
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body resonances. A slower buildup of the acceleration with higher final acceleration
is preferable to prevent injury. Investigations show that the body’s ballistic response
can be predicted by biodynamic models making use of the frequency-response
characteristics of the body. The simplest analog used for the study of headward
accelerations is the single-degree-of-freedom mechanical resonator composed of
the lumped-parameter elements of a spring, mass, and damper (Fig. 41.10A). The
model is used to simulate the maximum stress developed within the vertebral col-
umn (the first failure mode in this direction) for any given shock environment. The
maximum dynamic deflection of the spring, Δmax, may be calculated for a given input
acceleration-time history to the model.The potential for spinal injury is estimated by
forming the dynamic response index (DRI), which is defined as ωn

2Δmax/g, where the
natural frequency of the model ωn = (k/m)1/2 is 52.9 rad/sec and the damping ratio
c/2(km)1/2 is 0.224. Experience with nonfatal ejections from military aircraft, shown by
the crosses and dashed line in Fig. 41.10B, suggests a 5 percent probability of spinal
injury from exposure to a dynamic response index of 18. An estimate of the rate of
spinal injury from cadavers is shown in this diagram by the continuous line. The suc-
cess of the model has led to its adoption for the specification of ejection seat per-
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FIGURE 41.10 Prediction of spinal compression injury
from pilot ejection seat accelerations. (A) Model for the
study of spinal compression Δ with mass m, spring stiff-
ness k and damping c; (B) relation between the dynamic
response index (DRI) and spinal injury rate for 361 non-
fatal ejections from six different types of aircraft (dashed
line) (aircraft type A, 64 ejections; B, 62; C, 65; D, 89; E, 33;
F, 48). Data from cadavers (continuous line). (After Grif-
fin,1 and von Gierke.8)



formance, for its extension to accelerations in three orthogonal directions,24 and to
measures of ride comfort for exposure to repeated shocks in some land vehicles and
high-speed boats.25

For negative (tailward) acceleration (downward ejection) no firm point for appli-
cation of the accelerating force is accessible as for positive acceleration. If the force
is applied as usual through harness and belt at shoulder and groin, the mobility of
the shoulder girdle together with the elasticity of the belts results in a lower reso-
nance frequency than the one observed in upward ejection. To avoid overshooting
with standard harnesses, the acceleration rise time must be at least 0.15 sec.This type
of shock and impact can excite the thorax-abdomen system. The diaphragm is
pushed upward by the abdominal viscera; as a result, air rushes out of the lungs (if
the glottis is open) or high pressures develop in the air passages.

Transverse Accelerations. The forward- and backward-facing seated positions
are most frequently exposed to high transverse (i.e., horizontal) components of crash
loads. Human tolerance to these forces has been studied extensively by volunteer
tests on linear decelerators, in automobile crashes, and by the analysis of the records
of accidental falls. The results indicate the importance of distributing the decelera-
tive forces or impact over as wide an area as possible. The tolerable acceleration
amplitudes of well over 50g (100g and over for falling flat on the back with minor
injuries, 35 to 40g for 0.05-sec voluntary deceleration when seated with restraining
harness) are probably limited by injury to the brain. An indication that the latter
might be sensitive to and based on specific dynamic responses is the fact that the tol-
erance limit depends strongly on the rise time of the acceleration. With rise times
around 0.1 sec (rate of change of acceleration 500g/sec), no overshooting of head
and chest accelerations is observed, whereas faster rise times of around 0.03 sec
(1000 to 1400g/sec) result in overshooting of chest accelerations of 30 percent
(acceleration front to back) and even up to 70 percent (acceleration back to front).
All these results depend critically on the harness for fixation and the back support
used (see “Protection Methods and Procedures”). These dynamic load factors indi-
cate a natural frequency of the body system between 10 and 20 Hz. Impact of the
heart against the chest wall is another possible injury discussed and noted in some
animal experiments.

The head and neck supporting structures seem to be relatively tough. Injury seems
to occur only upon backward flexion and extension of the neck (whiplash) when the
body is accelerated from back to front without head support, as already noted.

Head Impact.26 The reaction of the head to a blow is a function of the velocity,
duration, area of impact, and transfer of momentum. Near the point of application
of the blow there will be an indentation of the skull. This results in shear strains in
the brain in a superficial region close to the dent. Compression waves emanate from
this area, which have normally small amplitudes since the brain is nearly incom-
pressible. In addition to the forces on the brain resulting from skull deformation
there are acceleration forces, which also would act on a completely undeformable
skull. The centrifugal forces and linear accelerations producing compressional
strains are negligible compared to the shear strains produced by the rotational
accelerations. The maximum strains are concentrated at regions where the skull has
a good grip on the brain owing to inwardly projecting ridges, especially at the wing
of the sphenoid bone of the skull. Shear strains also must be present throughout the
brain and in the brain stem. Many investigators consider these shear strains, result-
ing from rotational accelerations due to a blow to the unsupported head, as the prin-
cipal event leading to concussion.
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If the head hits a wall or another object whose mass is large compared to the
head’s mass, the local, visible damage is small and the damage due to rotational
acceleration may be large. Blows to certain points, especially on the midline, produce
no rotation. Blows to the chin upward and sideward produce rotation relatively eas-
ily (“knockout” in boxing). Velocities listed in the literature for concussion from
impact of large masses range from 5 to 15 m/sec. At impact velocities of about 
10 m/sec, approximately 2 kg-m of energy is absorbed in 0.002 sec, resulting in an
acceleration of the head of 47g. Impact energies for compression concussion are
probably approximately in the same range.

Scalp, skin, and subcutaneous tissue reduce the energy applied to the bone. If the
response of the skull to a blow exceeds the elastic deformation limit, skull fracture
occurs. Impact by a high-velocity, blunt-shaped object results in localized circum-
scribed fracture and depression. Low-velocity blunt blows, insufficient to cause
depression, occur frequently in falls and crashes. Given enough energy, two, three, or
more cracks appear, all radiating from the center of the blow. The skull has both
weak and strong areas, each impact area showing well-defined regions for the occur-
rence of the fracture lines. The total energy required for skull fracture varies from 5
to 10 kg-m, with an average often assumed to be 7 kg-m.This energy is equivalent to
the condition that the head hits a hard, flat surface after a free fall from a 1.5-m
height.

EFFECTS OF SHOCK AND VIBRATION ON TASK PERFORMANCE

The performance of tasks requiring a physical response to some stimulus involves
peripheral (e.g., perceptual and motor) and central neurological processes, with
multiple feedback paths characteristic of a sophisticated control system. Each of
these processes is complex, is more or less developed in different individuals, and
may be influenced by training and the general state of health. In consequence,
unique relationships between vibration and task performance are unlikely, except
for well-defined situations in which some part of the body reaches a physical or
physiological limit to performance. For example, movement of images on the retina
may cause defocusing and a reduction of visual acuity. The movement may be
caused by vibration of the display (i.e., the source), the head (and/or observer), or
both. At frequencies below approximately 1 Hz, a pursuit reflex assists visual acu-
ity. At frequencies above 20 Hz, an eyeball resonance can degrade acuity. The
effects of whole-body vibration on visual acuity therefore depend on the frequency
and amplitude, as well as the viewing distance.1 As already discussed, whole-body
vibration can affect speech.

Vibration may also degrade the manual control of objects. The influence of
whole-body vibration on writing and drinking is a common experience in public
transportation vehicles and ships. Vibration may interfere with the performance of
manually controlled systems. The extent of the effect depends on hand motion, the
type of control (e.g., a “stiff” control that responds to the application of force with-
out moving, or one that moves and responds with little force applied), and the
dynamics of the control and the controlled system. A control that responds to hand
displacement may be disrupted by vertical vibration at frequencies between 2 and 
6 Hz. The effect of the duration of vibration exposure on task performance is influ-
enced by motivation, arousal, and adaptation and may therefore be observed to
improve or degrade performance over time.

Exposure of the hand to vibration can lead to sensorineural dysfunction suffi-
cient to reduce the ability to perform fine manual tasks, such as buttoning clothing.3
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The motion associated with a shock is unlikely to interfere directly with the per-
formance of most tasks unless it is coincident with some critical component of the
task. This condition may occur with shocks repeated at very short intervals.

HUMAN TOLERANCE CRITERIA

WHOLE-BODY VIBRATION EXPOSURE

International Standard ISO 2631 defines methods for the measurement of periodic,
random, and transient whole-body vibration.27 The standard also describes the princi-
pal factors that combine to determine the acceptability of an exposure and suggests
the possible effects, recognizing the large variations in responses between individuals.
It should be noted that the consensus standard permits alternative methods for assess-
ing some exposures, and, hence, inconsistencies may arise.28

Measurement. Whole-body vibration is measured at the principal interface
between the human body and the source of vibration. For seated persons, this inter-
face is most likely to be the seat surface and seat back, if any; for standing persons,
the feet; and for reclining persons, the supporting surface(s) under the pelvis, torso,
and head. When vibration is transmitted to the body through a nonrigid or resilient
material (e.g., a seat cushion), the measuring transducer should be within a mount,
in contact with the body, formed to minimize the change in surface pressure distri-
bution of the resilient material.1,2 The measurement should be of sufficient duration
to ensure that the data are representative of the exposure being assessed and, for
random signals, contain acceptable statistical precision.

Frequency-Weighted Acceleration. The magnitude of the exposure is charac-
terized by the rms frequency-weighted acceleration calculated in accordance with the
following equation or its equivalent in the frequency domain:

aW = � �T

0
aW

2 (t)dt
1/2

(41.3)

where aw(t) is the frequency-weighted acceleration, or angular acceleration, at time t
expressed in meters per second squared (m/sec2) or radians per second squared
(rad/sec2), respectively; and T is the duration of the measurement in seconds. The
most common frequency weightings to be employed for different applications are
shown in Fig. 41.11. Frequency weightings Wd and Wk are the principal weightings
for the assessment of the effects of vibration on health, comfort, and perception,
with Wf used for motion sickness.The other frequency weightings in Table 41.2 apply
to specific situations involving, respectively: motion coupled to the body from a seat
back (Wc); body rotation (We); and head motion in the X direction of reclining per-
sons (Wj).Application of a frequency weighting selected according to Table 41.2, Fig.
41.11, and Fig. 41.12 to one component of vibration transmitted to the body provides
a measure of the component frequency-weighted acceleration for that direction of
motion and human response.

Equation (41.3) is suitable for characterizing vibrations with a crest factor less
than 9, where the crest factor is here defined as the magnitude of the ratio of the
peak value of the frequency-weighted acceleration signal to its rms value.

Vibration Containing Transient Events. For exposures to whole-body vibra-
tion containing transient events resulting in crest factors in excess of 9, either the
running rms or the fourth-power vibration dose, or both, may be used in addition to

1
�
T
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the rms frequency-weighted acceleration to ensure that the effects of transient
vibrations are not underestimated.The running rms is calculated for a short integra-
tion time τ ending at time t0 in the time record as follows:

aW(t0) = � �t0

(t0 − τ)
aW

2(t) dt
1/2

(41.4)

A correlation with some subjective human responses to transient vibration may be
obtained by constructing the maximum transient vibration value MTVV(T) during
the measurement

MTVV(T ) = |aW(t0)|max (41.5)

where the right-hand side of this equation is determined by the maximum value of
the running rms acceleration obtained using Eq. (41.4) when τ = 1 sec.

The fourth-power vibration dose value VDV is defined by

VDV = ��
T

0
aW

r(t) dt
1/r

(41.6)

with r = 4, and provides a measure of exposure that is more sensitive to large ampli-
tudes by forming the fourth power of the frequency-weighted acceleration time his-
tory, aw

4(t). If the total exposure consists of i exposure elements with different
vibration dose values (VDV)i, then

VDVtotal = ��
i

(VDV)i
4

1/4

(41.7)

1
�
τ

FIGURE 41.11 Principal frequency weightings for the assessment of whole-body (Wk,
Wd, and Wf) and hand-transmitted vibration (Wh). (ISO 2631-127 and ISO 5349-1.29)



Use of the maximum transient vibration value or the total vibration dose value in
addition to the rms frequency-weighted acceleration is advisable whenever

MTVV(T ) > 1.5aW (41.8)

or

VDVtotal > 1.75aWT 1/4 (41.9)

The total vibration dose value will integrate the contribution from each transient
event, irrespective of magnitude or duration, to form a time- and magnitude-
dependent dose. In contrast, the maximum transient vibration value will provide 
a measure dominated by the magnitude of the most intense event occurring in a 
1-second time interval, and will be little influenced by events occurring at times sig-
nificantly greater than 1 second from this event.Application of either measure to the
assessment of whole-body vibration should take into consideration the nature of the
transient events, and the anticipated basis for the human response (i.e., source and
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TABLE 41.2 Applicability of Whole-Body Vibration Frequency Weightings Wk, Wd, Wf, Wc, We,
and Wj, for the Vibration Directions X,Y, Z, Rx, Ry, and Rz Specified in Fig. 41.12. (ISO 2631-1.27)

Frequency weighting Health Comfort* Perception Motion sickness

Principal weighting

Wk Z Z-seat Z
X,Y,Z-feet
Z-standing
X-lying

Wd X-seat X-seat X-,Y-
Y-seat Y-seat

X,Y-standing
Y,Z-lying
Y,Z-back

Wf Z

Additional weighting

Wc X-seat back X-seat back

We Rx,Ry,Rz

Wj X-lying (head)

* Values of the multiplying factor k to be applied to component accelerations for assessing the comfort
of seated persons in situations in which vibration enters the body at several points, e.g., the seat pan, seat
back, and the feet (see text).

Component Acceleration Value of k
X direction at seat back 0.8
Y direction at seat back 0.5
Z direction at seat back 0.4
X & Y directions at feet 0.25
Z direction at feet 0.4

Rx axis at seat 0.63 m/rad
Ry axis at seat 0.4 m/rad
Rz axis at seat 0.2 m/rad

For other component accelerations the value of k is unity.
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FIGURE 41.12 Coordinate axes for the human body seated, standing, and recumbent; and
for the hand-arm system. Also shown are rotational axes for the body (pitch) Ry , roll Rx, and
yaw Rz), and both basicentric (dashed) and biodynamic (continuous) coordinate systems for
the hand and arm. (ISO 2631-1.27 and ISO 5349-1.29)



variability of, and intervals between, transient motions, and whether the human
response is likely to be dose related).

Health. Guidance for the effect of whole-body vibration on health is provided in
international standard ISO 2631-1 for vibration transmitted through the seat pan in
the frequency range from 0.5 to 80 Hz.27 The assessment is based on the largest
measured translational component of the frequency-weighted acceleration (see Fig.
41.12 and Table 41.2). If the motion contains transient events that result in the con-
dition in Eq. (41.9) being satisfied, then a further assessment may be made using the
vibration dose value. The frequency weightings to be applied, Wd and Wk (see Table
41.2), are to be multiplied by factors of unity for vibration in the Z direction and 1.4
for the X and Y directions of the coordinate system shown in Fig. 41.12. The largest
component-weighted acceleration is to be compared at the daily exposure duration
with the shaded health caution zone in Fig. 41.13. The dashed lines in this diagram
correspond to a relationship between the physical magnitude of the stimulus and
exposure time with an index of n = 2 in Eq. (41.2), while the dotted lines correspond
to an index of n = 4 in this equation. The lower and upper dotted lines in Fig. 41.13
correspond to vibration dose values of 8.5 and 17, respectively. For exposures below
the shaded zone, which has been extrapolated to shorter and longer daily exposure
durations in the diagram, health effects have not been reproducibly observed; for
exposures within the shaded zone, the potential for health effects increases; for
exposures above the zone, health effects are expected.19,20
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FIGURE 41.13 Health guidance caution zone for exposure to whole-body vibration. The
dashed lines employ a relationship between stimulus magnitude and exposure time in hours
[Eq. (41.2)] with n = 2 and the dotted lines n = 4. For exposures below the shaded zone, health
effects have not been reproducibly observed; for exposures above the shaded zone, health
effects may occur.The lower and upper dotted lines correspond to vibration dose values of 8.5
and 17, respectively. (ISO 2631-1.27)



If the total daily exposure is composed of several exposures for times ti to differ-
ent frequency-weighted component accelerations (aW)i, then the equivalent accel-
eration magnitude corresponding to the total time of exposure (aW)equiv may be
constructed using

(aW)equiv = � 
1/2

(41.10)

To characterize occupational exposure to whole-body vibration, the 8-hour 
frequency-weighted component accelerations may be measured according to Eq.
(41.3) with T = 28,800 seconds. The total daily vibration dose value is constructed
using Eq. (41.6) with r = 4.

Discomfort. Guidance for the evaluation of comfort and vibration perception is
provided in international standard ISO 2631-1 for the exposure of seated, standing,
and reclining persons (the last-mentioned supported primarily at the pelvis).27 The
guidance concerns translational and rotational vibration in the frequency range
from 0.5 to 80 Hz that enters the body at the locations, and in the directions, listed in
Table 41.2. The assessment is formed from rms component accelerations. For tran-
sient vibration, the maximum transient component vibration values should be con-
sidered if the condition in Eq. (41.8) is satisfied, while the magnitude of the vibration
dose value may be used to compare the relative comfort of events of different dura-
tions. Each measure is to be frequency weighted according to the provisions of Table
41.2 and Fig. 41.12. Frequency weightings other than those in Table 41.2 have been
found appropriate for some specific environments, such as for passenger and crew
comfort in railway vehicles.30

Overall Vibration Value. The vibration components measured at a point where
motion enters the body may be combined for the purposes of assessing comfort into
a frequency-weighted acceleration sum aWAS, which for orthogonal translational com-
ponent accelerations aWX, aWY, and aWZ, is

aWAS = [aWX
2 + aWY

2 + aWZ
2]1/2 (41.11)

An equivalent equation may be used to combine rotational acceleration components.
When vibration enters a seated person at more than one point (e.g., at the seat

pan, the backrest, and the feet), a weighted acceleration sum is constructed for each
entry point. In order to establish the relative importance of these motions to com-
fort, the values of the component accelerations at a measuring point are ascribed a
magnitude multiplying factor k so that, for example, aWX

2 in Eq. (41.11) is replaced
by k2aWX

2, etc. The values of k are listed in Table 41.2, and are dependent on vibra-
tion direction and where motion enters the seated body. The overall vibration total
value aoverall is then constructed from the root sum of squares of the frequency-
weighted acceleration sums recorded at different measuring points, i.e.,

aoverall = [aWAS1
2 + aWAS2

2 + aWAS3
2 + . . . ]1/2 (41.12)

where the subscripts 1,2,3, etc., identify the different measuring points.
Many factors, in addition to the magnitude of the stimulus, combine to determine

the degree to which whole-body vibration causes discomfort (see “Effects of Vibra-
tion,” above). Probable reactions of persons to whole-body vibration in public trans-
port vehicles are listed in Table 41.3 in terms of overall vibration total values.

�
i

(aW)i
2ti

��
�

i

ti
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Fifty percent of alert, sitting or standing, healthy persons can detect vertical
vibration with a frequency-weighted acceleration of 0.015 m/sec2.

ACCEPTABILITY OF BUILDING VIBRATION

The vibration of buildings is commonly caused by motion transmitted through the
building structure from, for example, machinery, road traffic, and railway and sub-
way trains. Experience has shown that the criterion of acceptability for continuous
or intermittent building vibration lies at, or only slightly above, the threshold of per-
ception for most living spaces. Furthermore, complaints will depend on the specific
circumstances surrounding vibration exposure. Guidance is provided for building
vibration in Part 2 of the international standard for whole-body vibration, for the
frequency range from 1 to 80 Hz,31 and is adapted here to reflect alternate proce-
dures for estimating the acceptability of building vibration (see Ref. 1).

In order to estimate the response of occupants to building vibration, the motion
is measured on a structural surface supporting the body at, or close to, the point of
entry of vibration into the body. For situations in which the direction of vibration
and the posture of the building occupants are known (i.e., standing, sitting, or lying),
the evaluation is based on the magnitudes of the component frequency-weighted
accelerations measured in the X, Y, and Z directions shown in Fig. 41.12, using the
frequency weightings for comfort, Wk and Wd, as appropriate (see Table 41.2 and Fig.
41.11). If the posture of the occupant with respect to the building vibration changes
or is unknown, a so-called combined frequency weighting may be employed which is
applicable to all directions of motion entering the human body, and has attenuation
proportional to

10 log[1 + (f/5.6)2] (41.13)

where the frequency f is expressed in hertz. No adverse reaction from occupants is
expected when the rms frequency-weighted acceleration of continuous or intermit-
tent building vibration is less than 3.6 × 10−3 m/sec2.

Transient building vibration, that is, motion which rapidly increases to a peak
followed by a damped decay (which may or may not involve several cycles of vi-
bration), may be assessed either by calculating the maximum transient vibration
value or the total vibration dose value using Eqs. (41.5) and (41.6), respectively. No
adverse human reaction to transient building vibration is expected when the maxi-
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TABLE 41.3 Probable Subjective Reactions of
Persons Seated in Public Transportation to Whole-
Body Vibration Expressed in Terms of the Overall
Vibration Value (defined in text) (ISO 2631-1.27)

Vibration (m/sec2) Reaction

Less than 0.315 Not uncomfortable
0.315 to 0.63 A little uncomfortable
0.5 to 1 Fairly uncomfortable
0.8 to 1.6 Uncomfortable
1.25 to 2.5 Very uncomfortable
Greater than 2 Extremely uncomfortable



mum rms frequency-weighted transient vibration value is less than 3.6 × 10−3 m/sec2,
or the total frequency-weighted vibration dose value is less than 0.1 m/sec1.75.

Human response to building vibration depends on the use of the living space. In
circumstances in which building vibration exceeds the values cited to result in no
adverse reaction, the use of the room(s) should be considered. Site-specific values
for acceptable building vibration are listed in Table 41.4 for common building and
room uses. Explanatory comments applicable to particular room and/or building
uses are provided in footnotes to that table.

It should be noted that building vibration at frequencies in excess of 30 Hz may
cause undesirable acoustical noise within rooms, a subject not considered in this
chapter. In addition, the performance of some extremely sensitive or delicate oper-
ations (e.g., microelectronics fabrication) may require control of building vibration
more stringent than that acceptable for human habitation.

MOTION SICKNESS

Guidance for establishing the probability of whole-body vibration causing motion
sickness is obtained from international standard ISO 2631-1 by forming the motion
sickness dose value, MSDVz.27 This energy-equivalent dose value is given by the
term on the right-hand side of Eq. (41.6) with r = 2, and the acceleration time-
history frequency-weighted using Wf (see Fig. 41.11). If the exposure is to continu-
ous vibration of near constant magnitude, the motion sickness dose value may be
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TABLE 41.4 Maximum RMS Frequency-Weighted Acceleration, RMS Transient
Vibration Value, MTVV, and Vibration Dose Value, VDV (defined in text) 
for Acceptable Building Vibration in the Frequency Range 1–80 Hz1

Continuous/
Transient vibrationintermittent

vibration MTVV VDV
Place Time2 (m/sec2) (m/sec2) (m/sec1.75)

Critical working areas
(e.g., hospital

operating rooms)3
Any 0.0036 0.0036 0.1

Residences4,5 Day 0.0072 0.07/n1/2 0.2
Night 0.005 0.007 0.14

Offices5 Any 0.014 0.14/n1/2 0.4
Workshops5 Any 0.028 0.28/n1/2 0.8

1 The probability of adverse human response to building vibration that is less than the weighted
accelerations, MTVVs, and VDVs listed in this table is small. Complaints will depend on specific cir-
cumstances. For an extensive review of this subject, see Ref. 1. Note that: (a) VDV has been used for
the evaluation of continuous and intermittent, as well as for transient, building vibration; and (b)
annoyance from acoustic noise caused by vibration (e.g., of walls or floors) has not been considered
in formulating the guidance in Table 41.4.

2 Daytime may be taken to be from 7 AM to 9 PM and nighttime from 9 PM to 7 AM.
3 The magnitudes of transient vibration in hospital operating theaters and critical working places

pertain to those times when an operation, or critical work, is in progress.
4 There are wide variations in human tolerance to building vibration in residential areas.
5 n is the number of discrete transient events that are 1 second or less in duration.When there are

more than 100 transient events during the exposure period, use n = 100.



approximated by the frequency-weighted acceleration recorded during a measure-
ment interval τ of at least 240 seconds by

MSDVz ≈ [aWZ
2τ]1/2 (41.14)

While there are large differences in the susceptibility of individuals to the effects of
low-frequency vertical vibration (0.1 to 0.5 Hz), the percentage of persons who may
vomit is

P = Km(MSDVz) (41.15)

where Km is a constant equal to about one-third for a mixed population of males and
females. Note that females are more prone to motion sickness than males.

Further guidance for the evaluation of exposure to extremely low frequency
whole-body vibration (0.063 to 1 Hz) such as occurs on off-shore structures is to be
found in ISO 6987.32

HAND-TRANSMITTED VIBRATION

Guidance for the measurement and assessment of hand-transmitted vibration is pro-
vided in international standard ISO 5349.29,33 Three rms frequency-weighted com-
ponent accelerations, ahwx, ahwy, and ahwz, are first determined at the hand-handle
interface for the directions described in Fig. 41.12, using the frequency weighting
specified for all directions of vibration coupled to the hand (shown in Fig. 41.11).The
values are constructed according to Eq. (41.3). The vibration total value, ahv, is then
formed, which is defined as the frequency-weighted acceleration sum constructed
from the hand-transmitted component accelerations, i.e., using Eq. (41.11), but with
aWAS replaced by ahv, aWX by ahwx, aWY by ahwy, and aWZ by ahwz.

If it is not possible to record the vibration in each of the three coordinate direc-
tions, then an estimate of ahv is made from the largest component acceleration mea-
sured (i.e., either ahwx, ahwy, or ahwz) by multiplying by a factor in the range from 1.0 to
1.7.The factor is designed to account for the contribution to the vibration total value
from any unmeasured vibration.

The assessment of vibration exposure is based on the 8-hour energy equivalent
vibration total value, (ahv)eq(8). If the measurement procedure results in the daily expo-
sure being composed of i exposures for times ti to vibration total values ahvi, then the
8-hour energy equivalent vibration total value is obtained by forming the sum:

(ahv)eq(8) = � �
i

ahvi
2ti

1/2
(41.16)

If, alternatively, the measurement procedure provides a time history of the vibration
total value ahv(t), then (ahv)eq(8) may be calculated directly by energy averaging for an
eight-hour period, T0 = 28,800 sec.

(ahv)eq(8) = � �T0

0
ahv

2(t)dt
1/2

(41.17)

Development of White Fingers (Finger Blanching). For groups of persons who
are engaged in the same work using the same, or similar, vibrating hand tools, or

1
�
28,800

1
�
28,800

HUMAN RESPONSE TO SHOCK AND VIBRATION 41.31



industrial processes in which vibration enters the hands (e.g., forestry workers using
chain saws, chipping and grinding to clean castings, etc.), the number of years of
exposure, on average, before 10 percent of the group experience episodes of finger
blanching, Dy, is related to the 8-hour energy equivalent vibration total value by the
relationship, shown in Fig. 41.14:

[(ahv)eq(8)]1.06Dy = 31.8 (41.18)

The expression assumes that (ahv)eq(8) is expressed in m/sec2, and Dy in years. Expo-
sures below the line in Fig. 41.14 incur less risk of developing HAVS.There is no epi-
demiologic evidence for finger blanching occurring at values of (ahv)eq(8) of less than
1 m/sec2. Deviation from the relationship shown in Fig. 41.14 may be expected for
industrial situations that differ significantly from common practice (e.g., mixed
occupations, such as painting for a week followed by chipping for a week), and for
some impact power tools (e.g., sand rammer).
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FIGURE 41.14 Duration of employment Dy, expressed in years, for 10 percent of a group of work-
ers, all of whom perform essentially the same operations that result in exposure to effectively the
same 8-hour energy equivalent vibration total value, (ahv)eq(8), to develop episodes of finger blanching.
(ISO 5349.29)



SHOCK AND IMPACT

Injury from Multiple Shocks and Impacts. Guidance on the risk of injury for
seated persons from multiple shocks and impacts is contained in ISO 2631-5.34 The
recommended procedure consists of three parts.The first involves employing a bio-
dynamic model to predict the motion at the spine; the second involves accumulat-
ing peak accelerations at the seat to estimate the dose at the spine, and the third
involves applying an injury risk model based on the cumulative fatigue failure of
repeatedly stressed biological materials (see “Physical Data” and especially Fig.
41.3). A neural network model is employed for motion along the spinal axis (see
“Biodynamic Models”), and DRI-like models for the X and Y directions (see
“Effects of Shock and Impact”). The inputs to the biodynamic models are the seat
motions measured in the X, Y, and Z directions specified in Fig. 41.12. The acceler-
ation dose is constructed, separately, from the peak acceleration of each shock at
the spine that causes compression, or lateral motion, as calculated from the output
of the appropriate biodynamic model, using the right side of Eq. 41.6 with aw(t) rep-
resenting the peak acceleration of the shock or impact, and r = 6. The combined
acceleration dose applicable to an average working day is converted into an equiv-
alent static compressive stress, which may then be interpreted for the potential for
fatigue failure of the vertebral end plates.35 The calculation takes into account the
reducing strength of vertebrae with age.A lifetime exposure to a static stress of less
than 0.5 MPa is associated with a low probability of an adverse health effect,
whereas lifetime exposure to a static stress in excess of 0.8 MPa has a high proba-
bility of spinal injury.34 A Matlab code for performing the calculations is provided
in the standard.

The neural network model was trained on human responses to peak accelera-
tions of up to 40 m/sec2, so the method should not be applied to shocks and impacts
of larger magnitude. This restriction has limited consequences for practical trans-
portation systems, as such motions are unlikely to be tolerated.

A conceptually similar approach to that of ISO 2631-5 is suggested for multiple
shocks (no impacts) with peak accelerations greater than about 40 m/sec2 in the Z
direction (Fig. 41.12). It is thus applicable to persons who are seated and restrained
by seat harnesses. The procedure employs the DRI as the biodynamic model (see
“Effects of Shock and Impact”), and, as before, forms a dose by summing shocks.
The sum is used to estimate the risk of spinal injury.36

Survivable Single Shocks. Experiments in which humans or animals were
exposed to single shocks have established the tolerance of seated persons to such
accelerations. This unique body of information, which is unlikely to be extended for
ethical reasons, was consolidated by Eiband who characterized the shocks at the
seat by idealized trapezoidal time histories, with a constant onset acceleration rate,
a constant peak acceleration, and a constant decay rate.37 The tolerance limits so
obtained are shown for accelerations directed toward the spine (from in front), the
head (upward), and the tailbone (downward) in Figs. 41.15 to 41.20. The results are
presented in terms of peak accelerations and their durations for the three directions
and in terms of onset acceleration rates, which are characterized by the onset time
(t1 − t0) and plotted on the abscissa of Figs. 41.16, 41.18, and 41.20. The upper bound-
ary of the lower shaded area in Figs. 41.15, 41.17, and 41.19 defines the limit of volun-
tary human exposures that resulted in no injury. The corresponding lower boundary
of the upper shaded area delineates the limit of serious injury in animal experiments
involving hogs and chimpanzees. No corrections for size or species differences were
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FIGURE 41.16 Effect of rate of onset on spineward acceleration tolerance. (Eiband.37)

FIGURE 41.15 Tolerance to spineward acceleration as a function of magnitude and duration of
impulse. (Eiband.37)



FIGURE 41.17 Tolerance to headward acceleration as a function of magnitude and duration of
impulse. (Eiband.37)

FIGURE 41.18 Effect of rate of onset on headward acceleration tolerance. (Eiband.37)
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attempted. Maximum body support was provided to the subject in all experiments
(i.e., lap belt, shoulder harness, thigh and chest straps, and armrests, as appropriate;
[see Protection Against Rapidly Applied Accelerations (Crash) and Fig. 41.23].Toler-
ance limits for accelerations directed horizontally from behind the body (toward the
sternum) are similar to those for spineward acceleration shown in Figs. 41.15 and
41.16. For more details the original analysis should be consulted (Ref. 37).
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FIGURE 41.20 Effect of rate of onset on tailward acceleration tolerance. (Eiband.37)

FIGURE 41.19 Tolerance to tailward acceleration as a function of magnitude and duration of
impulse. (Eiband.37)



While caution must be exercised in applying these tolerance curves, since they
are based on experiments involving healthy young volunteers and animals, rigid
seats, well-designed body supports, and minimum slack in harnesses, they form the
primary information on which to base safety requirements for transportation vehi-
cles. Examples of short-duration accelerations to illustrate the magnitudes and dura-
tions experienced in practice are listed in Table 41.5.

Performance limits applicable to automotive crash testing with Hybrid III and
SID anthropomorphic dummies (see “Substitutes for Live Human Subjects”) have
been mandated in Federal Motor Vehicle Safety Standards (FMVSS) for subsystems
of the body (e.g., head, neck, and chest),38 and are promulgated in the U.S.A. by the
National Traffic Safety Administration (NHTSA). The values are to be found in
FMVSS 208, Occupant Crash Protection.

Head Injury Criterion. The goal of protecting the head from irreversible brain
damage in motor vehicle collisions involving unrestrained occupants led to the for-
mulation of the Wayne State Concussion Tolerance Curve, which was derived from
experiments in which instrumented, embalmed human cadavers were positioned
horizontally and then dropped so that their foreheads fractured on impact with steel
anvils or other targets (including motor-vehicle instrument panels). Impact dura-
tions measured on the skull of from 1 to 6 milliseconds could be obtained from this
experiment. The tolerance curve was extended to impact durations of 100 millisec-
onds using an asymptotic acceleration of 42g, which corresponds to the limit of vol-
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TABLE 41.5 Approximate Duration and Magnitude of Some Short-Duration 
Acceleration Loads

Type of operation Acceleration, g Duration, sec

Elevators:
Average in “fast service” 0.1–0.2 1–5
Comfort limit 0.3
Emergency deceleration 2.5

Public transit:
Normal acceleration and deceleration 0.1–0.2 5
Emergency stop braking from 110 km/h 0.4 2.5

Automobiles:
Comfortable stop 0.25 5–8
Very undesirable 0.45 3–5
Maximum obtainable 0.7 3
Crash (potentially survivable) 20–100 <0.1

Aircraft:
Ordinary take-off 0.5 >10
Catapult take-off 2.5–6 1.5
Crash landing (potentially survivable) 20–100
Seat ejection 10–15 0.25

Man:
Parachute opening, 12,000 m 33 0.2–0.5

1800 m 8.5 0.5
Parachute landing 3–4 0.1–0.2
Fall into firefighter’s net 20 0.1
Approximate survival limit with well-distributed 

forces (fall into deep snowbank) 200 0.015–0.03
Head:

Adult head falling from 2 m onto hard surface 250 0.007
Voluntarily tolerated impact with protective headgear 18–23 0.02



untary human exposure that resulted in no injury in Fig. 41.15 (the duration of motor
vehicle crashes depends primarily on vehicle speed and typically lasts for less than
100 milliseconds). The asymptotic limit was subsequently raised to a head accelera-
tion of 80g for impacts of the forehead on padded surfaces that were believed to be
survivable.

The Wayne State Concussion Tolerance Curve has proved difficult to apply to
complex acceleration-time impact waveforms, because of uncertainty in determining
the effective acceleration and time. A straight-line approximation to the curve
(between 2.5 and 25 milliseconds) led to the definition of the severity index (SI) as:

SI = �T

0
a2.5(t)dt (41.19)

where T is the impact duration, and a(t) the acceleration time history of the head (in
units of g). The maximum value was proposed to be 1000. A revised index has been
defined by the NHTSA for use in the frontal crash tests specified in motor vehicle
regulations, which has become known as the head injury criterion (HIC):

HIC = 
(t2 − t1) � �t2

t1
a(t)dt

2.5


max (41.20)

where t1 and t2 are the initial and final times (in seconds) of the interval during which
the HIC attains the maximum value, and a(t) is measured at the center of gravity of
the manikin’s head.This measure is to be applied to tests using instrumented anthro-
pometric dummies, in which a maximum value of 1000 is allowed. FMVSS 208 spec-
ifies the time interval (t2 − t1) to be 33 milliseconds.

There are several challenges in attempting to set human tolerance criteria, based
on either the SI or HIC.26 First, the ability of crash tests employing HICs computed
from measurements on an anthropometric dummy to rank order impact conditions
by severity has been questioned. Second, the original Wayne State Concussion Tol-
erance Curve was designed for unrestrained vehicle occupants, whereas the data
employed to extend the relationship to head impact durations greater than 6 mil-
liseconds, which commonly occur in vehicle crash tests, are for subjects with opti-
mum body restraints. Despite these limitations, the SI has been successfully applied
to the reduction of brain injuries in football players by employing football helmets
that attenuate head impacts to SI < 1500, while the HIC remains a cornerstone of
occupant safety testing for automobiles and, more recently, for transport aircraft.

PROTECTION METHODS AND PROCEDURES

Protection of man against mechanical forces is accomplished in two ways: (1) isola-
tion to reduce transmission of the forces to the man and (2) increase of man’s
mechanical resistance to the forces. Isolation against shock and vibration is achieved
if the natural frequency of the system to be isolated is lower than the exciting fre-
quency by at least a factor of 2. Both linear and nonlinear resistive elements are 
used for damping the transmission system; irreversible resistive elements or energy-
absorbing devices can be used once to change the time and amplitude pattern of
impulsive forces (e.g., progressive collapse of automobile engine compartment in
frontal crash). Human tolerance to mechanical forces is strongly influenced by select-
ing the proper body position with respect to the direction of forces to be expected.

1
�
(t2 − t1)
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Man’s resistance to mechanical forces also can be increased by an appropriate dis-
tribution of the forces so that relative displacement of parts of the body is avoided
as much as possible. This may be achieved by supporting the body over as wide an
area as possible, preferably loading bony regions and thus making use of the rigid-
ity available in the skeleton. Reinforcement of the skeleton is an important feature
of seats designed to protect against crash loads.The flexibility of the body is reduced
by fixation to the rigid seat structure. The mobility of various parts of the body, e.g.,
the abdominal mass, can be reduced by properly designed belts and suits. The factor
of training and indoctrination is essential for the best use of protective equipment,
for aligning the body in the least dangerous positions during intense vibration or
crash exposure, and possibly for improving operator performance during vibration
exposure.

PROTECTION AGAINST VIBRATIONS

The transmission of vibration from a vehicle or platform to a man is reduced by
mounting him on a spring or similar isolation device, such as an elastic cushion. The
degree of vibration isolation theoretically possible is limited, in the important reso-
nance frequency range of the sitting man, by the fact that large static deflections of
the man with the seat or into the seat cushion are undesirable. Large relative move-
ments between operator and vehicle controls interfere in many situations with
man’s performance. Therefore, a compromise must be made. Cushions are used pri-
marily for static comfort, but they are also effective in decreasing the transmission of
vibration above man’s resonance range. They are ineffective in the resonance range
and may even amplify the vibration. In order to achieve effective isolation over the
2- to 5-Hz range, the natural frequency of the man-cushion system should be
reduced to 1 Hz, i.e., the natural frequency should be small compared with the forc-
ing frequency (see Chap. 39).This would require a static cushion deflection of 25 cm.
If a seat cushion without a back cushion is used (as is common in some tractor or
vehicle arrangements), a condition known as “back scrub” (a backache) may result.
Efforts of the operator to wedge himself between the controls and the back of the
seat often tend to accentuate the discomfort.

For severe low-frequency vibration, such as occurs in tractors and other field
equipment, suspension of the whole seat is superior to the simple seat cushion.
Hydraulic shock absorbers, rubber torsion bars, coil springs, and leaf springs all have
been successfully used for suspension seats.2 A seat that is guided so that it can move
only in a linear direction seems to be more comfortable than a configuration where
the seat simply pivots around a center of rotation. The latter situation produces an
uncomfortable and fatiguing pitching motion. Suspension seats can be built which
are capable of preloading for the operator’s weight so as to maintain the static posi-
tion of the seat and the natural frequency of the system at the desired value. Sus-
pension seats for use on tractors and on similar vehicles are available which reduce
the resonance frequency of the man-seat system from approximately 4 to 2 Hz. This
can be seen from the comparison of the transmissibility of a rigid seat, a truck sus-
pension seat, and a conventional foam and metal sprung car seat in Fig. 41.21. The
transmissibility of the car seat is in excess of 2 at the resonance frequency (4 Hz),
implying that the seat motion reaching the body is amplified by this ratio. In con-
trast, the amplification introduced by the suspension seat is at most a factor of 1.3 at
the resonance frequency (2 Hz), and improved attenuation of vibration is obtained
throughout the frequency range from 4 to 12 Hz. At frequencies below 2 Hz and
above 12 Hz, less vibration is transmitted to the subject by the foam and metal
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sprung seat.There are large differences in the performance of suspension seats, with
transmissibilities in excess of 2 being recorded in some designs at the resonance fre-
quency (which is usually close to 2 Hz).1 In consequence, the selection of a seat for a
particular application must take into account both the performance of the seat and
the critical vibration frequencies to be attenuated.

For severe vibrations, close to or exceeding normal tolerance limits, such as those
which may occur in military operations, special seats and restraints can be employed
to provide maximum body support for the subject in all critical directions. In gen-
eral, under these conditions, seat and restraint requirements are the same for vibra-
tion and rapidly applied accelerations (discussed in the next section).

Isolation of the hand and arm from the vibration of handheld or hand-guided
power tools is accomplished in several ways. A common method is to isolate the 
handles from the rest of the power tool, using springs and dampers (see Chap. 39).
The application of vibration-isolation systems to chain saws for use in forestry has
become commonplace and has led to a reduction in the incidence of HAVS. A sec-
ond method is to modify the tool so that the primary vibration is counterbalanced by
an equal and opposite vibration source. This method takes many different forms,
depending on the operating principle of the power tool.39 An example is shown for a
pneumatic scaling chisel in Fig. 41.22, in which an axial impact is applied to a work
piece to remove metal by a chisel P. The chisel is driven into the work piece by com-
pressed air and is returned to its initial position by a spring S. The axial motion of the
chisel is counterbalanced by a second mass m and spring k which oscillate out of
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FIGURE 41.21 Comparison of the transmissibilities of a rigid
seat, a foam-covered metal sprung seat, and a truck suspension
seat. (Griffin.1)



phase with the chisel motion. The design of an appropriate vibration-isolation sys-
tem must include the dynamic properties of the hand-arm system.11,13

Conventional gloves do not attenuate the vibration transmitted to the hand but
may increase comfort and keep the hands warm. So-called antivibration gloves also
fail to reduce vibration at frequencies below 100 Hz, which are most commonly
responsible for HAVS, but may reduce vibration at high frequencies (the relative
importance of different frequencies in causing HAVS is shown in Fig. 41.11).

Preventive measures for HAVS to be applied in the workplace include minimiz-
ing the duration of exposure to vibration, using minimum hand-grip force consistent
with safe operation of the power tool or process (“let the tool do the work”), wear-
ing sufficient clothing to keep warm, and maintaining the tool in good working
order, with minimum vibration.29 As recovery from HAVS has only been demon-
strated for early vascular symptoms, medical monitoring of persons exposed to
vibration is essential. Monitoring should include a test of peripheral neurological
function,40 since this component of HAVS appears to persist.

PROTECTION AGAINST RAPIDLY APPLIED 

ACCELERATIONS (CRASH)

The study of automobile and aircraft crashes and of experiments with dummies and
live subjects shows that complete body support and restraint of the extremities pro-
vide maximum protection against accelerating forces and give the best chance for
survival. If the subject is restrained in the seat, he makes full use of the force moder-
ation provided by the collapse of the vehicle structure and is protected against shifts
in position which would injure him by contact with interior surfaces of the cabin.The
decelerative load must be distributed over as large a body area as possible to avoid
force concentration with resulting bending moments and shearing effects. The load
should be transmitted as directly as possible to the skeleton, preferably directly to
the pelvic structure—not via the vertebral column.

Theoretically, a rigid envelope around the body will protect it to the maximum pos-
sible extent by preventing deformation.A body restrained to a rigid seat approximates
such a condition; proper restraints against longitudinal acceleration shift part of the
load of the shoulder girdle and arms from the spinal column to the backrest.Armrests
can remove the load of the arms from the shoulders. Semirigid and elastic abdominal
supports provide some protection against large abdominal displacements. The effec-
tiveness of this principle has been shown by animal experiments and by impedance
measurements on human subjects. Animals immersed in water, which distributes the
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FIGURE 41.22 An antivibration power tool design for a pneu-
matic scaler: P—vibrating chisel; S—chisel return spring; m—coun-
terbalancing oscillating weight; and k—counterbalance return
spring. (Lindqvist.39)



load applied to the rigid container evenly over the body surface, or in rigid casts are
able to survive acceleration loads many times their normal tolerance.

Many attempts have been made to incorporate energy-absorptive devices, either
in a harness or in a seat, with the intent to change the acceleration-time history by
limiting peak accelerations. For example, consider an aircraft which is stopped in a
crash from 160 km/h in 1.5m; it is subjected to a constant deceleration of 67g. An
energy-absorptive device designed to elongate at 17g would require a displacement
of 0.5 m. In traveling this distance, the body or seat would be decelerated relative to
the aircraft by 14.4g and would have a maximum velocity of 11.2 m/sec relative to
the aircraft structure. A head striking a solid surface (e.g., cabin interior surface)
with this velocity has many times the minimum energy required to fracture a skull.
The available space for seat or passenger travel using the principle of energy absorp-
tion must therefore be considered carefully in the design. Seats for jet airliners have
been designed which have energy-absorptive mechanisms in the form of extendable
rear legs. The maximum travel of the seats is 15 cm; their motion is designed to start
between 9 and 12g horizontal load, depending on the floor strength. During motion,
the legs pivot at the floor level—a feature considered to be beneficial if the floor
wrinkles in the crash. Theoretically, such a seat can be exposed to a deceleration of
30g for 0.037 sec or 20g for 0.067 sec without transmitting a deceleration of more
than 9g to the seat. However, the increase in exposure time must be considered as
well as the reduction in peak acceleration. For very short exposure times where the
body’s tolerance probably is limited by the transferred momentum and not the peak
acceleration, the benefits derived from reducing peak loads would disappear.

The high tolerance limits of the well-supported human body to decelerative forces
suggest that in aircraft and other vehicles, seats, floors, and the whole inner structure
surrounding crew and passengers should be designed to resist crash decelerations as
near to 40g as weight or space limitations permit.41 The structural members sur-
rounding this inner compartment should be arranged so that their crushing reduces
forces on the inner structure. Protruding and easily loosened objects should be
avoided. To allow the best chance for survival, seats should also be stressed for
dynamic loadings between 20 and 40g. Civil Air Regulations require a minimum
static strength of seats of 9g. A method for computing seat tolerance for typical sur-
vivable airplane crash decelerations is available for seats of conventional design.41 It
has been established that an unrestrained passenger who is riding in a seat facing
backward has a better chance to survive an abrupt crash deceleration since the
impact forces are then more uniformly distributed over the body. Neck injury must be
prevented by proper head support.

Increased survivability in automobile as well as airplane crashes can be obtained
by distributing the load over larger areas of the body and fixing the body more
rigidly to the seat. Shoulder straps, thigh straps, chest straps, and handholds are addi-
tional body supports used in experiments. They are illustrated in Fig. 41.23. Table
41.6 shows the desirability of these additional restraints to increase possible surviv-
ability to acceleration loads in various directions. In airplane crashes, vertical and
horizontal loads must be anticipated. In automobile crashes, horizontal loads are
most likely.

A forward-facing passenger held by a seat belt flails about when suddenly decel-
erated; his hands, feet, and upper torso swing forward until his chest hits his knees or
until the body is stopped in this motion by hitting other objects (back of seat in front,
cabin wall, instrument panel, steering wheel, control stick). Since 15 to 18g longitu-
dinal deceleration can result in 3 times higher acceleration of the chest hitting the
knees, this load appears to be about the limit a human can tolerate with a seat belt
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alone. Approximately the same limit is obtained when the head-neck structure is
considered.

Lap straps always should be as tight as comfort will permit to exclude available
slack. During forward movement, about 60 percent of the body mass is restrained by
the belt, and therefore represents the belt load. If the upper torso is fixed to the back
of the seat by any type of harness (shoulder harness, chest belt, etc.), the load on the
seat is approximately the same for forward- and aft-facing seats. The difference
between these seats with respect to crash tolerance as discussed above no longer
exists. The body restraints for passenger and crew must be applied without creating
excessive discomfort.

A rapidly inflating air bag situated in front of an automobile driver, and often the
front passenger, and inflated on frontal collision, has been installed in most vehicles.
While initially conceived as an alternative to passive restraints, that is, as a safety sys-
tem that would operate when an automobile occupant was not wearing a seat belt,
air bags are now recognized to provide most benefit when considered as a comple-
mentary system to lap and shoulder seat belts. The device consists of a crash sensor
or sensors mounted near the front of the vehicle that signal velocity changes to a
controller; those in excess of about 6 m/sec cause a pyrotechnic reaction to generate
gas that inflates a porous fabric bag within, typically 25 milliseconds, so that the bag
is inflated sufficiently to distribute the deceleration forces over a large surface area
on contact with the occupant. Accident data have shown that while air bags do save
lives, believed to be some 2620 people in the United States from 1990 to 1997, they
were also responsible for the deaths of at least 44 children and 36 adults during this
period.42 Most of the fatalities have been attributed to the size and position of the
occupant at the time of impact with the air bag, which is not defined if a seat belt is
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FIGURE 41.23 Protective harnesses for rapid accelerations or decelerations.The following devices
were evaluated in sled deceleration tests: (A) Seat belt for automobiles and commercial aviation. (B)
Standard military lap and shoulder strap. (C) Like (B) but with thigh straps added to prevent head-
ward rotation of the lap strap. (D) Like (C) but with chest strap added. (Stapp: USAF Tech. Rept.
5915, pt. I, 1949; pt. II, 1951.)
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TABLE 41.6 Human-Body Restraint and Possible Increased Impact Survivability. (After Eiband.37)

Direction of acceleration Conventional Possible survivability increases
imposed on seated occupants restraint available by additional body supports*

Spineward: Forward facing:
Crew Lap strap (a) Thigh straps (assume crew members will be

Shoulder performing emergency duties with hands and feet
straps at impact)

Forward facing:
Passengers Lap strap (a) Shoulder straps, (b) thigh straps, (c) nonfailing 

armrests, (d) suitable handholds, and (e) emer-
gency toe straps in floor

Sternumward: Aft facing:
Passengers only Lap strap (a) Nondeflecting seat back, (b) integral, full-height 

headrest, (c) chest strap (axillary level), (d) lat-
eral head motion restricted by padded “winged 
back,” (e) leg and foot barriers, and (f) arm-
rests and handholds (prevent arm displacement 
beyond seat back)

Headward: Forward facing:
Crew Lap strap (a) Thigh straps, (b) chest strap (axillary level), and

Shoulder (c) full, integral headrest (assume crew mem-
straps bers will be performing emergency duties;

extremity restraint useless)

Forward facing:
Passengers Lap strap (a) Shoulder straps, (b) thigh straps, (c) chest strap 

(axillary level), (d) full, integral headrest,
(e) nonfailing contoured armrests, and (f) suit-
able handholds

Aft facing:
(a) Chest strap (axillary level), (b) full, integral 

headrest, (c) nonfailing armrests, and (d) suit-
able handholds

Tailward: Forward facing:
Crew Lap strap (a) Lap-belt tie-down strap (assume crew members

Shoulder will be performing emergency duties; extremity
straps restraint useless)

Forward facing:
Passengers Lap strap (a) Shoulder straps, (b) lap-belt tie-down strap,

(c) handholds, (d) emergency toe straps

Aft facing:
(a) Chest strap (axillary level), (b) handholds, and 

(c) emergency toe straps

Feet forward:
Berthed occupants Lap strap Full-support webbing net

Athwart ships:
Full-support webbing net

* Exposure to maximum tolerance limits (see “Survivable Single Shocks”) requires straps exceeding conventional
strap strength and width.



not worn. In these circumstances, the air bag may impact the occupant with sufficient
force to produce fatal injury. Systems are under development to mitigate these effects
(e.g., reducing the inflation rate of the bag and monitoring occupant position).42

The dynamic properties of seat cushions are extremely important if an accelera-
tion force is applied through the cushion to the body. In this case the steady-state
response curve of the total man-seat system (Fig. 41.21) provides a clue to the possi-
ble dynamic load factors under impact. Overshooting should be avoided, at least for
the most probable shock rise times. This problem has been studied in detail in con-
nection with seat cushions used on upward ejection seats. The ideal cushion is
approached when its compression under static load spreads the load uniformly and
comfortably over a wide area of the body and almost full compression is reached
under the normal body weight. The acceleration then acts uniformly and almost
directly on the body without intervening elastic elements. A slow-responding foam
plastic, such as an open cell rate-dependent polyurethane foam, of thickness from 5
to 6 cm satisfies these requirements.43

A significant factor in human shock and impact tolerance appears to be the accel-
eration-time history of the subject immediately preceding the event. A dynamic pre-
load consists of an imposed acceleration preceding, and/or during, and in the same
direction as the shock or impact acceleration.44 A dynamic preload occurs, for exam-
ple, when the brakes are applied to a moving automobile before it hits a barrier.The
phenomenon is found experimentally to reduce the acceleration of body parts on
impact, thereby potentially mitigating adverse health effects. The dynamic preload
should not be confused with the static preload introduced by a protective harness.The
latter brings the occupant into contact with the seat or restraint but does not introduce
the dynamic displacement of body parts and tissue compression necessary to reduce
the body’s dynamic response.

PROTECTION AGAINST HEAD IMPACT

The impact-reducing properties of protective helmets are based on two principles:4

the distribution of the load over a large area of the skull and the interposition of
energy-absorbing systems. The first principle is applied by using a hard shell, which
is suspended by padding or support webbing at some distance from the head (typi-
cally 1.5 to 2.0 cm). High local impact forces are distributed by proper supports over
the whole side of the skull to which the blow is applied. Thus, skull injury from rela-
tively small objects and projectiles can be avoided. However, tests usually show that
contact padding alone over the skull results, in most instances, in greater load con-
centration, whereas helmets with web suspension distribute pressures uniformly.
Since helmets with contact padding usually permit less slippage of the helmet, a
combination of web or strap suspension with contact padding is desirable. The shell
itself must be as stiff as is compatible with weight considerations; when the shell is
struck by a blow, its deflection must not be large enough to permit it to come in con-
tact with the head.

Padding materials can incorporate energy-absorptive features. Whereas foam
rubber and felt are too elastic to absorb a blow, foam plastics like polystyrene or
Ensolite result in lower transmitted accelerations.

Most helmets constitute compromises among several objectives such as pressur-
ization, communication, temperature conditioning, minimum bulk and weight, visi-
bility, protection against falling objects, etc.; usually, impact protection is but one of
many design considerations. The protective effect of helmets against concussion and
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skull fracture has been shown in animal experiments and is apparent from accident
statistics.
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absolute measurements, 11.3
absorber, mass ratio, 6.11
accelerated test, 18.15
acceleration:

definition of, 1.9
vibration, 1.26

acceleration response, 2.2
accelerometers, 10.2, 16.4

definition of, 1.9
flesh-mounted, effect of size on, 41.3
flesh-mounted, effect of weight on, 41.3
hand-held, 15.12

acceptance test, 18.5
acronyms, 1.5
action, 7.2, 7.4
active vibration isolation systems, 39.46
added mass, 30.1
adhesive, damping in, 36.3, 36.7, 36.10
admissible functions, 7.8
admittance, 6.3, 10.30
aerodynamic excitation, 31.1, 32.7
air bags, inflatable, 41.43
air guns, 27.8
air springs, 39.10
aliasing, 13.5, 14.11, 19.17, 26.4

diagram, 13.7
rejection, 13.8

alloy systems, damping, 36.2
almost-periodic vibrations, 19.5
ambient vibration, definition of, 1.9
American National Standards Institute

(ANSI), 17.1
American Petroleum Institute (API), 37.17
American Society for Testing and Materials

(ASTM), 17.1
amplitude, 1.7
amplitude demodulation, 14.34
analog, 1.16

analog filters, 13.7
analog-to-digital converters (ADCs), 19.16,

26.3
analogy, definition of, 1.16
analysis, 22.1

matrix methods, 26.6,
transient, by statistical energy analysis,

24.20
(See also specific analysis types)

analytical modeling procedures, classical,
32.1, 18.7

finite element method, 23.1, 40.17
analytical tests, 18.4
anchoring, free-layer damping, 36.7
angular frequency, 1.7, 1.17, 2.3
angular mechanical impedance, 1.16
anisotropic conditions, 7.33
anti-aliasing filters, 14.11
antinode, 1.16
antiresonance, 1.16
aperiodic motion, 1.16
apparent mass, 10.30
arches, 7.1
Arrhenius model, 36.5
assumed modes method, 7.7, 7.9
ASTM (see American Society for Testing

and Materials)
asymmetric shafting, 5.2, 5.16, 5.22
asymmetric stiffness, 4.5, 4.9
asynchronous excitation, 4.17
asynchronous quenching, 4.17
attenuation, 6.4
audiofrequency, 1.16
autocorrelation, 19.6, 24.3
autocorrelation coefficient, 1.16
autocorrelation function, 1.16
automobile vibration, 18.15, 25.20
autonomous system, 4.18
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autospectral density, 1.16, 19.8
auxiliary mass damper, 6.1

coulomb friction damping, 6.12
cutting tool chatter, 6.28
gear vibration reduction, 6.28
optimum damping, 6.11
rotating machinery, 6.16
torsional vibration, 6.18
transient and self-excited vibration, 6.28
turbine fatigue reduction, 6.28

average value, 19.3, 19.17, 19.21
averaging time, 14.6, 19.17

optimum, 19.26

background noise, 1.16
backward whirl, 5.4, 5.11, 5.22
balancing, definition of, 1.16
ballistic pendulum calibrator, 11.18
ball-passing frequency, 16.16
bandpass filter, 1.16, 14.2
bandwidth, 2.18

desired, 13.6
effective, 1.19
nominal, 1.22
optimum resolution, 19.23, 19.27

bars, 7.1, 7.11
base-bend sensitivity, 10.15
beams, 7.1
bearings, 16.1, 24.15
beat frequency, 1.17
beats, 1.17
belt friction system, 4.4
Bessel filter, 13.7
biodynamic models:

ATB and MADYMO, 41.14
dynamic response index (DRI) for,

41.20
hand and arm for, 41.13
head and neck of human body, 41.14
lumped parameter, 41.7, 41.11
mechanical impedance of hand-arm

system for, 41.13
mechanical impedance of whole body for,

41.8
neural network, 41.14
seat-to-head transmissibility for, 41.8
spine for, 41.13

biofidelity of human surrogates, 41.4
Bishop theory, 7.17
bistable vibration, 5.2, 5.20
blade-tip-clearance induced instability, 5.2,

5.5, 5.12, 5.22

blocked force, 6.4
bluff bodies, 30.8
body:

mechanical characteristics of, 41.5
mechanical impedance of, 41.8, 41.12
mechanical resonances of, 41.7
motion sickness, 41.3
physical properties of, 41.6
posture and vibration injury, 41.16
skull vibration, 41.13
survivable shocks to, 41.33
thorax-abdomen subsystem, 41.9
transmissibility from seat to head, 41.8

body-induced vibration, 3.47
Bogoliuboff’s method, 4.34
bolted joints, 40.12
bolts, 24.15, 40.12
bone:

compressive strength of, 41.6
density of, 41.6
elastic moduli of, 41.6
tensile strength of, 41.6

boundary conditions, damping and, 36.7,
36.18, 36.19

boundary value problem, 7.2
branched systems, 37.6
broadband random vibration, 1.17
building vibration, acceptability of, 41.29
built-up structure, damping in, 36.2
Butterworth filter, 13.7

cables, 7.35, 15.18
noise generation in, 15.19

calibration:
comparison method of, 11.4
field techniques for, 15.13
random excitation method of, 11.5
shields, use of, 15.19
standards 17.2–17.3
transverse sensitivity, 11.24
voltage substitution method of, 15.16

calibration factor, 11.1
calibration traceability, 11.2
calibrator:

ballistic pendulum, 11.18
centrifuge, 11.9
drop-ball, 11.19
earth’s gravitational field, 11.8
Fourier-transform shock, 11.22
high-acceleration, 11.15
impact-force shock, 11.20
interferometer, 11.10
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calibrator (Cont.):
pendulum, 11.8
reciprocity, 11.5
resonant-bar, 11.15
resonant-beam, 11.25
rotating table, 11.9
shock excitation, 11.16
sinusoidal excitation, 11.15
(See also calibration)

Campbell diagram, 14.27
carpal tunnel syndrome, 41.16
cascade plot, 14.27, 19.25
cement, 15.9
cement mounting, 15.9
CEN (see European Committee for

Standardization)
CENELEC (see European Committee for

Electrotechnical Standardization)
center of twist, 7.18
center of gravity, 1.17, 3.26
center of mass, 1.17, 3.14
central limit theorem, 24.19
centrifuge, 27.12
centrifuge calibrator, 11.9
cepstrum, 14.33
cepstrum analysis, 14.33, 16.17, 16.19
ceramic matrix composites, 34.2
chaotic dynamics, 4.28
characteristic equation, 7.15
characteristic space, 21.20
charge amplifier, 13.2
charge sensitivity, 10.21
chatter, 5.2, 5.19, 5.22
circuit boards, 40.13
circular frequency, 1.17
classical plate theory, 7.31
classification of vibrations, 19.1–19.3, 40.3
coefficient condensation, 21.37
coherence function, 19.10, 21.51
coil springs, 39.42
comfort, in public transportation, 41.28
comparison method of calibration, 11.4
complex amplitude, 6.3
complex angular frequency, 1.17
complex cepstrum, 14.33
complex frequency, 20.13
complex function, 1.17
complex modulus, 35.4

methods for measuring, 36.18
model, 36.4

complex shock, 27.5, 27.10
complex vibration, 1.17, 19.5

compliance, 1.17
composite beam, 7.29
composite materials, 34.1

damping 34.26
design, 34.2, 34.14
failure criteria, 34.9
fatigue performance, 34.15
properties 34.6
types of, 34.1
wearout model 34.24

compound pendulum, 2.31
compressional wave, 1.17
compressors, 17.4
computers, 26.1

experimental applications of, 26.3
personal, 7.1, 26.2

condition monitoring of machinery, 16.1
intermittent, 16.2
off-line, 16.2
on-line, 16.2
permanent, 16.2
relation to spectrum changes in, 16.6

confidence coefficient, 18.9
conjugate even, 14.10
constant-bandwidth analysis, 14.9
constant-percentage bandwidth analysis,

14.9, 19.23
constrained-layer damping, 24.15
continuous beams, 7.27
continuous fiber composites, 34.2
continuous systems, 1.17, 7.1
continuum mechanics, 7.2
control systems:

mixed-mode, 26.19
random vibration, 26.15
sine-wave, 26.17
transient/shock, 26.18
waveform, 26.20

convolution integral, 8.11
coordinate modal assurance criterion, 21.5
coordinate system, 3.1
correction methods, 16.23
correlation coefficient, 1.17
correlation function, 1.17, 19.7
coulomb damping, 1.17, 4.40
coupled modes, 1.17
coupling factor, electromechanical, 1.17
coupling loss factor, 24.10, 24.16, 24.18
couplings, elastic, 37.6
crack propagation, 33.23
Craig-Bampton reduction, 23.19
crankshaft, 37.4
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crash:
flailing in, 41.42
helmets for, 41.45
test dummies, 41.4

crest factor, 1.17
criteria, test, 18.1
critical damping, 36.14

fraction of, 1.17, 2.5
critical damping coefficient, 6.6
critical damping ratio, 24.2
critical speeds, 1.18, 37.10
critical strain velocity, 33.11
cross-axis (transverse) sensitivity, 11.25
cross-spectral density function, 19.8, 21.23

computation of, 19.24
cross talk, 15.16
cumulative damage, 34.18
curved beams, 7.35
cycle, 1.18
cycle counting, 33.20
cylindrical shells, 7.36

D’Alembert’s principle, 7.2
damage potential of dynamic load, 40.2
damage rules, in metals, 33.21
damped natural frequency, 1.18
damped systems, 2.27
damper, 1.18, 2.2

applied to rotating systems, 37.21
damper-controlled system, 2.1
damping, 5.3, 5.4, 5.6, 5.12, 5.15, 5.19, 5.20,

7.5, 36.1–36.3, 36.5, 36.6, 36.8,
36.10–36.12, 36.17

acoustic radiation, 36.2
aluminum tape, 36.10
amorphous materials, 36.2
analytical modeling, 36.1, 36.4, 36.5
base structure, 36.8
beam, 36.6–36.8, 36.13, 36.18, 36.19
behavior, 36.4, 36.9
benefits, 36.1, 36.5
blanketing, 36.5
by bolts, rivets, and bearings, 24.15, 36.9,

40.12
bonding layer, 36.7
characteristics of isolators, 39.2, 39.13
commercial test systems, 36.1, 36.22
complex modulus, 36.3, 36.4, 36.18, 36.22
complex structures, 36.2
in computer codes, 36.4
constrained layer, 24.15, 36.1, 36.8, 36.9,

36.10
shear parameter, 36.8, 36.9

damping (Cont.):
coulomb, 1.17, 4.40
coulomb friction, 36.2
critical, 1.18, 2.5
cyclic strain, 36.17
cyclic stress, 36.2
deadness, 36.2
deep drawing, 36.9
definition of, 1.18
design, 36.1, 36.5
dissipation, 36.1, 36.2, 36.8
effect of initial, 36.9
elastic moduli of layers, 36.6, 36.7
energy dissipation, 36.1, 36.2, 36.6
epoxy cure cycle, 36.22
equivalent viscous, 1.19
failure control, 36.5
fiber, imaginary, 36.6
fluid medium, 36.2
fluid pumping, 36.2
free layer, 24.15, 36.1, 36.6, 36.7

equation limitations, 36.7
friction, 36.2
Geiger plate test, 36.18–36.20
generalized Hooke’s law, 36.12
hysteretic, 36.13, 36.15
impedance test, 36.21
integral, 36.1, 36.9, 36.10
intermetallic compounds, 36.2
isotropic characteristics, 36.7
layer dimensions, 36.6, 36.9
linear velocity, 4.32
logarithmic decrement, 36.12, 36.14, 36.16
mass, 2.27
material element, 36.1, 36.2
measures of, 36.1, 36.8, 36.11–36.17
mechanisms of, 21.12
metals, 36.2
in a mode, 36.5
molecular chains, 36.3
noise, 36.1, 36.5
noise control, 36.5
noise radiation control, 36.1, 36.5
nonlinear, 1.22, 36.2, 36.17
nonlinear materials, 36.17
nonproportional, 21.12
Oberst equations, 36.7, 36.22
plastic, 35.5
and product acceptance, 36.5
proportional, 21.12
recovery of molecular chains, 36.3
relaxation of molecular chains, 36.3
in riveted joints, 36.9
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damping (Cont.):
Ross-Kerwin-Ungar (RKU) equations,

36.10, 36.22
shape memory, 35.6
slip, 35.19
sources of, 36.2
specific damping capacity, 36.12, 36.17
spot weld, 36.9
structural, 2.18
test methods, 36.16, 36.18, 36.19
test system, 36.22
thermal effects, 36.2
thermoelastic, 35.12
treatment thickness, 36.6, 36.9, 36.10
tuned damper, 36.1, 36.11
uniform mass, 2.29
uniform structural, 2.29
uniform viscous, 2.27
vibration control, 36.1, 36.2
in vibration isolators, 39.2
viscoelastic, 35.10, 36.2, 36.8, 36.9, 36.13
viscous, 1.26, 2.5, 2.9, 4.3, 4.4, 7.1,

36.13–36.15
viscous dashpot, 36.4
in welded joints, 24.15, 36.9, 40.12
Williams-Landel-Ferry (WLF) model,

36.4
Young’s modulus model, 36.3, 36.4, 36.6

damping coefficient, 2.2, 2.5
(See also fraction of critical damping)

damping criteria, 36.1, 36.11
damping impedance, 6.6, 36.21
damping links, 36.1, 36.11
damping loss factor, 24.14, 24.16, 32.14
damping materials, 36.1, 36.4

acrylic rubber, 36.3
amount of, 36.7
behavior of, 36.4
butadiene rubber, 36.3
butyl rubber, 36.4
chloroprene, 36.3
composites, 34.26
creep, 36.20
cured polymers, 36.3
elastomeric, 36.1, 36.2, 36.11
fluorocarbon, 36.3
fluorosilicone, 36.3
glassy, 36.2
laminates, 36.3, 36.9, 36.19
mastic, 36.3
natural rubber, 36.3
neoprene, 36.3
nitrile rubber, 36.3

damping materials (Cont.):
nylon, 36.3
Plexiglas, 36.3
polyisoprene, 36.3
polymeric, 36.1, 36.2
polymethyl methacrylate, 36.3
polysulfide, 36.3
polysulfone, 36.3
polyvinyl chloride, 36.3
pressure-sensitive adhesives, 36.3, 36.10
shear modulus, 36.4
silicone rubber, 36.3
styrene-butadiene (SBR), 36.3
tapes, 36.3, 36.10
urethane, 36.3
vinyl, 36.3

damping measurements, 35.2, 35.22
comparisons, 36.17

damping mechanisms, 36.2, 36.8
damping model:

fractional derivative, 36.4
shift factor, 36.4, 36.5

damping parameter, 36.15
damping ratio, 36.12, 36.14
damping treatment, 36.1, 36.5–36.10

types, 36.6
damping values, comparison of, 24.15,

40.12
data analysis

digital, 19.16, 21.16, 26.6
matrix methods, 22.1
statistical sampling errors, 19.21

data domain, 21.18
data reduction

to frequency domain, 20.5
to response domain, 20.5
for vibration data, 19.1 (See also data

analysis)
data window, 14.11, 14.13, 14.15
dc accelerometer, 10.13
decibel (dB), definition of, 1.18
deflection, static, 2.4
degrees of freedom (DOF), 1.18, 2.19, 7.2,

21.3
(See also multiple-degree-of-freedom

systems; single-degree-of-freedom
structures and systems)

delamination of composites, 34.5
delta function, 7.26, 20.2
design criteria, 40.14
design issues using composites, 34.3
design life, 40.16
design margins, 40.17
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design procedure equipment, 40.2
final design, 40.23
preliminary, 40.2

design requirements, 40.7
design reviews, 40.24
design verification, 40.25
desired bandwidth, 13.6
deterministic force field, 7.6
deterministic function, 1.18, 19.4, 19.10

analysis of, 19.17, 19.26
deterministic signal, stationary, 14.19
deterministic vibration, 1.1
development tests, 18.4
differential geometry, 7.36
digital analysis of data, 19.16, 21.16, 26.6
digital computers, 26.1

experimental applications of, 26.3
digital control systems, 26.12
digital filters, 14.2
digital signal processing, 21.16, 26.3
digital-to-analog conversion (DAC), 26.3
digitizer, 13.1
director approach, 7.35
discrete Fourier transform (DFT), 14.9,

19.18, 21.15
discrete mass moment of inertia, 7.16
displacement:

definition of, 1.18
as design requirement, 40.6
distortion, 1.18

displacement pickup, 1.18
displacement shock, 27.5, 27.6
displacement transducers, 16.4
distributed systems, 1.18
driving point impedance, 1.18, 10.29

hand-arm system, 41.12
human body, 41.8

drop-ball shock calibrator, 11.19
drop tables, 27.7
drop-test calibrator, 11.19
dry friction whip, 5.2, 5.5, 5.11, 5.19, 5.22
ductility of metals, 33.10
Duffing’s method, 4.32
Duhamel’s integral, 7.1, 20.12
dummies:

crash test, 41.4
dynamic, 41.4

durability test, 18.16
duration of shock pulse, 1.18
dynamic absorber, 6.13

pendulum, 6.20
tuned to orders of vibration, 6.20
untuned, 6.25

dynamic disturbances, types of, 39.2
dynamic environment, 39.2
dynamic load factors (DLFs), 39.6
dynamic mass, 10.3
dynamic range, 13.4
dynamic response index (DRI), 41.2,

41.33
dynamic stiffness, 1.18, 10.3

of isolators, 39.13
dynamic vibration absorber, 1.18, 6.1

earth’s gravitational field method of
calibration, 11.8

effective bandwidth, 1.19
effective mass, 1.19
eigenfrequencies, 7.5
eigenvalues, 22.13
eigenvectors, 7.5

expansions, 22.15
elastic axis, 3.22
elastic center, 3.23
elastic couplings, 37.6
elastic foundation, 7.34
elastomer cup mounts, 39.32
elastomeric seismic bearings, 39.43
electrodynamic exciters, 11.23
electrodynamic vibration machines, 25.7

controls for, 26.12, 26.13
electromechanical coupling factor, 1.19
electrostatic shields, 15.2
electrostriction, 1.19
elliptical filters, 13.10, 13.11
elliptical coordinate system, 7.32
elliptic function, first king, 6.23
end dynamic mass, 10.31
endurance limit of metals, 33.12
energy balance method, 37.13
energy dissipation, 6.3
energy-equivalent vibration total value,

41.31
energy functional, 7.2
energy spectral density, 24.4
engines, 37.1
ensemble, 1.19
entrainment of frequency, 4.18
envelope detectors, 16.18
environment:

active, 39.2
aeroacoustic, 18.11, 32.1
as design concern, 40.1
dynamic (summary), 23.9, 39.2
induced, 1.2
natural, 1.22
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environment (Cont.):
types of, 18.2
wind, 31.1

environmental test specifications, 18.1
equal sensation contours, 41.17
equation condensation, 21.38
equipment design:

practice of, 40.1
for shock, 40.2
for vibration, 40.2

equipment loading effects, 18.12, 40.15
equivalent static acceleration, 20.11
equivalent static force, 20.13
equivalent system, 1.19
equivalent viscous damping, 1.19, 1.26
ergodic process, 1.19
Euler Bernoulli beam theory, 7.19
European Committee for Electrotechnical

Standardization (CENELEC), 17.1
European Committee for Standardization

(CEN), 17.1
excitation:

aeroacoustics, 32.1
definition of, 1.19
engine, 37.11
multiple-axis, 18.18
types of, 18.17, 40.3

experimental modal analysis, 21.1, 21.14
extrapolation procedures, 18.8

failure:
criteria for, 40.6
definition of, 18.13

false alarms, 16.6,
fast Fourier transform (FFT), 14.9, 19.17
fatigue:

acoustic, 32.17
tests for, 33.11, 33.15

fatigue diagram, 33.2
fatigue failure, 40.24

of bone, 41.5
of cartilage, 41.5
model for bone, 41.33

fatigue performance:
of bone, 41.6
of cartilage, 41.6
of composites, 34.15

fault detection in machinery, 16.5
fault diagnosis in machinery, 16.8
FFT (see fast Fourier transform)
FFT analyzers, 14.9
FFT spectrum analysis, 14.9, 14.11, 14.16,

14.22

field calibration techniques, 15.13
filter(s):

bandwidth of, 14.3, 14.4, 19.22, 19.27
definition of, 1.19
digital, 14.2
effective noise bandwidth of, 14.3
high-pass, 1.20
impulsive response of, 14.4
low-pass, 1.21
properties of, 14.3
relative bandwidth of, 14.4
response time of, 14.3
(See also specific filter types)

finite element analysis, 21.47, 32.14, 40.18
finite element method (FEM), 18.7, 23.1,

37.8, 40.18
finite element programs, 23.1
finite impulse response (FIR) filters, 13.9
fixed-reference transducer, 10.2
flattest spectrum rule, 15.4, 16.4
flattop window, 14.14
floating shock platform, 27.10
flow-induced vibration, 30.2, 32.7
fluid bearing instability, 5.2, 5.5, 5.12, 5.22
fluid elastic instability, 30.14
fluid flow, 30.1

in pipes, 30.18
over structures, 30.8, 32.7

fluidic elastomer mounts, 39.32
fluid-structure interaction, 23.5
fluid trapped in the rotor, 5.2, 5.4, 5.9, 5.22
flutter, 31.3
flutter mechanisms, 31.20
flywheel, 6.22
force factor, 1.19
forced motion, 2.23
forced oscillation, 1.19
forced vibration, 1.1, 1.19
forced vibration, 1.1, 1.19, 2.7–2.9, 5.1, 5.2,

5.5, 5.7, 5.10, 5.16, 5.19
forces:

biodynamic, 41.13
feed or thrust, 41.13
grip, 41.13

force transmissibility, 2.7
force transmission, 2.12
forcing frequency, 1.2
FORTRAN, 7.1
forward whirl, 5.4, 5.7, 5.9, 5.12, 5.13, 5.22
foundation, 1.19

motion of, 2.16, 2.26
foundation-induced vibration, 3.42, 40.21
foundation mass, 7.29
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Fourier coefficients, 19.4
Fourier integral, 7.6
Fourier series, 7.6, 7.26, 19.4
Fourier spectrum, 20.5

acceleration impulse, 20.6
acceleration step, 20.6
applications, 20.9
complex shock example, 20.9
decaying sinusoidal acceleration, 20.9
examples, 20.7
half-sine acceleration, 20.8
relation to shock response spectrum,

20.13, 20.22
Fourier transform, 14.9

discrete, 19.18, 21.15
finite, 19.4
shock calibration, 11.22

fraction of critical damping, 1.19, 2.5, 6.6,
10.2

relation to Q, 20.14
fracture mechanics, 33.23
free-fall calibration, 15.13
free velocity, 6.3, 6.9
free vibration, 1.1, 1.2, 2.21, 4.6

with damping, 2.5
without damping, 2.3

free vibration problem, 7.5
frequency:

angular, 1.7, 1.16, 2.3
audio, 1.16
circular, 1.16
critical, 32.11
definition of, 1.7, 1.20
entrainment of, 4.18
forcing, 1.2
fundamental, 1.2
natural, 1.22, 2.3
normalized, 32.5
Nyquist, 13.5, 19.18
resonance, 1.24
transversal, 7.26

frequency domain, 19.4, 19.6
frequency equation, 2.21
frequency resolution, 19.22
frequency response function (FRF), 19.9,

20.9, 21.7, 40.25
frequency response procedures, 18.8
frequency sampling, 14.12
frequency weighted acceleration, 41.23

for building vibration, 41.29
for comfort, 41.23
component of, 41.2

frequency weighted acceleration (Cont.):
for hand-arm response, 41.31
for motion sickness, 41.3
for perception, 41.29
sum, 41.28
for whole-body response, 41.23

friction damping, 35.18
fringe-counting interferometer, 11.10
fringe-disappearance interferometer, 11.12
full-bridge configuration, 10.24
functional, 7.2
functional test, 18.16
fundamental frequency, 1.2
fundamental mode of vibration, 1.2

g, definition of, 1.2
gage factor, 10.24
Galerkin series, 7.33
galloping, 31.3
galloping oscillations, 31.3
gaussian distribution, 19.7, 24.3
gearbox, 16.7
geared systems, 37.6
generalized coordinates, 2.22, 2.24, 7.9, 7.1
generalized force, 2.24
generalized foundation, 7.29
generalized mass, 2.24
generators, 17.4
ghost components in vibration spectra, 16.15
Goodman diagram, 33.16
gravity, center of, 1.17, 3.26
grounding, 15.21
ground loops, 15.21
ground motions, 29.1
gust factor, 31.12
Guyan reduction, 23.17
gyro stabilizer, 6.16

half-bridge configuration, 10.24
half-power point, 2.18
Hamilton’s variational principle (HVP), 7.1,

7.2, 23.2
Hamming window, 14.14
hand-arm vibration syndrome (HAVS),

41.16
hand-held accelerometer, 15.12
hand-transmitted vibration:

biodynamic force, 41.13
effects of, 41.16
hand-arm vibration syndrome (HAVS),

41.16
mechanical impedance for, 41.12
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hand-transmitted vibration (Cont.):
mechanical resonances, 41.13
numbness, 41.16
physiological response to, 41.17
transmission to shoulder, 41.13
white fingers, 41.16

Hanning window, 14.14
hardening, definition of, 4.2
hardening spring, 19.6
hard failure, 18.13
harmonic, 1.2
harmonic motion, 1.7 (See also simple

harmonic motion)
harmonic response, 1.2
head:

concussion from rotation of, 41.21
injury from shock and impact, 41.18, 41.21,

41.45
mechanical resonances of, 41.8
protective helmets, 41.45
skull fracture, 41.22
skull vibration, 41.13
transmissibility from seat to, 41.8

headroom, 13.4
helical cable, 39.10
helical cable mounts, 39.38
helical isolators, 39.40
heterodyne interferometer, 11.15
HIDAMETS, 35.13
high-acceleration methods of calibration,

11.15
high-deflection elastomer shock mounts,

39.33
high-frequency shock, 27.7
high-impact shock machines, 27.10, 27.11
high-pass filter, 1.20
Hilbert transform, 14.35
homodyne interferometer, 11.15
homogeneous equation solution part, 7.6
Hooke’s law, 4.2
Hopkinson bar, 7.16, 27.10, 28.7
Hopkinson bar calibrator, 11.17
H-type elements, 23.2
human surrogates, 41.3

biofidelity, 41.4
control of objects, 41.22
visual acuity, 41.22

human tissue:
density of, 41.6
elastic moduli of, 41.6
injury by shock and vibration, 41.14, 41.16
mechanical impedance of, 41.13

human tissue (Cont.):
nonlinearity of, 41.5
resistance and stiffness of, 41.5, 41.13
tensile strength of, 41.6

human tolerance criteria:
boundary for severe injury, 41.2, 41.33
boundary for voluntary exposure, 41.33
in buildings, 41.29
comfort, 41.28
hand-arm system, 41.31
head injury criterion, 41.37
health, 41.27
health caution zone, 41.27
motion sickness, 41.3
multiple shocks and impacts, 41.33
survivable single shocks, 41.33
Wayne State concussion tolerance curve,

41.37
hydraulic vibration machines, 25.16, 25.15
hysteresis, 2.16
hysteresis loss, 2.18
hysteretic whirl, 5.2, 5.4, 5.5, 5.22, 16.8

IEC (see International Electrotechnical
Commission)

IEPE (see internal electronic piezoelectric
system)

image impedance, 1.20
impact, 1.20, 38.16, 38.17, 38.27

excitation of, 25.19
with rebound, 38.12, 38.13
without rebound, 38.14

impact-force shock calibrator, 11.20
impedance, 6.3

definition of, 1.20
image, 1.20
of SDOF TVA, 6.5
transfer, 1.25
(See also mechanical impedance)

impedance matrix, 6.5
impulse, 1.2
impulse response function (IRF), 21.7
impulsive response, of filters, 14.4
induced environments, 1.20
inertia:

moment of, 3.15
product of, 3.15

inertial frame of reference, 3.1
inflated membrane, 7.19
initial conditions, 2.4
initial value problem, 7.2
in-plane forces, 7.34
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insertion loss, 1.20
instability/instabilities, 5.1

in forced vibrations, 5.2, 5.19, 5.22
parametric, 5.2, 5.16, 5.22

instantaneous line spectrum, 19.12
computation of, 19.26

instantaneous power spectrum, 19.12
computation of, 19.27

interferometer calibrators, 11.10
intermittent monitoring system, 16.2
internal electronic piezoelectric (IEPE)

system, 13.2, 13.3
International Electrotechnical Commission

(IEC), 17.1
International Organization for

Standardization (ISO), 17.1, 20.13
inverse power law, 18.14
ISO (see International Organization for

Standardization)
isochronous system, 4.6
isolation:

analysis methods, 38.3
areas, 38.1, 38.2,
definition of, 1.20
of force, 38.1, 38.3
shock, 38.3–38.6, 38.9
of support motion, 38.1, 38.3, 38.12
system, 38.8, 38.10, 38.11, 38.17, 38.18,

38.23, 38.25, 38.28, 38.31–38.35, 38.38
vibration, 1.3, 38.1, 38.3, 38.29, 38.35, 38.38,

38.39, 39.7
isolators (see shock isolators; vibration

isolators)

jerk, definition of, 1.20
joint acceptance, 30.10
joint acceptance function, 32.11
joints:

bolted, 40.12
damping in, 36.2, 36.9
welded, 24.15, 40.11

jump phenomena, 4.9, 4.41

Kaiser-Bessel window, 14.14
kinematic boundary conditions, 7.3
kinetic energy, 7.8
Kirchhoff’s laws, 7.32
Kryloff’s method, 4.34

Lagrange’s equations, 2.3, 7.2
Lagrangian energy functional, 7.2, 7.3
laminate design, 34.8

Laplace domain, 21.8
Laplace’s equation, 7.19
Laplace variable, 20.13
laser Doppler vibrometer, 10.32
leaf springs, 39.26
leakage, 14.11, 19.19
least squares, 21.16
Leibniz’s rule, 8.14
level, 1.20
life cycle analysis, 40.5
limit cycle, 4.22
linear mechanical impedance, 1.21
linear resilient support, 3.22
linear spring, 7.16
linear system, definition of, 1.21
linear variable differential transformer,

10.35
linear velocity damping, 4.32
line spectrum, 1.21, 19.5, 19.19
load deflection, 39.7
loading, 18.12, 40.15

variable-amplitude, 33.20, 33.23
load system, 6.4
logarithmic decrement, 1.21, 2.6
longitudinal wave, 1.21
loss factor, 24.10, 35.4, 36.3, 36.6, 36.11, 36.12

coupling, 24.16
damping, 24.14

low-cycle fatigue in metals, 33.16
low-pass filter, 1.21, 13.1
lumped mass, 7.16
lumped parameter systems, 2.1, 40.18

machinery:
monitoring of, 16.1
reciprocating, 16.22
rotating, 37.1
types of, 17.4
vibration, 17.3

machinery vibration:
rotating faults, 16.9
spectrum analysis of, 16.17
stationary faults in, 16.9

MacNeal-Rubin reduction, 23.19
magnetic shields, 15.20
magnetic tape recorder, 1.21
magnetoelastic damping, 35.8
magnetostriction, 1.21
maintenance costs, reduction, 36.5
manikin:

anthropometric, 41.4
for crash testing, 41.4
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mass, 2.2
center of, 3.14

mass computation, 3.3
mass controlled system, 2.1
mass damping, 2.27
mass loading, 15.13, 40.16
mass-spring transducer (seismic transducer),

10.2
MATEMATICA, 7.1
Mathieu’s equation, 5.16, 4.41
MATLAB, 7.1
matrix:

definition of, 22.2
diagonal, 22.3
identity, 22.3
null, 22.3
spectral, 22.13, 26.6, 26.7
symmetric, 22.4
types of, 22.3
unit, 22.3
zero, 22.3

matrix eigenvalues, 22.13
matrix methods of analysis, 22.1
matrix operations, 22.4
maximum environment, 18.4
maximum expected environment, 18.9, 40.15
maximum transient vibration value, 41.24
maximum value, 1.21
MDOF (see multiple-degree-of-freedom

systems)
mean phase deviation, 21.47
mean-square value, 19.3, 24.3

computation of, 19.25
mean value, 19.3, 24.6

computation of, 19.25
mean wind velocity, 31.5
measurement:

absolute, 11.3
comparison, 11.4
procedures, 21.21, 26.10
synthesis, 21.47

measuring instrument, 10.1
measuring system, 10.1
mechanical circuit theorems, 9.6
mechanical elements, combination, 9.4
mechanical exciters, 11.23
mechanical impedance, 9.1, 1.2, 1.21, 10.3

applications of, 9.12, 40.16
definition of, 9.1
of hand-arm system, 41.12
of human body, 41.8
measurement, 9.11

mechanical impedance (Cont.):
shock source and load, 20.10
of soft tissue, 41.14

mechanical mobility, 9.1, 9.12
mechanical properties of materials:

aluminum alloys, 33.7, 33.8
bone, 41.5
cast iron, 33.11
composites, 34.4
soft tissue, 41.5
steels, 33.5, 33.6

mechanical shock, 1.21
(See also shock)

mechanical 2-ports, 9.1
membranes, 7.1, 7.35
metal matrix composites, 34.2
metals:

ductility in, 33.10
effects of temperature on, 33.8
endurance limit in, 33.12
engineering properties of, 33.1
equipment design using, 40.1
fatigue in, 33.11
physical properties of, 33.2
static properties of, 33.2
tensile strength of, 33.2, 33.8
toughness of, 33.10

metal springs, 39.2
metal strain gage, 12.1
micromachining, 10.26
microstrain, 10.15
Mindlin theory, 7.31
Miner’s rule, 33.21
mixed-mode testing control, 26.19
mixed vibration environments, 19.3
mobility, 6.3, 10.3
mobility matrix, 6.5
modal analysis, 21.1

applied to rotary systems, 37.16
effect of environment, 21.5
measurements in, 21.3
parameter estimation, 21.2
theory of, 21.5

modal complexity, 21.51
modal coupling, 3.27
modal damping, 21.13
modal damping ratio, 7.5
modal data acquisition, 21.15
modal data presentation/validation, 21.46
modal density, 23.9, 24.13
modal excitation, 24.18
modal force, 7.26
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modal identification:
algorithms, 21.41, 21.42
concepts, 21.39
models, 21.22

modal mass, 21.13
modal matrices, 22.13
modal modification prediction, 21.47
modal numbers, 1.21
modal overlap factor, 24.11
modal parameter estimation, 21.16
modal phase colinearity, 21.51
modal power potential, 24.11
modal scaling, 21.13
modal superposition, 24.5
modal testing, 21.1

configurations, 21.16
control systems for, 26.30

modal truncation, 23.13
modal vector consistency, 21.49
modal vector orthogonality, 21.48
modal viscous damping factor, 7.5
mode counts, 24.13
model, shock and vibration:

single-degree-of-freedom, 40.2
structural, 40.17

mode natural frequency, 2.24
of rotors, 37.7

modes:
of driven machinery, 37.2
failure, 18.14
identification, 21.41, 21.42

mode shapes, 21.1
modes of vibration, 1.21

fundamental, 1.2
natural frequency of, 1.22
normal, 1.22 (See also modes)

modulation, 1.21
moments, temporal, 28.6
moments of inertia, 3.15

experimental determination of, 3.17, 37.4
polar, 37.3

monitoring of machinery, 16.1
motion:

periodic, 1.1
rigid body, 3.1
rotational, 2.2
transitional, 2.1
undamped, 2.3

motion response, 2.7
motion sickness, 41.3
motion transmissibility, 2.7
motors, 17.4

multical mounts, 39.40
multiple-axis excitation, 18.18, 25.2, 25.20
multiple-degree-of-freedom (MDOF)

systems, 1.21, 2.19, 2.27, 6.2, 21.11
absorber applications, 6.27
multivibrator, 5.20
response of, 24.4

narrowband damping, 6.7
narrowband random vibration, 1.22
natural boundary conditions, 7.3
natural environment, 1.22
natural frequency, 1.22, 2.3, 6.6, 7.8

angular, 2.3
damped, 1.18
undamped, 1.26
of vibration isolators, 39.5

natural mode of vibration, 1.22, 2.22
neoprene, 39.18
neutral surface, 1.22
Newkirk effect, 5.21
Newton’s laws, 7.2
nodal lines, 7.32
node, 1.22
noise, 1.22

background, 1.17
in diesel engine, control of, 36.5
generation of, in cable, 15.19
suppression, 15.2
white, 1.27

nominal bandwidth, 1.22
nominal passband center frequency, 1.22
nominal upper and lower cutoff frequencies,

1.22
nonisochronous system, 4.6
nonlinear damping, 1.22
nonlinear systems, 4.1, 4.8, 23.8, 32.15
nonlinear vibration, 4.1, 4.6, 4.31, 4.32, 4.36,

4.41
nonstationary vibration environment, 18.3,

19.2, 19.11
normal distribution, 24.3

(See also gaussian distribution)
normalizing condition, 2.22
normal mode, 7.6
normal modes of vibration, 1.22, 2.22, 21.1,

24.4
Nyquist frequency, 13.5, 19.17

octave, 1.22
one-dimensional wave equation, 7.4
on-line/off-line monitoring systems, 16.2
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order of disturbance, 6.23
order of vibration, 6.20
orthogonality condition, 2.22
oscillation, 1.22

galloping, 31.2
turbulence-induced, 31.2, 32.7
wake-induced, 31.3

out-of-band energy, 13.14
overall vibration value, 41.28
oversampling, 13.8

parallel, dashpots in, 36.4
parametric instability, 5.2, 5.16, 5.22
partial node, 1.22
particle velocity, 7.16
particular equation solution part, 7.6
passive-circuit type, 10.1
peakness methods, 16.20
peak-to-peak value, 1.22
peak value, 1.22
pendulum, 2.31, 4.2, 4.3

dampers, 37.21
equivalent moment of inertia, 6.22
nonlinear, 4.3

pendulum absorber:
linear vibration, 6.26
types, 6.2, 6.24, 6.25

period, 1.22, 2.3
periodic functions, 19.4
periodic motion, 1.1
periodic quantity, 1.22
permanent monitoring system, 16.2
personal computer (PC), 7.1, 26.2
perturbation method, 4.32
phase angle, 2.4
phase coherent signal, 14.35
phase coherent vibrations, 19.1
phase demodulation, 14.35
phase of periodic quantity, 1.22
picket fence corrections, 14.14
pickup (sensor), 10.1
piezoelectric accelerometers:

calibration of, 11.1
mounting of, 15.5
selection of, 15.4

piezoelectric exciters, 11.23, 25.18
piezoelectricity, 1.23
piezoelectric material, 10.1, 13.2
piezoelectric strain gage, 12.1
piezoelectric vibration exciters, 11.5, 25.18
piezoresistive, 10.1
pipes, fluid flow in, 30.19

plastic damping, 35.5
plastic isolators, 39.10
plates, 1.14, 7.1

lateral vibration of, 1.14
pneumatic-elastomeric mount, 39.37
pneumatic isolators, 39.36
point mass, 2.19
Poisson operator, 7.31
Poisson ratio, 7.17
polar moments of inertia, 37.3

measurement of, 37.4
polar orthotropy, 7.33
polycal mounts, 39.40
polymeric materials, 34.6
polymer matrix composites, 34.1
potential energy, 7.8
power spectral density, 1.23, 14.8
power spectral density function, 18.11, 19.8,

24.3
computation of, 19.22
instantaneous, 19.27

power spectral density level, 1.23
power spectrum, 1.23, 14.8, 14.33
Prandtl’s membrane analogy, 7.17
preventive maintenance, machinery, 16.1
primary shock response spectrum, 20.13
primary standard, 11.3
principal elastic axes, 3.22
principle of minimum complementary

energy, 7.5
principle of minimum potential energy, 7.5
principle of stationary Reissner energy, 7.5
principle of virtual work, 7.2
printed wiring assembly, 40.13
probability density function, 19.6, 24.20

computation of, 19.22
process, 1.23
production test, 18.5
product of inertia, 3.15

experimental determination of, 3.19
propellers, 37.4
propeller whirl, 5.2, 5.5, 5.15, 5.22
proportional damping, 21.12
protection from shock and vibration:

body support and restraints for, 41.41
collapsing structures for crash, 41.41
dynamic preload for crash, 41.45
energy absorption for crash, 41.42
gloves for, 41.41
harnesses for, 41.42
helmets for, 41.45
inflatable air bags for, 41.43
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protection from shock and vibration (Cont.):
preventive measures against HAVS,

41.41
vibration-isolation for power tools, 41.4

proximity probe, 10.36
proximity probe transducer, 16.4
pseudo velocity, 40.20
pseudo-velocity response, 20.11
P-type element, 23.2
pulsating longitudinal loading, 5.2, 5.16, 5.18,

5.22
pulsating torque, 5.2, 5.16, 5.22
pulse, 38.1, 38.2, 38.22

acceleration, 38.6, 38.1, 38.11, 38.22
half-sine, 38.6, 38.1, 38.11, 38.13
rectangular, 38.6, 38.1, 38.11, 38.13
versed, 38.1, 38.11

pulse rise time, 1.23
pumps, 17.4
pyroshock:

characteristics of, 28.2
definition of, 28.1, 28.4
measurement techniques, 28.21
simulation of, 28.4, 28.8
testing techniques, 28.11
test specifications for, 28.7

Q (quality factor), 1.23, 2.18, 6.6
quadratic forms, 22.7
qualification test, 18.5, 40.27
quality control test, 18.5
quantization, 19.17
quasi-ergodic process, 1.23
quasi-periodic signal, 1.23
quasi-periodic vibrations, 19.5
quasi-sinusoid, 1.23
quasi-static acceleration, 40.3
quefrency, 14.33
quenching, 4.17

radius of gyration, 3.4
rahmonic, 14.33
rainflow counting method, 33.20
random excitation, 18.17, 40.4, 40.22

by jet and rocket exhausts, 32.3
by turbulent boundary layer, 32.7
by vortices, 31.17
by wind, 31.1

random process:
nonstationary, 19.24
stationary, 19.6

random response, 23.22, 24.2, 40.22

random signal:
broadband, 19.9, 24.2
narrowband, 19.9, 24.2
stationary, 14.19, 19.6

random test, 18.17
random vibration, 1.23

analysis of, 19.21, 24.1
broadband, 1.17
control systems for, 26.15
laboratory test exciters for, 25.7, 25.9
narrowband, 1.22
statistical parameters, 19.6, 24.1
testing, 18.17, 25.2, 25.12

Rayleigh beam theory, 7.17, 7.19
Rayleigh Ritz method, 7.6, 7.9
Rayleigh’s equation, 4.35
Rayleigh’s method, 7.5
Rayleigh’s principle, 7.8
Rayleigh’s quotient, 7.8, 22.16
Rayleigh wave, 1.23
real-time analysis, 14.20
real-time digital analysis of transients, 14.23
real-time frequency, 14.21
real-time parallel filter analysis, 19.22
receptance, 10.3
reciprocating machinery, 16.22, 17.4, 37.1
reciprocity method of calibration, 11.5
recording channel, 1.24
recording system, 1.24
rectangular orthotropy, 7.33, 7.34
rectangular shock pulse, 1.24
rectangular weighting, 14.22
reference standard, 11.4
regular polygonal prismatic shells, 7.36
relaxation oscillations, 4.17
relaxation oscillator, 5.2
relaxation time, 1.24
reliability factor, 10.23
reliability growth test, 18.6, 40.27
reliability test, statistical, 18.6
repetitive motion injury, 41.16
re-recording, 1.24
residual shock response spectrum, 20.13
residues, 21.10
resilient elements, elastic center of, 3.23
resilient supports:

linear, 3.22
orthogonal, 3.36

resonance, 1.24, 2.18
resonance frequency, 1.24

acceleration, 2.18
body organs for, 41.7
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resonance frequency (Cont.):
damped natural, 2.18
displacement, 2.18
hands for, 41.13
head for, 41.8, 41.22
spine for, 41.8
velocity, 2.18

resonance gain (Q), 20.13
resonant bar, 28.16, 28.17
resonant-bar calibrator, 11.15
resonant beam, 28.14, 28.17
resonant-beam calibrator, 11.25
resonant magnification, 6.6
resonant plate, 28.11, 28.15
resonant vibration, 5.1, 5.6
resonant whirl, 16.8
response, 1.24

subharmonic, 4.15
superharmonic, 4.10

response curves, 4.7
response minimization, 6.10
response optimization, 6.10
response spectrum, 1.24

alternative for shock response spectrum,
20.11

rigid-body motion, 3.1
ringing, 10.8
Ritz coefficients, 7.9
Ritz method, 4.36, 4.38
riveted joints, 24.16, 40.12
rms value, 19.3
road simulator, 25.21
rods, 7.1
Ross-Kerwin-Ungar (RKU) equations,

36.10, 36.22
rotary accelerator, 27.12
rotary inertia, 7.17
rotating machinery, 17.4, 37.1

condition monitoring of, 16.1
fault detection in, 16.5

rotating table (centrifuge) calibrator, 11.9
rotational mechanical impedance, 1.24
rotational motion, 2.2
rotational speed, low harmonics of, 16.9

safety, in design, 40.8
sampling, 21.20, 26.3

frequency, 14.12
rate of, 19.16, 26.4
theorem, 21.20

scaling, 14.8
scan averaging, 14.24

screening test, 18.6
SDOF (see single-degree-of-freedom

structures; single-degree-of-freedom
systems)

SEA (see statistical energy analysis)
seal-induced instability, 5.2, 5.5, 5.11, 5.22
seats:

cushions, 41.39
protective harnesses for, 41.42
transmissibility of, 41.39
vibration reduction for, 41.39

secondary standard, 11.4
seismic design, 29.13
seismic design spectra, 29.9
seismic energy dissipation devices, 29.15
seismic ground motions, 29.5
seismic inelastic spectra, 29.11
seismic response spectra, 29.6
seismic risk, 29.17
seismic system, 1.24
seismic transducer, 1.24
self-excited vibration, 1.24, 4.17, 5.1
self-generating type, 10.1
semiconductor strain gage, 12.2
sensing element, 1.24
sensitivity, 1.24, 10.21
series, dashpots in, 36.4
servo-controlled isolation systems, 39.1
shafts, 7.1
Shannon’s theorem, 13.5
shape memory damping, 35.6
shear correction factor, 7.3
shear wave, 1.24
shells, 7.1, 7.36
shielding, 15.2
shipboard vibration, 17.6
ship roll reduction, 6.14, 6.15
shock:

acceleration impulse, 20.2
acceleration step, 20.4
complex, 27.5, 27.10
complex motion example, 20.5
control methods, 1.2
data reduction concepts, 20.5
data reduction methods, 20.1, 20.5
data reduction to frequency domain, 20.5
data reduction to response domain, 20.5,

20.10
decaying sinusoidal acceleration, 20.5
definition of, 1.2
displacement, 27.5
Fourier spectrum, 20.6

INDEX 15



shock (Cont.):
half-sine acceleration, 20.4
high-frequency, 27.7
laboratory simulation, 20.2
mechanical, 1.21 (See also mechanical

shock)
motion examples, 20.2, 20.3
pyrotechnic, 28.1
response of SDOF systems, 20.10
simple pulse, 27.7
step velocity, 20.2
structural response calculation, 20.2
velocity, 27.5, 27.7, 28.1, 28.2, 28.5, 28.10

(See also mechanical shock)
shock absorber, 1.24
shock and impact exposure:

crash protection for, 41.41
effect of duration, 41.19
examples of, 41.37
flailing of body parts, 41.42
health effects, 41.18
longitudinal accelerations, 41.19
lower extremity injuries, 41.19
neck and spinal injuries, 41.18
soft tissue injuries, 41.18
survivable shocks, 41.33
transverse accelerations, 41.21
whiplash, 41.18

shock calibration, Fourier transform, 11.22
shock calibrator, impact-force, 11.20
shock data analysis, 20.1

digital filter method, 20.2
shock environment, 18.2, 27.1, 40.3
shock excitation, 27.3, 40.21
shock interpretation, 20.1
shock isolation, 38.3–38.6, 38.9
shock isolators, 39.1

response spectra, 39.11, 39.24
selection of, 39.2, 39.4
specification of, 39.8

shock machines, 27.1, 27.3, 27.9, 27.10, 27.12,
28.10

calibration of, 27.3, 27.5
characteristics of, 27.2, 27.3
standards for, 17.3
types of shocks produced by, 27.5

shock motion, 1.24, 20.1
shock pulse, 1.24

duration of, 1.18
shock response spectra (SRS), 20.2, 20.10,

24.3, 27.2, 27.6, 27.10, 28.5, 28.11, 40.21
acceleration impulse, 20.15
acceleration step, 20.15

shock response spectra (SRS) (Cont.):
amplitude scaling, 8.18
calculation, 20.12
complex shock example, 20.20
decaying sinusoidal acceleration, 20.19
definition, 8.17
examples, 20.15
frequency scaling, 8.18
half-sine, 8.2
half-sine acceleration, 20.18
haversine, 8.7, 8.20
impulsive region, 20.21
ISO standard for calculation, 20.13
limiting values, 20.20
maximax, definition, 8.19
noninvertability, 8.18
parameters for, 20.11
positive/negative directions, 20.13
primary, 20.13
pseudo-velocity, definition, 8.2
relation to Fourier spectrum, 20.13, 20.22
residual, 20.13
roll-off, 8.18
square-wave, 8.23
static region, 20.21
triangle, 8.21
wavelet (wavsyn), 8.22

shock response using SEA, 24.20
shock sources, 20.1
shock spectra, 1.24

alternative for shock response spectra, 20.11
shock testing, 27.1, 27.5, 28.10

digital control systems for, 26.18
specifications for, 18.7, 27.1, 27.9, 28.7
standards for, 17.3

shock time history, 20.1
short fiber/particulate composites, 34.2
sideband patterns, 16.15, 19.13
sigma delta, 13.9
signal, 1.25
signal averaging, 21.23
signal conditioning, 13.1
signal enhancement, 14.31
signal processing, digital, 14.1, 14.2,

19.17–19.20, 21.16
signal-nulling interferometer, 11.14
signal-to-noise ratio (S/N), 19.17
simple harmonic motion, 1.7, 1.25
simple pendulum, 4.2
simple spring-mass system, 4.2
sine-sweep tests, 18.4
sine-wave control systems, 26.17
sine-wave test, 18.17
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single-degree-of-freedom (SDOF)
structures, 8.1

base-excited, 8.3
classical approach, 8.4
convolution integral, 8.11
damping factor, 8.2
force-excited, 8.2
free vibration, 8.4
homogeneous equation, 8.4
impulse response function, 8.12
numerical computation of response, 8.15
particular solution, 8.7
response to complex pulse, 8.15
response to square pulse, 8.11
response to square wave, 8.16
undamped natural frequency, 8.2

single-degree-of-freedom (SDOF) systems,
1.25, 2.3, 2.9, 6.1, 21.6

response of, 24.1, 40.22
singular points, 4.19
sinusoidal excitation methods, 11.15
sinusoidal motion, 1.25

foundation-induced, 3.42
skew coordinate system, 7.32
slip damping, 35.19
snubber, 1.25, 39.42
softening, definition of, 4.2
soft failure, 18.13
sound pressure level, 32.2
sound sources, 32.1

jet and rocket exhausts, 32.3
propellers and fans, 32.6
turbulent boundary layers, 32.7

specialized processors, 26.2
specifications:

environmental, 18.1
test, 18.1 (See also standards)

specific damping energy, 35.2
specifying isolator requirements, 38.5
spectral analysis, 14.1, 16.17, 19.19, 26.6
spectral density functions, 19.8–19.11
spectral matrices, 22.13, 26.6, 26.7
spectrum, 1.25, 18.3

instantaneous, 19.12
line, 1.21, 19.5
maximax, 18.4, 40.15
response, 1.24
(See also specific spectra)

spectrum analysis, speed of, 14.6
nonstationary signals, 14.26
real-time, 14.21
time-window effect in, 14.12
zoom, 14.17, 14.19, 16.16

spectrum analyzers, 14.1
spectrum density, 1.25
spectrum interpretation, 16.8
spherical shells, 7.36
spine:

dynamic response index (DRI) for, 41.20
injury from shock and impact, 41.18, 41.33
mechanical resonances of, 41.8
predicting injury from shock, 41.20, 41.33

spring, 39.2
coil, 39.42
hardening, 19.6
ideal, 2.1
leaf, 39.26
metal, 39.2
parallel combination of, 39.17
selection of, 39.4
series combination of, 39.12

spring-controlled system, 2.1
spring-mass system, 4.2
SRS (see shock response spectra)
stability diagram, 21.28
standard deviation, 1.25, 18.1, 19.3
standards, 17.1

ANSI, 27.4
DOD, 17.6, 37.17
human tolerance to building vibration,

41.29
human tolerance to hand-arm vibration,

41.31
human tolerance to repeated shocks and

impacts, 41.33
human tolerance to vibration, 41.23
international, 17.3
NASA, 17.5
organizations, 17.7
primary, 11.3
terminology, 17.2
testing, 17.5
transfer, 11.4
for vibration, 17.1
for vibration isolators, 17.3
working reference, 11.4

standards laboratories, 11.3
standing wave, 1.25
static deflection, 2.4
stationary deterministic signals, 14.19
stationary faults, 16.9
stationary process, 1.25
stationary random process, 19.1, 24.3
stationary random signals, 14.19
stationary signal, 1.25
stationary vibration environment, 18.3
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statistical energy analysis (SEA), 24.1, 24.4,
24.6, 32.13, 32.14

statistical methods of analysis, 24.1
statistical reliability test, 18.6
statistical sampling errors, 19.21
steady-state vibration, 1.1, 1.25
steel, properties of, 33.5, 33.6
stick-slip rubs, 5.2, 5.19, 5.22
stiffness:

asymmetric, 4.5, 4.9
coefficient of, 2.2
definition of, 1.25
dynamic, 1.19
isolators, 39.2
vs. static, 39.12
symmetric, 4.7
torsional, 37.4

strain:
in composites, 34.6
in metals, 33.2

strain gage, 12.1
bridge configurations, 12.9
materials, 12.4
temperature compensation, 12.4

strain-hardening modulus, 33.4
strain-life method, 33.16
strain sensitivity, 10.15
stress, 7.16
stress intensity factor, 33.23
stress-life method, 33.12
stress-strain relationship:

in composites, 34.6
in metals, 33.2

stress-velocity relationship, 27.2, 40.2
stretched string, 4.3
strings, 7.1, 7.35
Strouhal number, 30.9
structural damping, 2.18

uniform, 2.29
structural-gravimetric calibrator, 11.8
structural model, 40.17
structural vibration:

sound-induced, 32.1
vortex-induced, 30.10
wind-induced, 31.1

structure, 7.1
structure mass matrix, 7.9
structure stiffness matrix, 7.9
subharmonic response, 1.25, 4.14, 4.15
subsynchronous components of vibration,

16.8
superharmonic response, 1.25, 4.1, 4.10

survivability, 10.9
swept sine-wave testing, 18.4, 18.17
symbols, 1.5
symmetric stiffness, 4.7
synchronization, 30.10
synchronous averaging, 14.31
system, 7.1
system response distribution, 24.18

TEDS (see transducer electronic data sheet)
temporal moments, 28.6
tensile strength, ultimate, 33.2, 33.8
tension loading of isolators, 39.30
terminology, standards, 17.2
test:

accelerated, 18.15
acoustic, 32.18
durability, 18.16
functional, 18.16
random, 18.17
sine-wave, 18.17
swept-sine-wave, 18.17

test criteria, 18.1
test duration, 18.13
test failures, 18.16, 40.6
test fixture, 18.18, 25.21, 25.1
testing standards, 17.5
test level, 18.7, 18.11
test load, definition of, 25.1
test specifications, 18.1
theory, 7.11
thermoelastic damping, 35.12
three-degrees-of-freedom (3-DOF) system,

2.31
tilting support calibrator, 11.8
time-dependent failure mechanism, 18.13
time domain, 21.7
time history:

analysis of, 19.1
definition of, 1.25

time-varying functions, 19.2
time-window effect, 14.12
Timoshenko beam theory, 7.19
Timoshenko-Gere theory, 7.17
Timoshenko paradox, 7.26
tolerance limit, 18.9
torsional rigidity, 7.17
torsional spring, 7.16
torsional vibration, 7.11

in machinery, 37.1
model of, 37.2
testing, 37.18
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torsion loading of isolators, 39.33
total least squares (TLS), 21.16
traceability of calibrations, 11.2
tracking analysis, 14.27
trajectories, 4.22, 4.28, 4.34
transducer:

cables for, 15.18
definition of, 1.25
displacement, 16.4
frequency response, 11.1
hand-held, 15.12
mountings for, 15.5, 15.1
selection of, 15.4, 16.4
sensitivity, 11.1
torque, 37.18
torsional, 37.4
velocity-type, 16.4

transducer calibration, 11.1
ballistic pendulum method of, 11.18
centrifuge method of, 11.9
comparison method, 11.4, 15.13
drop-ball method, 11.19
earth’s gravitational method, 11.8, 15.14
electrodynamic exciter method, 11.23
field methods, 15.13
Fourier transform method, 11.22
free-fall method, 15.13
heterodyne interferometer method, 11.15
high-acceleration method, 11.15
impact-force shock method, 11.20
interferometer method, 11.10
inversion method, 15.14
pendulum calibrator method, 11.8
reciprocity method, 11.5
rotating table method, 11.8
shaker excitation method, 11.23
shock excitation method, 11.20
signal-nulling interferometer method,

11.14
sinusoidal-excitation method, 11.15
structural-gravimetric method, 11.8
techniques, 15.13
tilting-support method, 11.8
transfer function method, 11.5
vibration exciter method, 11.22

transducer electronic data sheet (TEDS),
13.3

transducing element, 10.1
transfer function, SDOF system, 20.13
transfer impedance, 1.25, 10.29
transfer matrix method, 7.7, 7.27, 37.7
transfer standard, 11.4

transient analysis, 14.22, 24.20
transient response, 24.20
transient vibration, 1.1, 1.25
translational motion, 2.1
transmissibility:

calculation, 2.9
force, 2.7, 2.12
motion, 2.7
from seat to head, 41.8

transmission loss, 1.25
transportation environments, 17.4, 18.14,

40.5
transpose of a matrix, 22.3
transversal frequency, 7.26
transverse sensitivity, 11.24
transverse wave, 1.26
trend analysis, 16.7, 16.23
triboelectricity, 15.19
tuned damper, 1.1
tuned mass damper, 6.1
tuned resonant fixtures, 28.13
tuned vibration absorber (TVA), 6.1

semiactive/active, 6.31
turbulence, excitation by, 32.7
turbulence-induced oscillations, 31.2
TVA (see tuned vibration absorber)
two-degrees-of-freedom (2-DOF) system,

37.12
two-stage snubbing, 39.18

ultimate tensile strength, 33.2, 33.8
ultra-subharmonic response, 4.12, 4.14
unbalance, centrifugal machinery, 6.16

sources of, 37.1, 37.10
uncoupled mode, 1.26
undamped motion, 2.3
undamped natural frequency, 1.26, 20.13
unified matrix polynomial approach, 21.42
uniform beams, 7.24
uniform mass damping, 2.27, 2.29
uniform structural damping, 2.29
uniform viscous damping, 2.27
United States National Committee of the

International Electotechnical
Commission (USNC/IEC), 17.1

unit step function, 20.4
unstable imbalance, 5.2, 5.20
upsampling, 13.12
U-tube, 2.32

Van der Pol’s equation, 4.17, 4.33,
variable-amplitude loading, 33.13
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variance, 1.26, 19.3, 24.6
computation of, 19.17
for nonstationary data, 19.1

variation operator, 7.2, 7.3
vector cancellation method, 37.20
vehicle vibration, 18.15, 25.21

discomfort from, 41.28
velocity, 1.26
velocity pickup, 1.26, 16.4
velocity response, 2.1
velocity shock, 3.51, 27.5, 27.7, 28.1, 28.2,

28.5, 28.10
(See also mechanical shock)

velocity-squared damping, 4.33
vibration:

ambient, 1.16
back pain and, 41.16
body-induced, 3.47
chronic effects from, 41.16
classification, 19.1, 40.3
comfort in public transportation, 41.28
complex, 1.17
control methods, 1.2
coordinate axes for, 41.26
definition of, 1.26
deterministic, 1.1
discomfort from, 41.17, 41.28
effect on task performance, 41.22
effect on visual acuity, 41.22
effects on manual control, 41.22
equipment design to withstand, 40.1
flow-induced, 30.2, 32.7
forced, 1.1, 1.19, 2.7–2.9, 5.1, 5.2, 5.5, 5.7,

5.10, 5.16, 5.19
foundation-induced, 3.42
free, 1.1, 1.2, 2.2, 4.6
health caution zone, 41.27
health effects from, 41.16
longitudinal, 41.7
measurement of, 41.23
mechanical damage from, 41.15
mechanical impedance for, 41.8, 41.12
motion sickness from, 41.3
nonlinear, 4.1, 4.6
periodic, 1.1
physiological responses to, 41.7
random, 1.1
self-excited, 4.17, 5.1
ship, 17.6
skull, 41.13
sound-induced, 32.1
steady-state, 1.1, 1.25

vibration (Cont.):
subsynchronous components, 16.8
systems with damping, 22.21
systems without damping, 22.18
thorax-abdomen subsystem, 41.9
transient, 1.1, 1.25
transmissibility from seat to head, 41.8
transverse, 41.11
vortex-induced, 30.1, 30.8, 30.10, 31.2
wave-induced, 30.6
white fingers, 41.16
wind-induced, 31.1

vibration absorber, activated, 6.31
vibration acceleration, 1.26
vibration acceleration level, 1.26
vibration amplitude, 5.1, 5.3, 5.6, 5.16, 5.20

control of, 36.1, 36.5, 36.11, 36.17
vibration analysis:

cepstrum, 16.19
envelope, 16.18
peakness, 16.20
techniques, 16.17

vibration data analysis, 19.1
vibration dose value (VDV), 41.24
vibration environment, 18.2
vibration exciters, 25.1, 25.15

electrodynamic, 11.23, 25.7
hydraulic, 25.16
impact, 25.19
mechanical, 11.23, 25.2
piezoelectric, 11.23, 25.18

vibration exposure,
acceptability of buildings, 41.29
hand/arm, 41.16, 41.31, 41.4
health caution zone for, 41.27
maximum transient vibration value for,

41.24
overall vibration value for, 41.28
running rms acceleration for, 41.23
total daily exposure, 41.28
transient events, 41.23
vibration dose value for, 41.24
vibration total value for, 41.31
for whole body, 41.15, 41.23, 41.39

vibration isolation:
efficiency of, 39.7
function of, 1.3
theory, 38.1, 38.3, 38.29, 38.35, 38.38, 38.39

vibration isolation systems for seats, 41.39
active, 39.3
semiactive, 39.3
servo-controlled, 39.1
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vibration isolators:
air, 39.8
applications for, 39.1
coil spring, 39.42
commercial, 39.1
damping characteristics of, 39.26
definition of, 1.26
dynamic stiffness, 39.2
elastomeric, 39.1, 39.27
fail-safe installation, 39.2
fatigue failure in, 39.27
helical cable, 39.10
installation of, 39.26
leaf, 39.26
location of, 39.13
materials for, 39.26
metal spring, 39.2
natural frequency of, 39.5
plastic, 39.10
pneumatic, 39.36
selection of, 39.1
service life, 39.34
shear loading of, 39.13
specifications for, 39.2
standards for, 17.3
static stiffness of, 39.12
stiffness of, 39.2
tension loading of, 39.30
torsion loading of, 39.33
types of, 39.26

vibration machines, 25.1
circular motion machine, 25.4
direct-drive, 25.2
electrodynamic, 25.7
hydraulic, 25.16
impact, 25.19
piezoelectric, 25.18
reaction type, 25.4
rectilinear, 25.5

vibration measurements, 15.1
considerations in, 15.3
data sheets for, 15.22
false alarms in, 16.6
field calibration techniques in, 15.13
on soft tissue, 41.3, 41.23
parameters for, 15.2, 16.4
planning of, 15.1
techniques in, 15.1
time interval between measurements, 16.5
torsional, 37.18
transducer locations for, 16.5
transducer selection in, 15.4

vibration measurement system:
calibration of, 15.14
wiring considerations for, 15.18

vibration meter, 1.26
vibration monitoring of machinery, 16.1
vibration problems, matrix forms of, 22.9
vibration spectra:

of machinery, 16.17, 16.8
sideband patterns, 16.17

vibration standards, 17.1
for exposure to building vibration, 41.28
for exposure to multiple shocks, 41.33
for whole-body exposure, 41.23

vibration test codes, 17.1
vibration testing, 18.4, 25.1, 40.26

criteria for, 18.1
digital control systems for, 26.15
duration of, 18.13
magnitude of, 18.11
multiple-exciter applications, 25.2, 25.20,

26.11, 26.24
specifications, 18.1

vibration troubleshooting in machinery,
16.10, 16.14

vibrograph, 1.26
virtual mass effect, 30.1
virtual work, 23.2
viscoelastic damping, 35.10, 36.2, 36.8, 36.9,

36.13
viscous damping, 1.26, 2.5, 2.9, 4.3, 4.4, 7.1,

36.13–36.15
equivalent, 1.19
uniform, 2.27

viscous damping coefficient, 6.7
voltage sensitivity, 10.21
voltage substitution method, 15.16
volume-stress function, 35.16
vortex shedding, 30.8, 30.10, 31.15
vortex-induced oscillation, 31.15

wake buffeting, 31.2
wake-induced oscillation, 31.3
warping function, 7.17
waterfall plot, 14.26, 19.25
wave, 1.27
wave, compressional, 1.17
wave interference, 1.27
wavelength, 1.27
wave number, 32.5
wave propagation, 7.17
Wayne State concussion tolerance curve,

41.37
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weighting, rectangular, 14.13
weighting functions, 21.39

for spectrum averaging, 14.22
welded joints, 24.15, 40.11
Wheatstone bridge with equations, 12.7
whip:

dry friction, 5.2, 5.5, 5.11, 5.19, 5.22
fluid bearing, 5.2, 5.5, 5.12, 5.22

whipping in rotating shafts, 5.2, 5.22
whirl:

propeller, 5.2, 5.5, 5.15, 5.22
resonant, 16.8
in rotating shafts, 5.2, 5.22
speed/frequency, 5.4, 5.6, 5.8, 5.10, 5.12,

5.16, 5.17, 5.22
white fingers, 41.16

predicting development of, 41.31
white noise, 1.27
Wigner distribution, 19.12
wind:

characteristics of, 31.4
fluctuating components of, 31.6

wind (Cont.):
gradient, 31.5
gustiness of, 31.7
mean velocity, 31.5

wind-induced vibration, 31.1
windows, 14.11, 14.13, 14.15

Hanning, 14.14
working reference standard, 11.4
workstations, 26.2

yield strength, metals, 33.2

zero acceleration output, 10.11
zero-offset, 10.11
zero output bias, 10.11
zero shift, 10.9
zone, 18.9
zone limit, 18.9
zoom analysis, 14.16
zoom FFT analysis, 14.23
zoom spectrum, 16.15
z-transform, SDOF response, 20.14
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